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AND OPPORTUNITIES IN 
THE CYBER DOMAIN WITH 
SIM2REAL TECHNIQUES
Emily A. Nack and Nathaniel D. Bastian

This article examines the emerging 

intersection of Sim2Real techniques and 

the cyber realm, exploring their challenges, 

potential applications, and significance in 

enhancing our understanding of this complex 

landscape.
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ZTA

2FA

BY DAKSHA BHASKER AND CHRISTOPHER ZARCONE 
(PHOTO SOURCE:  DROGATNEV [CANVA])
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INTRODUCTION

Z ero Trust Architecture 
(ZTA) has become a 
mainstream information 

security philosophy.  Many commercial 
enterprises are in varying stages 
of their journeys in adopting and 
implementing ZTA.  Similarly, 
federal policy has moved toward 
ZTA, motivated by actions such as 
Executive Order 14028 and guided 
by NIST 800-207 and CISA’s Zero 
Trust Maturity model [1–3].  Although 
there are many frameworks for ZTA 
in industry, academia, and government, 
the essence of the philosophy can be 
summarized in a few brief maxims 
(Figure 1), such as the following:

•	Never Trust, Always Verify

•	Least Privilege Access

•	Assume Breach

ZTA has spawned architectures and 
implementations that vary by 
organization, their respective 

technology stacks, security baselines, 
and appetites for risk [4].  As 
organizations implement this 
architecture, and as with any 
technology endeavor, there inevitably 
comes a point of diminishing returns.  
The following questions automatically 
arise from this:  How much 
microsegmentation is enough? How 
continuous does our “continuous 
monitoring” need to be?

This article is a thought experiment 
where the authors explore a maximalist 
approach of the various ZTA 
philosophies to observe any trends that 
naturally determine the bookends of 
value generated by implementing ZTA.

BACKGROUND
From its origins in a doctoral 
dissertation by Stephen Paul Marsh 
and the “de-perimeterisation” work 
of the Jericho Forum to Forrester 
Research and Google’s publication of 
its influential “BeyondCorp” series of 
white papers, ZTA has become mature 
by any architectural definition [5–8].  
Many organizations are well on their 
way to ZTA, a process that typically 
spans multiple years and impacts 
almost every layer of the information 
technology stack.  The process is 
often referred to as a “journey”—a 
recognition of the fact that for all but 
the smallest of organizations, migrating 
to ZTA will require sustained effort 
over a significant period.

Several ZTA and ZTA-compatible 
frameworks have proliferated over 
time.  The differences between 
these frameworks often reflect the 
philosophies of its developers, the 
priorities of organizations for which 
they are intended, and any procedural 
or technical constraints.  Still, they 
tend to share a common set of 
characteristics, including the following:

•	De-emphasis of networks as trust 
factors

	- the de-perimeterization of 
computer network boundaries

	- enhanced emphasis on small, 
workload-specific perimeters 
(often called “microsegmentation”)

•	Strong user and device 
authentication

•	User and device policy compliance

•	Continuous visibility and risk 
assessment of users and devices

All of this begs an interesting thought 
experiment—what happens if we 
extend the basic concepts of ZTA to its 
logical extremes?  For example, how 

ZTA has spawned architectures 

and implementations that 

vary by organization, their 

respective technology stacks, 

security baselines, and 

appetites for risk.

Figure 1.  Key ZT Tenets (Source:   
D. Bhasker and C. Zarcone).
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far do we go with de-perimeterization?  
Do we just eliminate perimeters 
altogether?  How frequently do we 
authenticate our users—frequently to 
the point of continuously?  How much 
compliance is enough?  Do we allow 
a margin of lenience or mandate zero 
deviation from policy?

THE DISAPPEARANCE OF 
THE EDGE
The information security community 
has long used firewalls and other 
perimeter controls to segregate 
networks of different trust levels.  But 
if one takes a maximalist view, ZTA 
suggests that all computer networks 
should be equally untrusted.  From 
that perspective, it does not make 
sense to segregate networks of 
identical security posture; this is akin 
to building a fence in the middle of a 
cornfield—separating the corn from 
more corn.

If identity is the new perimeter, then 
why bother with the old?  Do away 
with the edge altogether—fill in the 
castle moat, drop the drawbridge, and 
focus on fortifying the castle’s keep 
with elite guards.

This approach is ideologically 
consistent.  But at the same time, 
it does not make much practical 
sense since trust and control are two 
different things.  ZTA teaches that 
networks should not be trusted but 
their controls can still be used to apply 
security policy, such as screening out 

undesirable traffic.  An IP address 
might not be trusted for authentication 
purposes, but using a negative IP 
reputation score to inform real-time 
risk calculations is welcomed.

Despite the mantra that “the perimeter 
is dead,” edge controls still add a level 
of value, even in the ZTA world.  At a 
minimum, they provide a level of pest 
control, keeping the ScRiPt KidDiEz of 
the world at bay.  They also serve as 
strategic choke points for monitoring 
and response.  But their effectiveness 
is inversely proportional to their 
size, hence the movement toward 
microperimeters and workload-specific 
segmentation.  End-user enclaves like 
home networks are also served well by 
perimeters, given their relatively small 
sizes and fixed geographic locations.

GOOD FENCES MAKE 
GOOD NEIGHBORS
In the ZT paradigm, the new perimeter 
is not at the edge of a network; it 
is deep into the interior, at the level 

of individual workloads.  Creating 
small, manageable perimeters designed 
to protect a distinct application or 
set of applications under common 
administration is the new network 
security ideal.  This is often called 
microsegmentation.  Like watertight 
compartments of a seafaring ship’s 
hull, the goal of microsegmentation 
is to isolate and limit the damage 
that occurs when any individual 
compartment is breached (Figure 2).

How segmented should a 
microsegmented network perimeter 
be?  There are many possibilities, such 
as the following:

•	Aggregate – Network policy could 
be applied to the entire address 
space assigned to a workload; 
perhaps a /22 of IPv4 address space 
or a /56 of IPv6.

•	Subnet – The aggregate could be 
further subdivided into several 
subnets as necessary, with a tailored 
network policy applied to each 
subnet.

Figure 2.  Ship Compartmentalization Compared With Microsegmentation Isolating 
Breach (Source: Weinstein et al. [9]).
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•	Server – Network policy could 
be defined down to the level of 
individually addressed servers, 
regardless of subnet or aggregate 
membership.

•	Operating System – Mainly by using 
host-based firewalls, individual 
servers could apply network policy 
to the individual services bound and 
listening on that server.

•	Process – Individual processes on 
the server (native or containerized) 
could apply their own network 
security policies.

Any of these levels could serve as 
adequate microperimeters.  However, 
they could also be applied in series, 
yielding a layered approach.  So, how 
many layers are enough, and how 
many are too many?

“But wait a minute,” someone may say, 
“I thought ZTA said that all networks 
are untrusted and that perimeters are 
passé, and here we are, building more 
perimeters.  What gives?”

Once again, trust factors should 
not be confused with controls and 

control objectives.  Even though the 
ship’s hull might have watertight 
compartments to enhance buoyancy 
(microsegmentation), the ship cannot 
do away with carrying lifeboats, fire 
extinguishers, or communicating with 
vessel traffic controllers for navigation 
updates.  ZTA can work cohesively 
with existing controls.

WHO ARE YOU?  WHO 
ARE YOU AGAIN?
ZTA philosophy displaces networks 
as trust factors and, in turn, places 
stronger emphasis on user and 
device identity.  Users and devices 
establish identity via authentication, 
typically multifactor authentication, 
for interactive user authentication and 
cryptographically strong mechanisms 
for devices.

ZTA calls for strong authentication to 
initiate a work session.  Optionally, 
reauthentication can be required in 
situations where the risk profile of a 
user or device suddenly changes.  But 
why use a reactive stance?  Why not 
proactively reauthenticate a user or 
device every hour?  Why not every 30 
minutes, 10 minutes, single minute, or 
subsecond?

Clearly, users do not want to be 
impacted with authentication fatigue—
as such, continuous interactive 
authentication is not an option.  But 
the increasing use of second factors—
user and/or device digital certificates 
installed on devices, hardware-based 

authenticators like FIDO 2 tokens, 
and passkey-enabled smartphones—
raises the possibility of perpetual 
authentication.  A service endpoint—
whether an application or a VPN 
concentrator or an identity-aware 
access proxy—could interrogate such 
authenticators frequently, with no user 
intervention and negligible resource 
impact.  Failed authentication (or the 
absence/removal of the authenticators) 
could have several explanations—it 
could be an innocuous change, such 
as loss of network connectivity or the 
user going to lunch.  Or the change 
might not be innocuous; perhaps a 
FIDO 2 token was physically removed.  
Who removed it?  Why did they 
remove it?  These occurrences could be 
used in calculations of contextual risk, 
which, in turn, could trigger policy-
driven responses as needed.

It is true that perpetually challenging 
a digital certificate or interrogating 
a hardware token only confirms 
that those authenticators are still 
present—the status of the user remains 
unknown.  But this is better than 
nothing.  If nothing else, perpetual 
authentication can help build a more 
accurate risk profile for that device; 
the instant an authentication fails, 
something has changed.

SPEED DIALING 911
The "Assume Breach" tenet of ZTA 
presumes that the adversary is 
already in the environment.  This 
places an organization in a state of 

Creating small, manageable 

perimeters designed to 

protect a distinct application 

or set of applications under 

common administration is the 

new network security ideal.
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proactive response—a state of constant 
vigilance across its people, processes, 
and technologies.  Containment, 
eradication, and recovery become 
business-as-usual processes, even if 
there is no detectable incident at any 
given time.

Assume Breach is instated regardless 
of the state of the effectiveness 
of preventative controls such as 
“Secure by Design,” threat modeling, 
code reviews, and other security 
hygiene best practices.  These might 
include other ZTA tenets like policy 
compliance, microsegmentation, and 
continuous verification.

From a maximalist vantage point, 
an adversary in an organization’s 
environment can and will use all 
attack methods, tactics, techniques, 
and procedures at their disposal, with 
potentially all exploitation objectives 
(from reconnaissance, disruption 
of service, and data exfiltration to 
malware, ransomware, and Zero-Day 
exploits) to maximize damage.  This, 
in turn, would imply that defensive 
security is constantly operating in 
a state of detecting, containing, and 
recovering from all possible breaches 
simultaneously.  Exercising all security 
remediation, recovery technologies, 
and procedures would result in a self-
directed assault on the environment.  
As the phrase implies, the dose of the 
medicine makes it a cure or poison.

Not unlike the villagers who got 
weary of rushing to the wolf boy’s 
rescue, Security Operations Center 

(SOC) fatigue is real.  It is reported 
on average that SOC deals with a 20% 
rate of false positives, with experts 
spending a third of their time on 
incidents that do not pose threats to 
the organization [10, 11].  SOC fatigue 
results in experts missing the subtle 
indicators of threat actors’ presence in 
the environment.

Anomalous behavior from the baseline 
is not necessarily malicious.  A remote 
login at an unusual hour could simply 
be a conscientious employee checking 
in on work during a family vacation.  
How much security expertise does an 
organization want to expend on such 
security events?

The Assume Breach tenet is a 
mindset that shifts the organization 
from focusing only on prevention 
of breaches or remediation after an 
incident has been detected (adversaries 
are often detected months after 
infiltration) toward continuous 
detection and recovery.  However, 
establishing intelligent, rapid detection, 
response, containment, and recovery 
protocols must be measured.  Breach 
response must be tactical, effective, and 
aligned with the protect surface and 
risk appetite of the organization.  To 
optimize effectiveness, the following 
approaches are recommended:

•	Prioritize "Protect Surfaces" (which 
are the smallest possible attack 
surfaces) for:

	- inspecting and logging all traffic 
before acting,

	- continuously monitoring all 
configuration changes, resource 
accesses, and network traffic for 
suspicious activity, and

	- establishing full visibility of all 
activity across all layers from 
endpoints and the network to 
enable analytics that can detect 
suspicious activity.

•	Establish security baselines and 
gather ample contextual data to 
detect anomalies that flag threat 
actors from all deviations from the 
baseline.

•	Practice “Table Top” war games and 
red-teaming exercises.

•	Ensure robust detection and 
response playbooks with proper 
implementation.

HOW MUCH (ZERO) 
TRUST IN A ZETTABYTE?
While trust evaluation algorithms 
(Figure 3) are rarely explicitly called 
out as a core tenet of ZTA principles, 
they are central to each of them, and 

It is reported on average that 

SOC deals with a 20% rate of 

false positives, with experts 

spending a third of their time 

on incidents that do not pose 

threats to the organization.

08 CSIAC Journal  //  2024 TABLE OF  
CONTENTS



	- continuously monitoring all 
configuration changes, resource 
accesses, and network traffic for 
suspicious activity, and

	- establishing full visibility of all 
activity across all layers from 
endpoints and the network to 
enable analytics that can detect 
suspicious activity.

•	Establish security baselines and 
gather ample contextual data to 
detect anomalies that flag threat 
actors from all deviations from the 
baseline.

•	Practice “Table Top” war games and 
red-teaming exercises.

•	Ensure robust detection and 
response playbooks with proper 
implementation.

HOW MUCH (ZERO) 
TRUST IN A ZETTABYTE?
While trust evaluation algorithms 
(Figure 3) are rarely explicitly called 
out as a core tenet of ZTA principles, 
they are central to each of them, and 

they feed the processes of overall 
implementation (policy engines), 
automation, and orchestration.

However, this might also be the one 
Zero Trust parameter where more 
trust is better and maximum is best.  
Besides, how could one go wrong 
with maximum trust?  The richer the 
telemetry, faster the analytics, and 
more fine-tuned the algorithm, the 
better the accuracy of risk calculations 
and context evaluations, thus arriving 
at reliable trust assertions that 
underpin ZTA policy decisions.

As the number of computers, servers, 
devices, and sensors continues to 
proliferate, they are generating large 
amounts of telemetry data (metrics, 
events, logs, and more).  According to 
IDC’s Global DataSphere forecasts, 
data generated from the core, edge, 
and endpoints are estimated to reach 
over 220,000 exabytes by 2026 
[13, 14].  A myriad of issues needs 
to be dealt with in terms of data 

volumes, storage, normalization, cross 
correlation, streaming data, analytics, 
enrichment, privacy protections, and 
more.  The richer the data, the greater 
the accuracy of the context and risk 
calculations for an entity.  On the 
counterbalance, the greater the data 
volumes and associated processing, 
the more complexity in evaluating 
context.  This gives rise to impedance 
with latency, lag, and errors in trust 
computations and, in turn, ZTA 
implementation.

These inefficiencies will drive 
trust algorithms toward finding 
a natural balance between the 
cost of computation, data storage, 
ingest, complexity, processing, and 
normalizing with the value of each 
datapoint in an algorithm used to 
assert trust.  How much trust is 
enough will be determined by the risk 
appetite aligning with an organization’s 
goals.

MATURITY ANALYSIS
Zero Trust is a journey—not a 
destination—and the journey is a 
complex one.  If the Zero Trust 
approach falters, its cybersecurity 
benefits will significantly degrade [15].  
Absolute Zero Trust does not exist 
and, in a sense, is not achievable for 
all the reasons discussed.  Much of the 
“Extreme Zero Trust” discussion in 
this article illustrates this.  The laws 
of diminishing returns are always in 
force, and Zero Trust is no exception.  

This is perhaps the main reason why 
frameworks like CISA’s Zero Trust 
Maturity model culminate with the 
“optimal” state and not “absurd,” 
“excessive,” or “extreme.”

ZTA may dismiss networks as trust 
factors, but this does not mean that 
network controls are entirely without 
value.  In fact, many network controls 
are rolled into basic security hygiene 
to establish robust security baselines.  
Robust network tenancy and 
microsegmentation for applications 
and workloads are still desired but 
not unnecessary Protect Surfaces 
exposed to the internet.  Factors like 
IP reputation scores are needed as part 
of intelligent risk analytics.  Essentially, 
there is a shift in the way network 
controls are used in ZTA; however, 
they are still intrinsically valuable 
and remain a core part of an Optimal 
Network pillar.

Authentication is a security virtue. 
When applied too frequently, it 
becomes a hinderance to productivity 
and user acceptance, inevitably leading 
to workarounds.  Depending on the 
architecture and use cases, it might be 
advisable to enable hardware-based 

Data generated from the 

core, edge, and endpoints 

are estimated to reach over 

220,000 exabytes by 2026.

Figure 3.  Trust Evaluation Algorithm 
(Source:  ACT-IAC [12]).
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authenticators to enable seamless 
polling to ensure continuous context 
awareness.  Change of context or risk 
profile could trigger any number of 
policy responses like reauthentication.  
Essentially, factors optimizing 
productivity and user experience 
counterbalance the maximalist options 
for this tenet.  Optimal identity is 
continuous and not confounding.

Assume Breach is a sensible position 
but should not succumb to paranoia 
and paralysis through analysis.  If 
every log message and every signal 
is interpreted as a breach, the 
organization has bigger problems.  
False positives, security expertise 
expended on signals that do not 
threaten the organization, and SOC 
fatigue lead to lower quality of 
responses and depleted resources 
during true threats and malicious 
events.  Optimization—knowing 
and prioritizing Protect Surfaces 
and efficiently analyzing signals and 
preparedness—is a must for Assume 
Breach tenet effectiveness.  In the 
CISA model, “Visibility & Analytics” 
is depicted as a foundational overlay 
across the various pillars but is 
arguably its own pillar.

Lastly, the most precise trust 
algorithms require more data, decision 
points, and analysis—all potentially 
raising complexity in data analytics 
toward the point of diminishing 
returns.  With data exponentially 
increasing in environments, keeping 
trust algorithms as streamlined as 
possible to arrive at an effective, valid 
trust decision is perhaps the best 
outcome for ZTA-centric policy 
decisions.  Interestingly, data sits alone 
as both a pillar of protection and the 
asset protected by that pillar, creating a 
circular maturity dependency.

Through the course of the Zero Trust 
journey, proper risk management and 
alignment with technology strategy are 
essential.  For example, organizations 
may choose to align with CISA’s 
Zero Trust Maturity model.  The 
risk profiles of those organizations 
will determine the ZTA measures 
implemented, and the technology 
strategy will drive the 
technical controls 
across the ZTA 

pillars (Identity, Devices, Networks, 
Applications, and Workloads and 
Data).  As organizations journey 
toward the Optimal stage, they will 
find that they are at different levels of 
maturity across each pillar (Figure 4). 
Typically, it is challenging to advance 
across all pillars simultaneously.  As a 
result, some pillars will be prioritized 
over others.

Moreover, since the ZTA tenets have 
interdependencies, developing one 
pillar requires constant vigilance in 
terms of cross-impacting to other 
pillars (or even other controls within 
the same pillar).  For example, in 
the Data pillar, if encryption of 
data in transit (Initial), data at rest 
(Advanced), and data in use (Optimal) 
are all achieved, a data loss prevention 

OPTIMAL

ADVANCED

TRADITIONAL

INITIAL

Zero Trust is a journey—not a 

destination—and the journey 

is a complex one.

Figure 4.  CISA’s ZT Maturity Journey (Source:  CISA Cybersecurity Division [2]).
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control of the same pillar might lose 
visibility into the data and become a 
ghost control.  Alternately, reaching 
levels of Optimal with encryption 
in the Data pillar might support 
Advanced maturity of the Network 
pillar by creating encrypted network 
flows.

Ultimately, ZTA maturity—in the CISA 
context or otherwise—involves a level 
of restraint.  Optimal does not mean 
everything.

CONCLUSIONS
In review, when it comes to ZTA, 
more is certainly not better.  Rather, 
what can be achieved is evaluating the 
ZTA tenets to find the right balance, 
considering an organization’s unique 
goals, specific technology stack, Protect 
Surfaces, processes, assets, and culture 
with its multitude of specifics, that will 
determine the best-case scenario for 
each organization.

The Japanese concept of ikigai, the 
“reason for being”—that which gives 
an individual a sense of purpose—
is found at the intersection of a 
confluence of factors (Figure 5).  
Similarly, the right measure of Zero 
Trust (which is not maximalist) is 
found at the intersection of a multitude 
of factors.  Many of these factors are 
discussed deeply in publications such 
as NIST 800-207 and CISA’s Zero 
Trust Maturity model.  The Zero Trust 
Zen diagram (Figure 6) is rudimentary 

and for illustrative purposes only.  
It is not a comprehensive list of 
all possible factors that determine 
ZTA.  ZTA is much more complex 
than the simplicity of life depicted 
in the ikigai diagram (Figure 5).  As 
such, maximalist or extreme ZTA is 
not viable; in certain ways, it can be 
detrimental to the intent of Zero Trust 
principles.  More is not necessarily 
better for the Zero Trust tenets 
explored.  With that, one must ponder, 
what is your ikigai/what is your ZTA?

NOTE
Opinions expressed in this article are 
the authors’ and not necessarily those 
of their employers. 
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SUMMARY

N euromorphic computing 
systems are desirable 
for several applications 

because they achieve similar accuracy 
to graphic processing unit (GPU)-
based systems while consuming a 
fraction of the size, weight, power, 
and cost (SWaP-C).  Because of 
this, the feasibility of developing a 
real-time cybersecurity system for 
high-performance computing (HPC) 
environments using full precision/
GPU and reduced precision/
neuromorphic technologies was 
previously investigated [1].  This 
work was the first to compare the 
performance of full precision and 
neuromorphic computing on the same 
data and neural network and Intel and 
BrainChip neuromorphic offerings.  
Results were promising, with up 
to 93.7% accuracy in multiclass 
classification—eight attack types and 
one benign class.  

Since then, a BrainChip Akida 1000 
chip was acquired, and Intel released 
the Loihi 2 chip and developed the 
Lava framework for establishing 
neuromorphic deep-learning 
applications.  These developments and 
more detailed analyses are reflected in 
this article, with up to 98.4% accuracy 
achieved in classifying nine classes.  
Compared to the state of the art, 
neuromorphic technologies have much 
smaller SWaP-C profiles.  In addition, 
how these systems can be applied to 
deployable platforms like manned 

aircraft or unmanned aerial vehicles 
(UAVs) is discussed, and additional use 
cases of neuromorphic computing in 
computer vision are reviewed.

INTRODUCTION
In the work of Zahm et al. [1], the 
viability of a real-time high-
performance computing (HPC)-scale 
cybersecurity system was evaluated 
using full precision/GPUs and reduced 
precision/neuromorphic technologies 
in a proof of concept called Cyber-
Neuro RT (e.g., Figure 1).  The 
government operates several HPC 
systems for the Defense Advanced 
Research Projects Agency (DARPA), 
Oak Ridge National Laboratory 
(ORNL), and National Aeronautics and 

Space Administration’s (NASA’s) 
Advanced Supercomputing Division.  
These systems operate at much larger 
scales than traditional information 
technology (IT) domains and thus 
require novel tools to address their 
unique requirements.  Neuromorphic 
systems were investigated because they 
can achieve similar accuracy as GPU 
systems, with a fraction of the SWaP-C 
budgets.

Zahm et al. [1] were one of the first to 
run the same data and neural network 
through full precision and Intel and 
BrainChip neuromorphic offerings.  
Intel results were generated with the 
Loihi 1 chip and the SNN-TB Toolbox.  
BrainChip results were generated via 
software simulation and the 
CNN2SNN Toolbox.  Results were 
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Figure 1:  Nanoscience High-Performance Computing System (Source:  Photo Courtesy 
of Argonne National Laboratory).
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Space Administration’s (NASA’s) 
Advanced Supercomputing Division.  
These systems operate at much larger 
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promising—up to 93.7% correct on a 
dataset with 450,000 entries and nine 
classes, including eight attack types; 
however, further research was 
necessary.  Since then, a BrainChip 
Akida 1000 chip was received, and 
Intel released the Loihi 2 chip and 
developed the Lava framework for 
programming it.  These developments 
and more detailed analyses were 
reviewed, and improved accuracy was 
achieved on full precision/GPU and 

reduced precision/neuromorphic 
technologies, with up to 98.4% correct.  
This is comparable to the state of the 
art presented in Gad et al. [2] and 
Sarhan et al. [3].  However, 
neuromorphic technologies have the 
advantage of a much smaller SWaP-C 
envelope, as detailed in Table 1.  
Because neuromorphic processors 
achieve similar results to GPUs and 
with dramatic SWaP-C savings, they 
are well suited for embedded or edge 

Table 1.  Comparison of GPU and Neuromorphic Compute Platforms (Source for Left Image, Wikimedia [https://commons.wikimedia.
org/wiki/File:Nvidia_Tesla_A100.png]; Right, Intel)

Note:  Because Intel has not released packaging information on Loihi 2, only Loihi 1 is listed in this table.

Because neuromorphic 

processors achieve similar 

results to GPUs and with 

dramatic SWaP-C savings, 

they are well suited for 

embedded or edge devices.
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devices.  SWaP-C savings for 
neuromorphic computing could be 
even better when using field-
programmable gate arrays (FPGAs) or 
a licensable Intellectual Property in 
Register-Transfer Level (IP cores in 
RTL) format.

METHODS
Datasets

A subset of the University of New 
South Wales (UNSW) TON-Internet of 
Things (TON-IoT) dataset was used 
[4].  Commonly used by cybersecurity 
researchers, this dataset has nine attack 
classes listed in Table 2 but excluding 
the man-in-the-middle (MITM) class 
due to the small sample count.  Several 
other datasets were investigated, but 
only the TON-IoT was included in this 
work.  The data-cleaning and feature-
encoding process was an extension of 
Zahm et al. [1].  This process now 
infers data types more reliably, 
including supporting list type features 
such as the “all_headers” field, which 
contains a list of all headers of an 
HTTP communication using Zeek’s 
http.log.  After examining the data by 
packet structure and excluding 
timestamp and unique identifier, 
deduplication and deconfliction were 
found to be useful.  In deduplication, 
identical data samples were removed.  
In deconfliction, identical data samples  
with different labels were removed.  
This process mitigates model overfitting.  
After deduplication and deconfliction, 
~300,000 samples remained.

The MITM class was merged into 
injection attacks data due to the 
similarity of the two attacks and 
low MITM data count (0.03% of 
the original data).  The number of 
remaining samples was then balanced 
for attack classes, and the remainder 
was left for normal traffic.  This 
balance yielded a total training dataset 
size of 194,845 rows.  Although 
smaller than the final Zahm et al. 
[1] dataset, it has proportionately 
less normal traffic (42.9% vs. 66%).  
Deduplication prevented skewing 
accuracy figures up by repeatedly 
processing the same data point and 
ensuring the test split did not contain 
samples found in the train set (e.g., if 
the data point is accurately classified, 
accuracy becomes inflated).  Table 2 

shows the distribution of class types 
where an 80%/20% train/test split was 
used.  Chance performance would be 
to always declare the majority class of 
normal and yield 42.9% accuracy.

Full-Precision 
Neural Network and 
Hyperparameter Tuning

A fully connected neural network was 
used for classification.  In prior work, 
encoder units (but not decoder units) 
of a separately trained autoencoder 
network combined with a multilayer, 
fully connected network were used.  
This resulted in a 10-layer, fully 
connected neural network (one input 
layer, four autoencoder layers, and 
five network layers).  The autoencoder 

CLASS TRAINING TESTING 

Normal 66,916 (~43%) 16,729 (~43%)

DDOS 11,120 (~7%) 2,780 (~7%)

DOS 11,120 (~7%) 2,780 (~7%)

Password 11,120 (~7%) 2,780 (~7%)

Scanning 11,120 (~7%) 2,780 (~7%)

XSS 11,120 (~7%) 2,780 (~7%)

Injection 11,120 (~7%) 2,780 (~7%)

Backdoor 11,120 (~7%) 2,780 (~7%)

Ransomware 11,120 (~7%) 2,780 (~7%)

Total 155,876 (100%) 38,969 (100%)

Table 2.  TON-IoT Dataset Summary
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was removed due to its highly 
variable post-training performance 
across different datasets.  This also 
improved model compatibility with 
the BrainChip hardware.  After spiking 
neural network (SNN) conversion, 
Zahm et al.’s model [1] required more 
than 80 neural processing units.  This 
was over the limit for Akida’s neuron 
fabric, so only software simulation 
could be performed.  By removing 
the autoencoder, the model parameter 
count was reduced, enabling the model 
to run on the BrainChip’s hardware 
and allowing timing and power data  
to be measured.

The “Weights and Biases” grid search 
[5] was also used to identify optimal 
hyperparameter values like learning 
rate, batch size, feature count, and 
hidden layer sizes.  Feature count 
refers to the number of features 
chosen from the dataset, ranked by 
feature importance from a random 
forest model.  Too few features may 
lead to underfitting, while too many 
may lead to overfitting.  Similarly, as 
hidden layer widths increase, a risk of 
overfitting arises, and using too few 
neurons may underfit the data.

BrainChip Neuromorphic 
Platform

BrainChip offers the Akida 1000 
chip for edge artificial intelligence/
machine-learning (AI/ML) applications.  
These chips perform the inference 
steps of SNNs.  BrainChip provides 
the CNN2SNN Python toolkit [6] 

to assist in converting full-precision 
artificial neural network (ANN) 
models to Akida-compatible SNN 
models.  Zahm et al. [1] utilized the 
CNN2SNN toolkit to perform a 
simple ANN-SNN conversion process, 
with room for improvement.  In this 
work, the following were explored:  
(1) the effects of an improved input 
data scaling process, (2) improved 
ANN to SNN conversion process, (3) 
running the converted model on Akida 
hardware, and (4) measuring model 
performance, power, and timing on the 
device.

Input Data Scaling

Data scaling is crucial to optimize 
SNN performance and needs to be 
tuned by the dataset and model.  Data 
scaling for SNNs modifies traditionally 
zero-centered and unit standard 
deviation scaled data such that its 
maximum, minimum, and spread 
optimally cover the target input range.  
For the Akida system on a chip, this 
input range is limited to four unsigned 
bits, or [0, 15], by the hardware.  

SNNs have 4- to 8-bit neuron firing 
rates compared to floating point 
activations in traditional ANNs.  Data 

must be scaled appropriately to the 
range of the limited neuron firing rates 
to maximize the information passed 
through the network.  In Zahm et al. 
[1], the data was rescaled from 0 to 1.   
To make it compatible with 4-bit 
precision, data was then multiplied by 
10 and rescaled to a 4-bit unsigned 
integer.

For this work, outliers outside 95% 
of the upper range of data and 5% of 
the lower range were removed and 
min-max rescaling applied.  Versus 
Zahm et al. [1], this produced a more 
uniform distribution of the data across 
the 4-bit range.  For example, feature 
id.resp_p_conn ranged in [0, 8] with 
the old scaling method but [0, 15] 
with the new method.  The scaled data 
was then binned to the nearest whole 
integer in the range.  The binned data 
was divided by 15 to the [0, 1] range, 
and quantization aware retraining 
was applied.  The final on-chip model 
inference function was passed scaling 
factors (x - ab), along with the binned, 
4-bit unsigned data.

The effect of data scaling on quantized 
models and converted Akida SNNs 
was measured.  (Quantization refers 
to reducing the bit width of an ANN 
model’s weights and biases from 
higher to lower precision.)  Conversion 
takes a quantized model and removes 
training-only features like dropout.

ANN to SNN Conversion

SNNs have lower precision 
representations in their weights 

BrainChip offers the Akida 

1000 chip for edge artificial 

intelligence/machine-learning 

(AI/ML) applications.
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and activation functions compared 
to ANNs.  This allows for simpler 
hardware due to the removal of 
floating-point computations—this 
is one reason why neuromorphic 
networks use less power with smaller 
models.  However, simply changing 
the precision of model weights and 
scaling appropriately does not produce 
performant models.

Zahm et al. [1] developed the following 
quantization process:  quantize weights 
to a high, unsigned precision; execute 
quantization-aware retraining with the 
original training data; and then convert 
to a lower precision.  Retraining 
continued until learning plateaued.  In 
this work, more quantization steps 
were used.  The quantization schedule 
is shown in Table 3.  These 
hyperparameters were determined 
empirically through grid search.  
Future exploration could introduce 
greater granularity into this analysis.

In addition, a monotonically decreasing 
learning rate schedule was used at 
each quantization step.  Learning 
rates decreased by a factor of 10 over 
four steps, thus allowing additional 
training iterations for fine tuning.  The 

training schedule was set to minimize 
the number of experiments over the 
large search space.  Future work could 
use Bayesian methods to determine 
learning rate schedules for different 
network architectures or datasets.

On-chip Execution

Zahm et al. [1] leveraged the 
BrainChip software simulator for 
SNN execution.  This work uses the 
BrainChip Akida device to analyze 
SNN model performance.

Intel Neuromorphic Platform

This article focuses on Intel’s latest 
Loihi 2 chip with their new deep-
learning framework, Lava Deep 
Learning (Lava DL) [7].  Zahm et al. 
[1] utilized the Loihi 1 architecture 
combined with the SNN-Toolbox, a 
software package intended for direct 
ANN-SNN conversion.  The Lava 
DL software package contains two 
main modules for training networks 
compatible with Loihi hardware—
Spike Layer Error Reassignment 
in Time (SLAYER) and Bootstrap.  
SLAYER is intended for native training 
of deep event-based networks, and 

Bootstrap is intended for training rate-
coded SNNs.

The Bootstrap module of the Lava-DL 
accelerates the training of SNNs and 
closes the performance gap compared 
to an equivalent ANN.  SNNs have 
extended training times compared to 
ANNs.  This method leverages the 
similarity between the behavior of the 
leaky integrate and fire (LIF) neuron 
and the rectified linear unit activation 
function to produce a piecewise 
mapping of the former to the latter.  
This method of ANN-SNN syncing 
in training is particularly beneficial 
because it accelerates the training 
of a rate-coded SNN, reduces the 
inference latency of the trained SNN, 
and closes the gap between ANN and 
SNN accuracy.  The network was 
trained on either a CPU or GPU, and 
then inference was performed on 
the Loihi 2 hardware.  Testing on an 
identically structured network to the 
Akida hardware tests was performed to 
compare performance between the two 
product offerings.

The current-based LIF (CUBA) 
neuron model, combined with an 
Adam optimizer, and categorical 
cross entropy loss were used to train 
the model.  The neuron threshold 
parameter of the LIF neuron affected 
performance the most of any of the 
neuron parameters, so values from 
0.25 to 1.5 in steps of 0.25 were 
tested.  If the threshold was too low, 
performance would suffer due to 
saturation of neuron activation in the 

STEP WEIGHT PRECISION ACTIVATION PRECISION

0 32-bit floating point 32-bit floating point

1 6-bit unsigned 4-bit unsigned

2 4-bit unsigned 4-bit unsigned

Table 3.  Quantization Schedule
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subsequent layers.  If the threshold 
was too high, few neurons would 
activate at all and the performance of 
the network would suffer.  A value of 
0.75 provided the best performance.  
Altering the default values of the other 
parameters induced erratic neuron 
behavior and unstable training.

Hyperparameter Tuning

After identifying a sufficient neuron 
model for the Lava DL model, further 
hyperparameter optimization was 
performed for the batch sizes of 256, 
512, and 1,024 transactions and 
learning rates of 1E-3, 1E-4, and 
1E-5.  Training was performed for 
200 epochs for each model to allow 
convergence for the lowest learning 
rates.

RESULTS

Full-Precision Neural 
Network and Hyperparameter 
Tuning

While all values had an impact on 
model performance, hidden layer count 

and batch size were of greatest value 
for maximizing model performance.  
Plotting the average of a performance 
metric for all sweeps grouped by the 
parameter of interest also shows these 
relationships.  Increased batch size was 
correlated with decreased model test 
accuracy (see Figure 2), and increased 
parameter count via hidden unit design 
correlated positively with accuracy (not 
shown).  Larger batch sizes sometimes 
led to more unstable training and 
decreased accuracy.

By hyperparameter tuning across more 
than 50 parameter configurations, 
a model accuracy of 98.42% was 
achieved on the TON-IoT subset 
split data with an 80/20 split.  This 
parameter sweep was performed on 
two NVIDIA A100 nodes and took 
three hours.  Previous hyperparameter 
sweeps took more time due to larger 
neural network sizes.

BrainChip Neuromorphic 
Platform

The following results are presented in 
this section:  an improved data scaling 
process, an improved ANN to SNN 
conversion process, and running the 
converted model on a chip rather 
than just via software simulator.  This 
gained valuable insights into real 
hardware inference speeds and power 
costs.

Data Scaling

The new data scaling method 
outperformed the old Zahm et al. 
[1] method on both quantized and 
converted SNN models, as shown 
in Table 4.  Quantized model 
performance improved ~3.1% and 
converted SNN model performance 
improved ~5.3%.  Log-scaling was 
also tried but did not perform as well 
as the new method.  The reduced 
accuracy drop was noted when 
converting the quantized model to an 

Figure 2.  Sweep Mean Train (Dotted Line) and Validation Accuracy (Solid Line) for 
Different Batch Sizes (Source:  Zahm et al.).

The neuron threshold 

parameter of the LIF neuron 

affected performance the 

most of any of the neuron 

parameters.
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SNN with the data scaled via the new 
processes (3.9% vs. 1.7%).  Passing 
scaling factors were also introduced 
to the SNN model in hardware to 
further reduce this accuracy loss 
when converting a quantized model.  
However, this was not used to produce 
Table 4, as Zahm et al. [1] used this 
technique.  Data scaling experiments 
were done for SNN training but not 
ANN training, hence identical ANN 
performance.  Note that identical 
initial ANN model and identical 
quantization retraining schedules were 
used and not the optimal ANN design 
and optimal quantization retraining 
schedules.

ANN to SNN Conversion

In Table 5, quantization yields 
dramatically smaller models to fit on 
low SWaP-C neuromorphic hardware.  
Accuracy increased for the ANN and 
SNN models, and ANN performance 
increased 4.7%.  At 98.4% accuracy, 
this was similar to the state of the 
art presented in Gad et al. [2] and 
Sarhan et al. [3].  Improvements to 
the quantization schedule reduced the 
accuracy drop from 11.2% to 7.2% 
between full and reduced precision 
models.

On-chip Execution

Results for ANN vs. BrainChip SNN 
size, power, and speed are summarized 
in Table 6.  Power consumption was 
~1 W.  GPU power was estimated 
at 30 W, using 10% of an NVIDIA 
A100’s maximum power consumption.  
Speed was slower for neuromorphic 
chips.  GPU models could operate 
with much higher throughput due to 
batch processing, which might not be 
available for streaming cybersecurity 
data.

Intel Neuromorphic Platform

Batch size was negatively correlated 
with accuracy, while learning rate was 
positively correlated with accuracy.  
Larger batch sizes took longer to 
converge but were less susceptible to 
random fluctuations in the dataset.  
The Bootstrap framework appeared 
to perform better with larger learning 
rates, whereas ANNs typically 
preferred smaller learning rates.

Table 6.  ANN vs. BrainChip SNN Size, Power, and Speed

MODEL DEVICE SIZE (KB) POWER USAGE SPEED

ANN NVIDIA A100 157 30 W* 29,412 Hz

SNN Akida 1000 15 929 mW 5,104 Hz✝

* Device characteristics provided instead at an estimated 10% of max power usage for model inference. 
✝ Average over 30 trials due to variability in single executions.

Table 5.  BrainChip, Accuracy Benchmarks

METHOD BIT WIDTH ANN % ACCURACY SNN % ACCURACY

Zahm et al. [1] 8 93.7 82.5

New method 4 98.4 91.2

Table 4.  BrainChip, SNN Data Scaling Technique vs. Performance

SCALING METHOD ANN % ACCURACY QUANTIZED % 
ACCURACY

CONVERTED % 
ACCURACY

Zahm et al. [1] 94.66 87.92 83.98

Ours 94.66 91.00 89.30

20 CSIAC Journal  //  2024 TABLE OF  
CONTENTS



A final accuracy of 90.2% was 
achieved with the Lava DL Bootstrap 
framework, with an identical 
architecture to the Akida network, 
as shown in Table 7.  This was 
a reduction in accuracy of 3.5% 
compared to the prior work of Zahm 
et al. [1].  However, the old SNN-
Toolbox performed direct ANN-SNN 
conversion, while Lava DL required 
implementation and training of a 
native SNN.

A 72.4% reduction in model size was 
observed between the full-precision 
ANN and the Lava DL model detailed 
in Table 8.  With over 24 MB of 
memory available on Loihi 2 chips, 
this model is expected to comfortably 
fit on the hardware.

While the Lava DL network could 
predict normal traffic 99% of the time, 
it struggled to accurately predict the 
precise class of non-normal traffic.  
The highest classification accuracy in 
non-normal traffic was 52% for DOS 
attacks.

DISCUSSION
The following was presented from 
this work:  an improved dataset with 

less normal traffic and improved 
ANN performance via better data 
preprocessing and hyperparameter 
tuning.  For BrainChip, accuracy 
improved, model size decreased, 
and the model on the Akida chip 
was assessed for timing and power.  
Improvements were attributed to 
better data scaling and rigorous model 
quantization and retraining.  For Intel, 
the performance of the new Lava DL 
framework was benchmarked, with a 
slight dip in performance compared 
to the prior SNN-Toolbox.  However, 
accuracy was similar to BrainChip.  
Although the percentage of correct 
results (~98%) was like the state of 
the art presented in Gad et al. [2] and 
Sarhan et al. [3], low neuromorphic 
processors could be used with dramatic 
SWaP-C savings (see Table 1).  In related 
work, a semi-supervised approach to 
cybersecurity on Intel’s Loihi 2 was 

investigated [8].  Testing these models 
on Intel hardware and larger and more 
diverse datasets is a goal for future 
work.

CONCLUSIONS
Because of their low SWaP-C envelope, 
neuromorphic technologies are well 
suited for deployable platforms such 
as manned aircraft or UAVs.  Table 1 
illustrates the SWaP-C advantages of 
neuromorphic processors compared 
to GPUs.  Neuromorphic technologies 
could be used for cybersecurity of 
embedded networks or other functions 
like perception or control.  Network 
traffic across CAN buses, for example, 
could be passed through neuromorphic 
processors.  These processors would 
then detect abnormal traffic, which 
could then be blocked, preventing 
further harm.

Neuromorphic computing was also 
pursued for computer vision projects.  
Park et al. [9] used an ANN to SNN 
conversion to classify contraband 
materials across a variety of conditions, 
such as different temperatures, purities, 
and backgrounds.  Neuromorphic 
technologies for image processing and 

Table 8.  ANN vs. Intel Size and SpeedTable 7.  Intel Accuracy

METHOD ANN SIZE SNN SIZE SPEED

Zahm et al. [1] 19.7 MB 6.5 MB 500 Hz (Loihi 1 hardware)

New method 157 KB 44.4 KB 9090 Hz (Loihi 2 simulation)

METHOD % ACCURACY

Zahm et al. [1] 93.7

New method 90.2

A final accuracy of 90.2% was 

achieved with the Lava DL 

Bootstrap framework, with an 

identical architecture to the 

Akida network.
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automatic target recognition were also 
explored [10].  For image processing, 
hierarchical attention-oriented, region-
based processing (HARP) [11] was 
used.  HARP removes uninteresting 
image regions to speed up image 
transfer and subsequent processing.  
For automatic target recognition, 
U-net was used to detect tiny targets 
in infrared images in cluttered, varied 
scenes.  U-net was run on Intel’s Loihi 
chip [12].

Research and development in 
cybersecurity and neuromorphic 
computing continues, with great 
potential in both.
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NAVIGATING CHALLENGES AND OPPORTUNITIES IN THE CYBER DOMAIN WITH

SIM2REAL TECHNIQUES
BY EMILY A. NACK AND NATHANIEL D. BASTIAN 
(PHOTO SOURCE:  ZABELIN [123RF.COM])

INTRODUCTION

I n the digital age, the cyber domain has become an 
intricate network of systems and interactions that 
underpin modern society.  Sim2Real techniques, 

originally developed with notable success in domains such as 
robotics and autonomous driving, have gained recognition for 
their remarkable ability to bridge the gap between simulated 
environments and real-world applications.  While their primary 
applications have thrived in these domains, their potential 
implications and applications within the broader cyber domain 
remain relatively unexplored.  This article examines the 
emerging intersection of Sim2Real techniques and the cyber 
realm, exploring their challenges, potential applications, and 
significance in enhancing our understanding of this complex 
landscape.

SIM2REAL:  CONCEPTS AND 
METHODOLOGIES
Sim2Real, an abbreviation for “Simulation to Reality,” is 
a transformative approach that addresses the challenge of 
transferring knowledge acquired in simulated environments 
to real-world applications [1].  It plays a vital role in 
various domains by leveraging simulated environments to 
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train and prepare for real-world 
scenarios.  While Sim2Real is 
commonly associated with machine 
learning (ML), its applications 
extend beyond this field, offering 
opportunities for enhanced learning, 
testing, and preparation in diverse 
scenarios.  This section explores 
Sim2Real’s foundational concepts and 
methodologies, which collectively 
enable the seamless transfer of 
knowledge from simulation to practical 
applications, a principle that has 
wide-ranging implications, including 
potential applications within the cyber 
domain.

The Foundation of Sim2Real

At the heart of Sim2Real lies the 
concept of training ML models in 
simulated environments, where 
data is abundant, diverse, and 
controllable.  This approach stands 
in contrast to traditional methods, 
which often require training models 
directly in real-world settings, where 
data collection can be expensive, 
limited, or impractical.  By leveraging 

the advantages of simulation, 
Sim2Real techniques enable the 
rapid development, refinement, and 
evaluation of ML models, offering 
a more cost-effective and flexible 
solution.

The adoption of Sim2Real techniques 
is rooted in addressing the limitations 
and challenges associated with 
real-world model training.  These 
challenges can be broadly grouped 
into the following key areas, as defined 
in references 2–7 and highlighted in 
Table 1.

Data Abundance and Diversity

Real-world data collection often 
falls short in providing diverse and 
ample datasets.  This limitation can 

hinder the training of ML models, 
particularly in tasks requiring 
robust generalization.  In Sim2Real, 
simulations serve as a solution.  These 
environments offer a vast and diverse 
source of data, creating extensive 
training datasets [2, 3].  Within these 
digital realms, researchers have the 
capacity to introduce an expansive 
array of scenarios, from varied terrains 
to different weather conditions and 
physical properties [5].  The diversity 
inherent in simulations empowers 
models to generalize effectively, 
adapting seamlessly to a wide spectrum 
of real-world scenarios [7].

Cost-Effectiveness and Flexibility

The cost of data collection in real-
world settings can be a significant 

Table 1.  Comparative Analysis of Traditional Model Training vs. Sim2Real Techniques

FACTORS TRADITIONAL METHODS SIM2REAL TECHNIQUES

Data 
Abundance 
and Diversity

Limited and costly real-
world data collection

Abundant and diverse simulated datasets.  
Researchers can introduce various 
scenarios, including different terrains, 
weather conditions, and physical properties, 
creating extensive training datasets.

Cost-
Effectiveness

Expensive data 
collection in real-world 
settings, requiring 
specialized equipment, 
personnel, and logistics

Cost-effective due to reduced expenses 
linked to data collection.  Sim2Real 
accelerates model development and 
provides unparalleled flexibility, facilitating 
rapid prototyping and iterative model 
development.

Flexibility
Limited 
experimentation in real-
world scenarios

Highly flexible, with the ability to 
experiment effortlessly with various 
scenarios.  This adaptability contributes to 
more efficient and agile model design.

Safety 
and Risk 
Mitigation

Real-world testing 
carries risks to humans 
and equipment

Enhanced safety in simulated 
environments.  Researchers can engage in 
complex experimentation without risk to 
human operators or expensive equipment.

Sim2Real techniques have 

gained recognition for their 

remarkable ability to bridge 

the gap between simulated 

environments and real-world 

applications.
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barrier, particularly in domains such 
as autonomous vehicles.  Traditional 
methods may not only be expensive 
but also less flexible when it comes 
to experimenting with different 
scenarios [4, 7].  Sim2Real, in this 
context, emerges as a transformative 
solution.  This approach substantially 
reduces expenses linked to data 
collection, making it a crucial factor 
for industries where cost efficiency is 
imperative.  Sim2Real’s cost-effective 
nature accelerates model development 
and, more importantly, provides 
unparalleled flexibility.  Researchers 
can effortlessly experiment with 
various scenarios, facilitating rapid 
prototyping and iterative model 
development [5].  This adaptability 
contributes to more efficient and agile 
model design.

Safety and Risk Mitigation

Safety is a paramount concern in 
high-stakes domains like healthcare, 
aerospace, and disaster response.  
Real-world testing in these areas 
can carry significant risks to human 
operators and valuable equipment 
[6].  Simulated environments emerge 
as the safer alternative [2–4].  Within 
these controlled digital realms, the 
safety of both human operators 
and valuable assets is a top priority.  
Sim2Real effectively mitigates the 
risks associated with real-world 
testing.  Researchers can engage in 
complex experimentation without 
peril, confident that the simulated 
environment poses no danger to 
human operators or expensive 

equipment.  This enhanced safety is 
pivotal, particularly in domains where 
failure is not an option.

Key Methodologies

Sim2Real encompasses a range of 
methodologies, each tailored to 
specific applications and domains.  A 
fundamental aspect in this pursuit is 
achieving high-fidelity simulations that 
closely mimic real-world conditions.  
To narrow the gap between the 
data distributions of simulated 
environments and actual real-world 
scenarios, several techniques have 
emerged as key contributors.

Domain randomization, a widely 
used technique in the realm of ML 
and Sim2Real transfer, plays a crucial 
role in enhancing the adaptability 

and robustness of models [8, 9].  
This technique involves training 
models across a variety of simulated 
environments, each distinguished 
by randomized characteristics.  The 
objective is to instill ML models with 
the capability to effectively manage 
uncertainty and adapt to unforeseen 
variations, commonly encountered in 
real-world settings.

Numerous studies have explored 
the effectiveness of Sim2Real 
transfer methods based on domain 
randomization [10–14].  These studies 
have demonstrated the potential of 
domain randomization in creating 
a diverse and extensive training 
dataset.  Figure 1, which illustrates 
several variations of low-fidelity 
training images with random camera 

Figure 1.  Variations of Low-Fidelity Training Images for Domain Randomization 
(Source:  Tobin et al. [10]).
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positions, lighting conditions, object 
positions, and nonrealistic textures, 
showcases the application of domain 
randomization in generating a robust 
training set.  This diversity enables 
models to excel in making accurate 
predictions when confronted with the 
intricacies of real-world environments, 
even when faced with previously 
unseen conditions during training.

Adversarial training, a widely adopted 
technique in deep learning (DL), 
focuses on enhancing the robustness 
and security of ML models [15–18].  
It introduces adversarial examples 
during training, which, while often 
imperceptible to humans, perturb input 
data to deliberately induce incorrect 
predictions from the model.  Including 
adversarial examples in the training 
data renders the model less susceptible 
to manipulation and significantly 
improves its performance in terms of 
robustness in the presence of noise and 
adversarial inputs.

Adversarial training plays a pivotal role 
in addressing the Sim2Real transfer 
problem, where models trained in the 
controlled environments of simulations 
are required to perform seamlessly in 
unpredictable real-world conditions 
[19–22].  Recent research underlines 
the critical role of adversarial training 
in minimizing domain discrepancies 
and enhancing model adaptability.  
By diminishing the gap between the 
realm of simulation and that of reality, 
this technique offers substantial value 
across a wide array of applications, 

ranging from robotics to autonomous 
systems.

CURRENT APPLICATIONS 
OF SIM2REAL
Sim2Real techniques represent a 
significant innovation within the 
ML domain.  Their transformative 
potential has been most prominently 
realized in robotics and autonomous 
driving [3], where they have been 
rigorously tested and refined.  In this 
section, the concrete applications of 
Sim2Real within these domains are 
explored, shedding light on their 
impact and efficacy in addressing real-
world challenges.

The core applications of Sim2Real 
in robotics are examined first, where 
simulated environments prove to 
be heavily effective for training 
and optimizing intelligent systems.  
Sim2Real’s ability to bridge the 
gap between simulation and reality 
has empowered robots to interact 
seamlessly with their surroundings, 
enabling the navigation of complex 
terrains [23–26] and object detection, 
recognition, and manipulation with 
precision [11, 27–30].

Similarly, in the domain of 
autonomous driving, Sim2Real 
techniques have played a pivotal 
role in enhancing vehicle autonomy 
and safety.  By leveraging simulated 
environments, autonomous vehicles 
have undergone extensive training, 

enabling them to navigate diverse road 
conditions [31–35] and respond to 
complex scenarios [35–38].

As the applications of Sim2Real in 
these well-established domains are 
traversed, the broader horizons are 
explored, where these techniques 
have the potential to reshape and 
revolutionize ML applications across 
various fields, including the cyber 
domain.

Applications of Sim2Real in 
Robotics

Sim2Real techniques have made 
significant strides in the realm of 
robotics, reshaping the landscape 
of intelligent systems’ capabilities 
and adaptability.  These approaches 
seamlessly bridge the gap between 
simulated environments and real-world 
applications, equipping robots with a 
diverse range of capabilities.

Navigation of Complex Terrains

In the quest to navigate intricate 
and challenging terrains, simulated 
environments have become crucial 
training grounds.  Deep reinforcement 
learning (DRL) plays a pivotal role in 
these advancements, enabling robots 
to adapt and excel in real-world but 
simulated scenarios.

As introduced in Hu et al. [23], a novel 
Sim2Real pipeline empowers mobile 
robots to navigate three-dimensional 
(3-D) rough terrains.  The pipeline  
not only facilitates successful  
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point-to-point navigation but also 
outperforms classical and other  
DL-based approaches in terms of 
success rate, cumulative travel distance, 
and time.  Comprehensive surveys, 
such as the one in Zhao, Queralta, 
and Westerlund [24], shed light on 
the challenges of Sim2Real transfer in 
DRL, categorizing various approaches 
aimed at closing the gap between 
simulated and real-world performance, 
especially in navigation.

Moreover, Figure 2 demonstrates a 
hybrid architecture [25] that effectively 
employs attention-based DRL for 
navigation cost map generation in 
outdoor environments.  This approach 
addresses the challenge of obstacle 
avoidance in complex terrains, as 
discussed in Zhang et al. [26].  By 
following least-cost waypoints on 
the cost map, the robot significantly 
enhances its performance in uneven 
outdoor terrains.  These examples 
highlight the versatility of Sim2Real 
techniques in addressing complex 
terrains, making robots more adaptable 
and efficient in navigating challenging 
landscapes.

Object Detection, Recognition, and 
Manipulation

Precision in object detection, 
recognition, and manipulation is 
a hallmark of advanced robotics.  
Researchers in Ho et al. [27] 
introduced innovative techniques 
such as RetinaGAN to address the 
challenge of collecting real-world 
data for training DRL and imitation 
learning ML models.  This generative 
adversarial network approach adapts 
simulated images to resemble real-
world scenes with object-detection 
consistency.  The result is a substantial 
improvement in the performance of 
reinforcement learning-based tasks like 
object instance grasping, pushing, and 
even the more complex task of door 
opening.

Sim2Real techniques have also been 
instrumental in object detection, 
with domain randomization serving 
as a key method, as highlighted in 
Horváth et al. [11].  By generating 
labeled synthetic datasets at scale, 
Sim2Real transfer learning ensures 
that state-of-the-art convolutional 
neural networks, such as YOLOv4, 
can achieve impressive mean average 
precision scores in scenarios where 
labeled real-world data may be scarce.  
Furthermore, in the industrial sector, 
Sim2Real techniques enable fast 
and accurate object recognition and 
localization for robotic bin picking, as 
detailed in Li et al. [28].  Supported by 
automated synthetic data generation 
pipelines, these methods not only 
provide precise training data but also 

Figure 2.  Comparison of Navigation Methods on Uneven Outdoor Terrains (Source:  
Weerakoon et al. [25]).

In the quest to navigate 
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excel in scenarios involving textureless, 
metallic, and occluded objects.

The application of Sim2Real extends 
to 3-D object detection from point 
clouds, a domain known for its 
challenges, as illustrated in DeBortoli 
et al. [29].  By leveraging adaptive 
sampling modules and 3-D adversarial 
training architectures, Sim2Real 
approaches enhance the consistency 
of features extracted from point 
clouds, improving 3-D object detection 
performance.

Even deformable objects like cloth 
are not beyond the reach of Sim2Real 
methods.  Deformable object 
manipulation is a relatively unexplored 
frontier, with a notable data shortfall.  
In Matas et al. [30], agents are 
trained entirely in simulation, using 
domain randomization to ensure their 
versatility.  They are then successfully 
deployed in the real world without 
prior exposure to real deformable 
objects.

In summary, Sim2Real techniques 
have evolved into indispensable 
tools, empowering robots to navigate 
complex terrains and execute 
precise object detection, recognition, 
and manipulation tasks.  These 
advancements have created an era of 
highly adaptable and capable robotic 
systems, setting the stage for a new 
wave of innovations in intelligent 
robotics.

As Sim2Real in autonomous driving 
is explored, the notion that Sim2Real 
techniques can extend not only within 
the boundaries of robotics but into the 
broader space of complex real-world 
challenges is proposed.

Applications of Sim2Real for 
Autonomous Driving

Autonomous driving is a complex 
field that demands intelligent vehicles 
capable of navigating diverse road 
conditions and responding to complex 
scenarios.  Integrating Sim2Real 
techniques has played a pivotal role in 
enhancing vehicle autonomy and safety 
by bridging the gap between simulated 
training environments and real-
world deployment.  How Sim2Real 
techniques enable autonomous vehicles 
to excel in challenging conditions is 
explored next.

Navigating Diverse Road 
Conditions

In the realm of autonomous driving, it 
is imperative that vehicles can navigate 
diverse road conditions, from off-
road terrains to urban environments.  
Sim2Real techniques offer innovative 
solutions to train and deploy 
autonomous vehicles effectively.

A human-guided RL framework is 
introduced in Wu et al. [31], enhancing 
the learning process and capabilities 
of RL methods.  This approach allows 
humans to intervene in the control 
progress, providing demonstrations 

as needed.  The result is a versatile 
RL agent trained in simulation 
and effectively transferred to real-
world unmanned ground vehicles, 
demonstrating robust navigation in 
dynamic and diverse environments.

To further bridge the visual reality gap 
for off-road autonomous driving, So 
et al. [32] introduce Sim2Seg, a novel 
approach that translates randomized 
simulation images into simulated 
segmentation and depth maps, 
enabling the direct deployment of an 
end-to-end RL policy in real-world 
scenarios.  Sim2Seg effectively narrows 
the gap between the simulated training 
environment and real-world driving, 
particularly in off-road conditions.

An approach that combines the 
advantages of modular architectures 
and end-to-end DL for autonomous 
driving is presented by Müller et. al 
[33].  By encapsulating the driving 
policy, it successfully transfers policies 
trained in simulation to real-world 
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deployments, addressing the challenges 
of adapting to diverse road conditions.

Mapless navigation is a crucial aspect 
of autonomous driving, and Wang et 
al. [34] propose a DRL-based approach 
for unmanned surface vehicles.  This 
method carefully designs observation 
and action spaces and rewards 
functions and neural networks for 
navigation policies.  By employing  
domain randomization and adaptive 
curriculum learning, it offers an 
effective solution to the Sim2Real 
transfer challenge and slow 
convergence associated with DRL.

A data-driven simulation and training 
engine, which allows autonomous 
vehicles to learn end-to-end control 
policies through sparse rewards, is 
discussed in Amini et al. [35].  As 
illustrated in Figure 3, training images 

from several comparison methods 
used in experimentation highlight 
the diversity of environments and 
conditions encountered during 
training.  This simulation enables 
vehicles to navigate a continuum of 
new local trajectories in diverse road 
conditions, proving the feasibility of 
transferring policies from simulation 
to real-world deployment.  It also 
helps transition into the discussion 
on Sim2Real’s ability to help with the 
response to complex scenarios.

Responding to Complex Scenarios

Autonomous vehicles must not only 
navigate diverse road conditions 
but also respond effectively to 
complex scenarios, including near-
crash situations and challenging 
traffic interactions.  How Sim2Real 
techniques equip these vehicles to 

tackle intricate real-world challenges is 
analyzed.

In the context of responding to 
complex scenarios, Amini et al. [35] 
present a data-driven simulation and 
training engine that learns end-to-end 
autonomous vehicle control policies 
using sparse rewards.  By rendering 
novel training data derived from real-
world trajectories, the simulator allows 
virtual agents to navigate previously 
unseen real-world roads, even in 
near-crash scenarios.  This approach 
demonstrates the potential of Sim2Real 
techniques to create policies that can 
handle complex and novel situations.

A method that transfers a vision-
based lane following driving policy 
from simulation to real-world 
operation on rural roads without 
any real-world labels is introduced 
in Bewley et al. [36].  Leveraging 
image-to-image translation, a single-
camera control policy is learned 
while achieving domain transfer.  
This approach successfully operates 
autonomous vehicles in rural and 
urban environments, illustrating the 
applicability of Sim2Real for complex 
real-world scenarios.

Unsupervised domain adaptation 
methods have been developed for 
lane detection and classification in 
autonomous driving, as described in 
Hu et al. [37].  By using synthetic data 
generated in simulation, these methods 
leverage adversarial discriminative 
and generative techniques to adapt 

Figure 3.  Training Images From (A) Real-World Samples and (B–C) Simulated 
Environments (Source:  Amini et al. [35]).
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to the real world.  They demonstrate 
superiority in detection and 
classification accuracy and consistency 
in complex traffic scenarios.

Complex multivehicle and multilane 
scenarios are particularly challenging 
for autonomous vehicles.  A Sim2Real 
approach to safely learn driving 
policies for autonomous vehicles 
sharing the road with other vehicles 
and obstacles is discussed in Mitchell 
et al. [38].  This approach leverages 
mixed reality setups to simulate 
collisions and interactions, making 
the learning process safer.  After only 
a few runs in mixed reality, collisions 
are significantly reduced, indicating the 
approach’s effectiveness in addressing 
complex traffic scenarios.

Sim2Real’s influence within the 
autonomous driving domain has 
transcended conventional boundaries, 
echoing its success in robotics.  
These techniques have introduced 
advancements in self-driving 
technology, enhancing not only the 
capabilities but also the safety of 
autonomous vehicles.

As the potential applications of 
Sim2Real within the cyber domain are 
explored next, transforming Sim2Real 
is far from over.  Figure 4 portrays 
the intricate overlap between these 
existing and potential applications, 
offering a nuanced perspective on 
the transformative potential that 
Sim2Real introduces across diverse 
domains.  Just as it has reshaped the 

realms of robotics and autonomous 
driving, Sim2Real now holds the 
promise of innovative solutions and 
novel perspectives to address the 
multifaceted complexities of the cyber 
domain.

POTENTIAL APPLICATIONS 
OF SIM2REAL IN THE 
CYBER DOMAIN
In the cyber domain, advancement is 
not merely a desire but a necessity.  
However, when it comes to applying 
Sim2Real techniques, a noticeable void 
remains.  Unlike its well-established 
presence in robotics and autonomous 
driving, Sim2Real remains largely 
unexplored within the cyber domain.  
This limitation can be attributed to 
the nascent application of ML to 
cybersecurity and the constrained 
availability of advanced cyber 
simulators and emulators.

This absence prompts a pivotal 
question:  What can the cyber domain 
gain from Sim2Real techniques?  The 
answer lies in the intrinsic nature 
of cybersecurity—a realm where the 
stakes are high and the consequences 
of failure can be catastrophic.  In an 
era where cyber threats perpetually 
evolve, organizations require dynamic, 
adaptable, and data-rich environments 
for training, testing, and fortifying 
their defenses.  Sim2Real holds the 
potential to bridge this gap.

The opportunities that this fusion of 
simulation and reality can unlock, 
from reshaping cybersecurity training 
and testing to facilitating meticulous 
vulnerability assessments, are 
discussed next.  As exploration begins, 
Sim2Real’s potential is offered—an 
opportunity to redefine the landscape 
of the cyber domain in a way that is 
not only innovative but indispensable.

Figure 4.  Visualizing the Overlap Between Existing and Potential Applications of 
Sim2Real (Source:  E. Nack).
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Cybersecurity Training and 
Testing

Various approaches have been 
employed in cybersecurity training 
and testing to equip professionals with 
the necessary skills and experience.  
Traditional classroom-style training 
provides theoretical instruction to 
individuals entering cybersecurity [39, 
40].  However, this approach often 
falls short in replicating the real-world 
dynamics and pressures associated 
with cyber threats.

To enhance engagement and provide 
a more immersive experience, the 
industry has turned to gamification.  
Several training platforms incorporate 
gamified scenarios, allowing 
participants to navigate simulated 
cyber threats interactively [41, 42].  
"Capture The Flag" competitions are 
a compelling example of gamification 
within cybersecurity, providing a 
platform for participants to solve 
security-related puzzles and challenges 
[43].  Although widely recognized for 
its positive impact on user engagement 
and skill development, gamification 
often focuses on specific elements 
of cybersecurity, providing expertise 
in targeted areas but not offering a 
comprehensive training method for 
the diverse and rapidly evolving cyber 
threat landscape.

These current practices, while 
contributing significantly to 
cybersecurity training and testing, face 
inherent challenges.  The limitations 
of predefined scenarios, the static 

nature of exercises, and the finite set 
of challenges in gamified platforms 
all point to the need for dynamic 
and adaptable training environments 
capable of replicating the intricacies  
of real-world cyber threats.

Recognizing the limitations in 
current practices, the integration 
of Sim2Real techniques becomes a 
natural progression.  While existing 
simulations provide valuable training 
and testing environments [39, 44, 
45], the critical aspect of seamlessly 
transitioning from simulation to 
reality remains underexplored.  The 
literature on Sim2Real techniques in 
cybersecurity is limited, particularly 
concerning the effectiveness of 
applying knowledge gained in 
simulated environments to real-world 
cybersecurity scenarios.

In this context, Cyber Virtual 
Assured Network (CyberVAN) and 
Cyber Battlefield Operating System 
Simulation (CyberBOSS) emerge as 
valuable simulation environments 
that address the existing gaps in 

cybersecurity training and testing.  
CyberVAN functions as a discrete 
event simulator, offering a quick 
and flexible setup of high-fidelity 
cybersecurity scenarios [46].  This 
simulation environment provides a 
dynamic and realistic platform for 
training and testing, enabling the 
instantiation of custom high-fidelity 
networks.  Its capability aligns 
seamlessly with the customization 
potential of Sim2Real environments to 
mirror specific network architectures, 
industry sectors, or regulatory 
compliance requirements, enhancing 
the overall adaptability of the training 
environment.  Furthermore, as 
Sim2Real techniques aim to open 
doors to dynamic and realistic 
cyber environments, CyberVAN 
contributes by replicating actual cyber 
threats and scenarios in controlled 
settings.  Serving as crucial training 
grounds, these simulations empower 
cybersecurity professionals to refine 
their detection, mitigation, and 
response strategies effectively.

In addition to CyberVAN, CyberBOSS 
introduces a framework designed 
to model cyberspace effects and 
operations [47].  This framework 
operates across federated live, virtual, 
constructive, and gaming (LVC&G) 
systems, offering a comprehensive 
solution for cyberspace modeling in 
environments that may lack these 
capabilities.  CyberBOSS stands as a 
strategic asset, particularly in scenarios 
where native cyberspace modeling 
is limited or nonexistent.  Figure 5 
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visualizes an example of cyberspace-
related objects and effects within the 
STTC’s Battlespace Visualization and 
Interaction tool using information 
provided by the CyberBOSS federation.  
Integrating these advanced simulation 
tools, combined with Sim2Real 
techniques, enhances the potential of 
bridging the gap between simulation 
training scenarios and the complex 
realities of cybersecurity, ensuring that 
professionals remain agile and well-
prepared against emerging threats.

In conclusion, the current research 
gap in Sim2Real within cybersecurity 
necessitates further exploration 
and investigation into the seamless 
transition from simulated cybersecurity 
environments to real-world 
applications; however, integrating 
advanced simulation tools like 
CyberVAN and CyberBOSS stands as 

a promising avenue for addressing this 
gap and revolutionizing cybersecurity 
training and testing.

Vulnerability Testing

Vulnerability testing stands as a 
cornerstone of effective cybersecurity, 
playing a pivotal role in the timely 
identification and mitigation of 
potential threats to an organization’s 
digital assets.  While established 
methods like vulnerability assessment 
and penetration testing have made 
significant contributions to this 
process, inherent limitations prompt 
a reevaluation of these existing 
approaches.

Vulnerability assessment stands as 
a passive and proactive strategy, 
employing tools like Nessus [48] 
and OpenVAS [49] to systematically 
uncover known vulnerabilities in 

network configurations and software 
systems.  A comparative study of 
these tools highlights their features 
and effectiveness in vulnerability 
assessment [50].  However, as 
automation proliferates, organizations 
grapple with copious data, including 
false positives.  Challenges also extend 
to identifying logical attack vectors, 
such as application logic flaws and 
password reuse, often resulting in 
generic remediation recommendations.  
The rigidity of automated tools may 
also lead to oversight in emerging 
threats or vulnerabilities not present 
in their databases [51].  This limitation 
hampers effectiveness in adapting 
to the dynamically evolving threat 
landscapes.

On the other hand, penetration testing 
embraces an active and systematic 
approach to security assessment.  
Ethical hacking simulates real-world 
cyber attacks, providing profound 
insights into the impact of identified 
vulnerabilities on the information 
system [52].  This exploration 
considers mitigating controls and 
allows for a comprehensive evaluation 
of the security landscape, eliminating 
false positives.  Yet, penetration testing 
demands considerable time and 
effort, potentially requiring external 
engagement for comprehensive testing.  
Its outcomes may not guarantee 
identifying every vulnerability, 
and it might not provide insights 
into emerging vulnerabilities post 
assessment [51].

Figure 5.  Visualizing Cyberspace-Related Objects and Effects Using CyberBOSS 
(Source:  Hasan et al. [47]).
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Confronting these challenges 
embedded in traditional vulnerability 
assessment and penetration testing, 
Sim2Real techniques emerge as a 
transformative solution.  By allowing 
testing and assessment to take place 
off the network, Sim2Real provides a 
controlled and secure environment for 
organizations to simulate various cyber 
attacks and exploitation techniques, 
gaining insights before deployment 
into the live network.  This proactive 
approach empowers organizations to 
identify and address vulnerabilities 
before they can be exploited by 
malicious actors.

Furthermore, Sim2Real assessments 
extend the scope of vulnerability 
testing beyond traditional 
methods, accommodating complex 
infrastructures, including cloud-based 
systems, Internet of Things (IoT) 
devices, and critical infrastructure 
networks—all within a secure and 
controlled context.

In essence, Sim2Real techniques offer 
a unique set of advantages, enabling 
organizations to map and analyze 
more complex scenarios before 
deployment and ultimately enhancing 
their cybersecurity posture.

Training AI for Cybersecurity

Artificial intelligence (AI) is rapidly 
evolving in modern cybersecurity, 
empowering threat detection, anomaly 
detection, predictive analysis, and 
more.  However, training AI models 

for cybersecurity applications 
demands large amounts of diverse 
and high-quality data [53].  Currently, 
researchers rely on popular datasets 
such as ACI-IoT-2023 [54], KDD’99 
Cup [55], UNSW-NB15 [56], CIC-
IDS2017 [57], CIC-DDoS2019 [58], 
CERT [59, 60], and Bot-IoT [61].  
These datasets encompass a range of 
cyber threats, providing a foundation 
for training AI models to recognize 
and respond to various attack vectors, 
vulnerabilities, and malicious activities.

However, building comprehensive 
datasets for AI training in 
cybersecurity poses significant 
challenges.  Acquiring diverse and 
realistic data often requires a well-
equipped cybersecurity lab setup, a 
multitude of devices, and precise data 
collection methods.  Constructing such 
datasets is not only resource-intensive 
but can also be challenging due to the 
dynamic nature of cyber threats.  The 
complexities involved in replicating 
real-world cyber scenarios highlight 
the limitations of current approaches 
in providing sufficiently diverse and 
adaptive datasets for effective AI model 
training.

Sim2Real techniques provide a 
compelling and more effective solution 
for training AI models by creating 
data-rich environments that accurately 
mimic the complexities of actual cyber 
landscapes.  This novel approach 
addresses the limitations of existing 
training practices, offering a dynamic 
and realistic environment for AI 
models to learn and adapt to the ever-
evolving landscape of cyber threats.

Within Sim2Real-based cyber 
environments, AI models can be 
exposed to a vast array of realistic 
cyber threats and scenarios.  These 
environments generate diverse and 
dynamic datasets that encompass 
various attack vectors, malware 
samples, and network traffic patterns.  
AI models can learn from these 
simulated encounters, improving their 
ability to detect and respond to real-
world cyber threats effectively.

Moreover, Sim2Real allows for the 
injection of controlled anomalies and 
variations into the data, enabling AI 
models to develop robust anomaly 
detection capabilities.  AI models 
trained in these environments become 
highly adaptable, as they are exposed 
to a broad spectrum of cyber scenarios 
from routine network traffic to 
sophisticated zero-day attacks.

The implications of training AI 
for cybersecurity within Sim2Real 
environments extend to predictive 
analysis and threat intelligence.  AI 
models can learn to recognize patterns 
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indicative of emerging threats, 
enhancing an organization’s ability to 
proactively respond to evolving cyber 
risks.

CHALLENGES AND 
LIMITATIONS
Despite the promising potential of 
Sim2Real techniques in the cyber 
domain, their implementation faces 
certain challenges and limitations that 
should be considered.

Simulations, while valuable, often 
encounter a significant hurdle known 
as the “Simulation to Reality Gap” [62, 
63].  These simulations can replicate 
real-world scenarios to a certain 
extent, but they may not fully capture 
all complexities and the unpredictable 
nature.  This inherent discrepancy 
could potentially impact the 
effectiveness of Sim2Real techniques in 
preparing for and responding to real-
world cyber threats.

Data privacy and security are 
significant concerns in any 
application that involves extensive 
data [64].  While simulations often 
demand extensive data for efficacy, 
incorporating real-world data into 
simulations introduces potential 
privacy risks, especially within 
the cyber domain where sensitive 
information is often involved.  
Striking a delicate balance between 
ensuring data privacy and maintaining 

simulation effectiveness becomes 
crucial in this context.

Furthermore, the quantity and quality 
of data are critical considerations in 
Sim2Real techniques.  Insufficient 
or inaccurate data can impede the 
fidelity of simulations, hindering their 
effectiveness in modeling real-world 
scenarios.  Recognizing and addressing 
these challenges is essential in 
enhancing the accuracy and reliability 
of these techniques.

A fundamental challenge lies in 
validating Sim2Real techniques within 
the cyber domain.  Given the relatively 
unexplored nature of Sim2Real in this 
domain, the absence of established 
metrics or benchmarks hampers 
evaluating the success of these 
techniques.  For instance, without 
standardized measures, it becomes 
challenging to assess how well a model 
trained in a simulated environment 
would perform when facing real-world 
cyber threats.

Despite these challenges, recognizing 
the potential benefits of Sim2Real 
techniques in the cyber domain is 
crucial.  Continued research and 
development in this field hold 
the promise of revolutionizing 
cybersecurity training and testing, 
offering a dynamic and adaptable 
solution to the ever-evolving landscape 
of cyber threats.  However, it is 
essential to approach this potential 
with a clear understanding of the 

challenges and limitations, ensuring 
realistic expectations and effective 
strategies for overcoming these 
obstacles.

CONCLUSIONS
The convergence of Sim2Real 
techniques with the cyber domain 
represents a promising frontier 
in cybersecurity and ML.  This 
article delved into the foundational 
concepts of Sim2Real, explored its 
current applications in robotics and 
autonomous driving, and examined its 
potential applications, challenges, and 
limitations within the cyber domain.

While Sim2Real techniques have 
already demonstrated their value 
in training robots and autonomous 
vehicles, their application within the 
cyber domain holds the potential 
to revolutionize how organizations 
prepare for, defend against, and 
respond to cyber threats.  Creating 
dynamic and data-rich cyber 
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environments for training, testing, 
vulnerability assessment, and AI model 
training offers a new paradigm for 
enhancing cybersecurity resilience.

Despite the immense promise, 
integrating Sim2Real techniques 
into the cyber domain is not 
without its challenges.  However, 
these challenges present compelling 
research opportunities for the future 
of Sim2Real in the cyber domain.  
Exploring the seamless integration of 
Sim2Real techniques with real-world 
cybersecurity scenarios, optimizing 
adaptability in the face of evolving 
threats, establishing standardized 
metrics for assessment, and refining 
the transferability of simulated 
knowledge to practical applications 
are just a few examples of the exciting 
avenues for future exploration.

In the future, Sim2Real gaps will be 
evaluated by training an ML-based 
Network Intrusion Detection System 
classifier in CyberVAN.  Subsequently, 
the objective is to transfer this 
classifier to the IoT Research Lab at 

the Army Cyber Institute to assess 
its effectiveness and explore ways 
to improve performance.  Such 
experimentation will contribute 
significantly to understanding the 
challenges and potentials of Sim2Real 
techniques in real-world cyber 
applications.

By embracing these techniques and 
addressing their challenges, the 
cyber domain can become more 
adaptive, resilient, and prepared to 
safeguard the digital ecosystems that 
underpin modern society.  Continued 
research and development will be 
key to unlocking the full potential of 
Sim2Real in enhancing cyber resilience 
and redefining the landscape of 
cybersecurity practices. 
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SUMMARY

W hen performing defense 
system analysis with 
simulation models, 

a great deal of time and effort is 
expended creating representations 
of real-world scenarios in U.S. 
Department of Defense (DoD) 
simulation tools.  However, once 
these models have been created and 
validated, analysts rarely retrieve all 
the knowledge and insights that the 
models may yield and are limited 
to simple explorations because they 
do not have the time and training 
to perform more complex analyses 
manually.  Additionally, they do not 
have software integrated with their 
simulation tools to automate these 
analyses and retrieve all the knowledge 
and insights available from their 
models.  

Simple, manual explorations are 
inefficient in their use of computing 
resources and often ineffective in 
providing the best answers to analyst 
questions.  To derive the greatest 
benefit from a simulation model, 
analysts should apply optimization 
and statistical analysis techniques.  
Combining these techniques and using 
available simulation optimization and 
analysis tools can provide answers 
to these essential questions and key 
insights for decision-makers.  More 
importantly, the organizational return 
on investment from simulation studies 
increases, which builds stakeholder 

confidence.  Tools like these can also 
be used for model verification and 
validation.

INTRODUCTION
Simulation and optimization are two 
powerful methodologies widely used 
across the DoD [1–4].  Simulations are 
used to understand complex system 
behavior at multiple levels of fidelity.  
For example, simulation can be used to 
perform detailed engineering, design, 
and testing of individual weapons 
system components; examine the 
interaction of components in a single 
advanced weapon system such as a 
fighter aircraft or nuclear submarine; 
and analyze tactical engagements 
between weapons systems.

Optimization provides a powerful 
way to determine the best option 
among many options.  For example, 
military analysts use optimization 
to maximize the amount of fuel and 
munitions delivered to an area of 
operations using the least number of 
ships and cargo aircraft; determine 
the best allocation of dollars to 
minimize the risk of failure in a 
future war; assign military personnel 
to bases in a way that maximizes 
personal preferences and professional 
development; and allocate blue force 
weapons to red force targets to 
maximize the probability of damage 
while minimizing collateral damage.  
When resources are limited and 

mission effectiveness is paramount, 
optimization offers military decision-
makers keen insights and enables them 
to make the best choices.

The core challenge in simulation 
optimization is finding the “best 
options” within environments too 
complex or uncertain for traditional 
optimization techniques.  Due to their 
ability to handle these unpredictable 
factors, simulations are often the 
only way to model such problems.  
However, this creates a dilemma—
simulation models become necessary 
because traditional optimization 
methods fail under these conditions.  
The very complexity built into the 
simulation model makes finding 
optimal solutions a daunting task.  
Until recently, no search process was 
sophisticated enough to bridge this 
gap between the power of simulation 
and the structured goal-finding 
nature of optimization.  In short, no 
type of search process exists that can 
effectively integrate simulation and 
optimization.  The same shortcoming 
is also encountered in settings outside 
of simulation where complex (realistic) 
models cannot be analyzed using 
traditional “closed form” optimization 
tools like mathematical programming.

Recent developments are changing this 
picture.  Advances in metaheuristics—
the domain of optimization that 
incorporates artificial intelligence 
and analogs to physical, biological, 
or evolutionary processes—have 
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led to creating a new approach that 
successfully integrates simulation and 
optimization.  As a result, analysts 
can get the best benefits from their 
simulation models.

Organizations may fail to take full 
advantage of their simulation models.  
Even though large amounts of time 
and money are invested in creating 
a simulation tool and populating it 
with validated data, a large part of the 
valuable knowledge that the model 
may yield is generally overlooked.  
Simulation analysts who can access 
such knowledge are exceedingly 
valuable to their organization and 
become highly sought-after resources.  
Combining optimization and statistical 
analysis techniques with a simulation 
model is key to unlocking this 
knowledge.  Optimization techniques 
can be used to execute a simulation 
model many times, varying the input 
parameter values, to determine the 
best input values to achieve desired 
system outputs.  The results of these 
simulation runs can then be explored 
with statistical techniques to better 
understand the system modeled by 
the simulation.  Essential optimization 
and analysis questions that can be 
answered for simulation models by 
combining these techniques include the 
following:

•	Optimization

	- What combinations of input 
parameters lead to the best and 
worst performance of the system?

	- What are the best tradeoffs 
between multiple competing 
objectives?

•	Analysis

	- Which input parameters have the 
greatest influence on the system 
being modeled, and which have the 
least?

	- Are there good or bad regions of 
the input parameter space that can 
be defined by a subset of input 
parameters with restricted ranges?

	- Are some areas of the parameter 
trade space more robust to 
parameter variation than others?

To derive the greatest benefit from a 
simulation model, an analyst should 
apply optimization and statistical 
analysis techniques.  Combining 
these techniques can provide answers 
to these essential questions and 
key insights for decision-makers.  
More importantly, they increase the 
organizational return on investment 
from their analysts and simulation 
models, such as providing a range of 
force structure capacity (size) options.

In this article, some of the most 
relevant approaches developed for 
optimizing simulated systems are 
summarized.  The metaheuristic 
black-box approach that leads 
practical applications and relevant 
details of how this approach has 
been implemented and used in 
commercial software is provided 
next.  As a concrete example, some 
of the mathematics and logic behind 
a generic simulation optimization 
software engine are described.  Lastly, 
some use cases that analysts might 
encounter are presented, and how 
using a simulation optimization and 
analysis tool integrated with their 
simulation model can lighten their 
workload and lead to better study 
results is discussed.

OPTIMIZATION AND 
STATISTICAL ANALYSIS 
IN COMMERCIAL 
SIMULATION PACKAGES
Over the past two decades, 
optimization tools in commercial 
simulation packages have become 
widespread and relatively easy to 
use, even if not all practitioners 
exploit them.  Commercial simulation 
packages also have analysis tools that 
explore the variability uncovered 
through simulation replications (or 
Monte Carlo runs) for a single set 
of input parameters.  However, the 
analysis of all simulation runs resulting 
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from an optimization run is less 
commonly available, at least in an 
automated, easy-to-digest way.

The underlying statistical techniques 
discussed in this article are not 
new.  However, in many tools today, 
to perform variable sensitivity and 
good and bad region analysis across 
simulation runs executed with 
different combinations of input 
parameter changes, analysts must 
use multiple tools or perform the 
simulations and then piece together 
the results of various statistical 
techniques.  Therefore, these types of 
valuable simulation analyses are done 
infrequently and often performed only 
by technical consultants and advanced 
analysts.  To perform them, users of 
discrete event simulation packages 
export their simulation results and 
then use specialized statistical tools 
like JMP or SPSS or write code in 
languages like R or Python for analysis.  
Users of spreadsheet-based Monte 
Carlo simulations have more statistical 
analysis tools at their disposal, but 

even for these analysts, gaining insights 
across all simulation runs is not an 
automated process.

The critical goals of identifying good 
and bad regions of a parameter trade 
space and discovering robust solutions 
are sometimes pursued by more 
advanced analysts through generating 
a response surface approximation by 
coupling design of experiments with 
simulation.  This approximate response 
surface is then explored through 
various stochastic optimization 
techniques [5].  Such an approach 
generally relies on moving from tool 
to tool for the different steps in the 
process—generating the design of 
experiments, executing the simulations, 
and performing the stochastic 
optimization.  This type of process 
has the conspicuous shortcoming of 
frequently oversimplifying complex 
response surfaces, which can entail a 
costly loss of valuable insights.

CLASSICAL APPROACHES 
FOR SIMULATION 
OPTIMIZATION
Fu [6] identifies the following four 
main approaches for optimizing 
simulations:

1.	 Stochastic approximation 
(gradient-based approaches)

2.	 Sequential response surface 
methodology

3.	 Random search

4.	 Sample path optimization (also 
known as stochastic counterpart)

Stochastic approximation algorithms 
attempt to mimic the gradient 
search method used in deterministic 
optimization.  The procedures based 
on this methodology must estimate 
the gradient of the objective function 
to determine a search direction.  
Stochastic approximation targets 
continuous variable problems because 
of its close relationship with the 
steepest descent gradient search.  
However, this methodology has been 
applied to discrete problems [7].

Sequential response surface 
methodology is based on the principle 
of building local metamodels.  The 
“local response surface” is used to 
determine a search strategy (e.g., 
moving in the estimated gradient 
direction), and the process is repeated.  
In other words, the metamodels do not 
attempt to characterize the response 
surface for the entire solution space 
but rather concentrate on the search’s 
local area.

A random search method moves 
through the solution space by 
randomly selecting a point from the 
current point’s neighborhood.  This 
implies that a neighborhood must 
be defined as part of developing a 
random search algorithm.  Random 
search has been applied mainly to 
discrete problems, and its appeal 
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is based on existing theoretical 
convergence proofs.  Unfortunately, 
these theoretical convergence results 
mean little in practice where it is 
more important to find high-quality 
solutions within a reasonable length 
of time than to guarantee optimum 
convergence in an infinite number of 
steps.

Sample path optimization is a 
methodology that exploits the 
knowledge and experience developed 
for deterministic continuous 
optimization problems.  The idea is 
to optimize a deterministic function 
that is based on n random variables, 
where n is the size of the sample path.  
In the simulation context, the method 
of common random numbers is used 
to provide the same sample path to 
calculate the response over different 
values of the input factors.  Sample 
path optimization owes its name to the 
fact that the estimated optimal solution 
that it finds is based on a deterministic 
function built with one sample path 
obtained with a simulation model.  
Generally, n needs to be large for the 
approximating optimization problem 
to be close to the original optimization 
problem [8].

Leading commercial simulation 
software employs metaheuristics as 
the methodology of choice to provide 
optimization capabilities to their 
analysts.  This approach to simulation 
optimization is explored in the next 
section.

SIMULATION 
OPTIMIZATION APPROACH 
WITH METAHEURISTICS
Metaheuristics provide a way 
of considerably improving the 
performance of simple heuristic 
procedures.  The search strategies 
proposed by metaheuristic 
methodologies result in iterative 
procedures that can explore solution 
spaces beyond the solution resulting 
from applying a simple heuristic.  For 
example, genetic algorithms (GAs) and 
scatter search (SS) are population-
based metaheuristics designed 
to operate on a set of solutions 
maintained from iteration to iteration.  
On the other hand, metaheuristics 
like simulated annealing and tabu 
search (TS) typically maintain only 
one solution by applying mechanisms 
to transform the current solution 
into a new one.  Metaheuristics have 
been developed to solve complex 
optimization problems in many areas, 
with combinatorial optimization being 
one of the most fruitful.  Very efficient 
procedures can be achieved by relying 

on context information, i.e., by taking 
advantage of specific information 
about the problem.  The solution 
approach may be viewed as the result 
of adapting metaheuristic strategies 
to specific optimization problems.  In 
these cases, there is no separation 
between the solution procedure and 
the model that represents the complex 
system.

Metaheuristics can be used to create 
solution procedures that are context 
independent, i.e., procedures capable 
of tackling several problem classes and 
not using specific information from 
the problem to customize the search.  
The original GA designs were based on 
this paradigm, where solutions to all 
problems were represented as a string 
of zeros and ones [9].  The advantage 
of this design is that the same solver 
can be used to solve a wide variety 
of problems because the solver uses 
strategies to manipulate the string of 
zeros and ones and a decoder is used 
to translate the string into a solution 
to the problem under consideration.  
The obvious disadvantage is that 
the solutions found by context-
independent solvers might be inferior 
to those of specialized procedures 
when applying the same amount of 
computer effort (e.g., search time).  
Solvers that do not use context 
information are referred to as general-
purpose or “black box” optimizers.

Figure 1 shows the black box approach 
to simulation optimization favored 
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by procedures based on metaheuristic 
methodology.  In this approach, the 
metaheuristic optimizer (labeled as 
“optimization”) chooses a set of values 
for the input parameters (i.e., factors 
or decision variables) and uses the 
responses generated by the simulation 
model or instance to make decisions 
for selecting the next trial solution.

One of the main design considerations 
when developing a general-purpose 
optimizer is which solution 
representation to employ.  This 
representation is used to establish the 
communication between the optimizer 
and the simulation (which is the 
abstraction of the complex system).  
As previously mentioned, classical 
GAs used binary strings to represent 
solutions.  This representation is 
not particularly convenient in some 
instances like when a natural solution 
representation is a sequence of 
numbers, as in the case of permutation 
problems.  One of the most flexible 

representations is an n-dimensional 
vector, where each component may 
be a continuous or integer bounded 
variable.  This representation can be 
used in a wide range of applications, 
which includes all those problems that 
can be formulated as mathematical 
programs.

SS

SS is a population-based metaheuristic 
for optimization.  It has been applied 
to problems with continuous and 
discrete variables and with one or 
multiple objectives.  The success of SS 
as an optimization technique is well 
documented in a constantly growing 
number of journal articles, book 
chapters [10–12], and a book [13].  SS 
consists of the following five phases:

1.	 Diversification Generation

2.	 Improvement

3.	 Reference Set Update

4.	 Subset Generation

5.	 Solution Combination

The Diversification Generation 
phase is used to generate a set of 
diverse solutions that are the basis 
for initializing the search.  The 
Improvement phase transforms 
solutions to improve quality (typically 
measured by the objective function 
value) or feasibility (typically measured 
by some degree of constraint 
violation).  The Reference Set Update 
phase refers to the process of building 
and maintaining a set of solutions that 
are combined in the main iterative 
loop of any SS implementation.  The 
Subset Generation phase produces 
subsets of reference solutions which 
become the input to the combination 
method.  The Solution Combination 
phase uses the output from the subset 
generation method to create new trial 
solutions.  New trial solutions are 
the results of combining two or more 
reference solutions.

Figure 1.  Black Box Approach to Simulation Optimization (Source:  OptTek Systems).
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Extensions of the basic SS framework 
can be created to take advantage 
of additional metaheuristic search 
strategies, such as the memory-
based structures of TSs.  There are 
significant differences between classical 
GAs and SSs.  While classical GAs 
rely heavily on randomization and 
limiting operations to create new 
solutions (e.g., one-point crossover on 
binary strings), SS employs strategic 
choices and memory, along with 
structured combinations of solutions, 
to create new solutions.  SS explicitly 
encourages the use of additional 
heuristics to process selected reference 
points in search of improved solutions.  
This is especially advantageous in 
settings where heuristics that exploit 
the problem structure can either be 
developed or are already available.

OPTIMIZATION ENGINES
Many commercial and open-
source simulation optimization 
engines exist.  These engines often 
implement a composite of prediction 
and optimization technologies to 
tackle complex problems.  They are 
particularly well-suited for scenarios 
where evaluating the objective function 
of the problem is computationally 
expensive.  These engines utilize 
prediction models to help guide the 
search and estimate objective function 
values before solutions are evaluated.  
Commercial examples include 
OptQuest, OptDef, Simulink Design 
Optimization, and Hexaly.  Open-

source examples include the Python 
libraries ParMOO and RPFOpt.  

Presented in this article are examples 
and use cases of a commercial solution 
that implements SS in the simulation 
optimization engine.  This solution 
has been built under the following 
assumptions:

•	A computationally expensive black 
box is used to evaluate the objective 
function of the optimization problem 
being solved. 

•	Prediction models within the engine 
have the dual purpose of assisting 
in establishing search directions and 
estimating the value of the objective 
function before solutions are 
processed by the objective function 
evaluator.

Prediction Technologies

Optimization engines often include 
multivariate linear regression modules 
to assess the linearity of unknown 
objective functions.  If a reasonably 
accurate linear approximation can 
be obtained, this module may help 
filter out trial solutions unlikely to 
yield improvements before they are 
submitted for full evaluation, thus 
saving computational resources.

Neural networks are another 
prediction technology used in some 
optimization engines.  These networks 
can be trained on already evaluated 
solutions to predict inferior trial 

solutions as well as suggest promising, 
high-quality solutions for subsequent 
evaluation.

Optimization Engine 
Capabilities and Practical 
Implications

Optimization engines have the 
potential to replace manual trial-
and-error or basic parametric 
search methods, providing a more 
efficient way to identify promising 
decisions within a simulated or 
modeled domain.  This is particularly 
valuable in defense simulations where 
analysts often lack tools to guide the 
selection of alternatives that yield 
optimal decisions.  Figure 2 lists 
some optimization questions that are 
relevant to defense analysts.

Efficiently answering these questions 
often requires evaluating a massive 
number of scenarios through 
simulation or modeling tools.  
Optimization engines can automate 
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the search for the best solutions.  They 
enable decision-makers to define 
constraints, such as the following:

•	Ranges of key parameters

•	Budget limitations

•	Asset capacities

•	Acceptable minimum and maximum 
output values

•	Limits on resources used

•	Links between components or 
subsystems

The optimization engine strategically 
explores options within these 

constraints and then determines the 
strategic options investigated under 
its guidance, which it successively 
passes to the simulation or technical 
model for evaluation.  The resulting 
search isolates scenarios that yield the 
highest quality outcomes for provided 
objectives, according to the criteria 
selected by the decision-maker.

USE CASE EXAMPLES
When coupled with appropriate 
defense simulation models, a 
simulation optimization and analysis 
tool enables optimization in various 

real-world scenarios, such as 
developing and refining concepts 
of operation, optimizing air defense 
configurations, maximizing satellite 
coverage, performing cybersecurity 
vulnerability assessments, and 
launching and deploying hypersonic 
weapons.

•	Optimal Blue Response.  Figure 3  
shows a notional Advanced 
Framework for Simulation, 
Integration, and Modeling (AFSIM) 
scenario.  Incoming blue forces 
attempt to hit all red targets.  In this 
case, an analyst’s objective would 
be to maximize the number of hits 

Figure 2.  Optimization Questions for Defense Analysts (Source:  gravisio, Uniconlabs, Pure Template, Pexelpy, Iconbunny, and 
oksanavectorart Canva).

OPTIMIZATION QUESTIONS

What is the most e�ective raid 
con�guration (force structure and 
payload) to maximize the number 
of successful engagements?

What is the best workforce 
allocation?

What is the best logistics posture 
to ensure successful and fast 
equipment delivery?

What is the most cost-e�ective 
inventory policy?

What is the most e�ective 
blue force posture to ensure 
successful o�ensive and 
defensive operations?

What is the most productive 
mission operating schedule?

How does one minimize 
cost and maximize speci�c 
equipment usage?
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while minimizing the number of 
blue aircraft used.  Using the least 
number of blue forces has the added 
benefit of cost savings while still 
achieving the mission objective.  A 
typical optimization setup would 
include varying parameters such as 
weapon type (categorical variable 
type), number of weapons (integer 
variable type), and the amount of 
time each aircraft has on a target 
(integer variable type).  Running 
the simulation optimization 
software utilizes the metaheuristic 

methodologies described earlier 
to explore the space and find the 
optimal response (i.e., reach the 
analyst’s objective).

•	Maximal Satellite Coverage.  
An analyst may need to optimize 
satellite target coverage (i.e., swath).  
In this case, the objective could 
be finding the optimal satellite 
configuration to get the best 
coverage for high-priority targets/
areas.  An optimization setup 
could include varying spacecraft 
orbital parameters and system 

configuration (e.g., varying orbits, 
number, and type of spacecraft) to 
reach the objective.  The analyst 
can also specify multiple objectives 
that would balance the best satellite 
configuration with cost (perhaps an 
additional variable would be fuel/
energy amount).  Utilizing multiple 
objectives allows the analyst to make 
data-driven decisions that best meet 
mission needs.

•	Cybersecurity Optimization and 
Analysis.  An analyst may want to 
test the limits of the information 

Figure 3.  Notional AFSIM Scenario (Source:  OptTek Systems, Billion Photos [Canva]).
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technology system by conducting 
vulnerability assessments.  Unlike 
the Figure 3 scenario, which has 
blue forces on the offensive, the 
cybersecurity realm focuses on 
a defensive posture.  Variable 
parameters may include number 
and type of servers that are part of 
the system architecture.  It may also 
include known speed of response 
to a detected threat.  If there is 
a cyberattack on the system, the 
analyst can optimize the solution 
to minimize loss of function and 
duration of effect against it.  With 
simulation optimization, the 
analyst can explore scenarios in 
the cyber kill chain that are the 
most detrimental and identify key 
components that must be protected 
at all costs.

CONCLUSIONS
The fundamental principles of 
simulation optimization, from 
established research approaches to 
the metaheuristic strategies common 
in commercial applications, have 
been explored.  Key implementation 
considerations, such as solution 
representation, metamodel utilization, 
and constraint formulation, were 
highlighted.

The synergy between simulation 
and optimization unlocks a level of 
solution quality far beyond manual 
“what-if” analysis, especially when 

the number of possible scenarios is 
vast.  An overview of a commercial 
solution’s optimization engine 
was provided, and the potential of 
simulation optimization tools to tackle 
complex defense-related problems 
when paired with simulation models 
was demonstrated.

Simulation optimization remains 
a vibrant field of research and 
development.  Its versatility across 
diverse applications and the 
significant benefits it offers ensure 
continued advancements.  Simulation 
optimization tools provide analysts 
with powerful resources to analyze 
complex systems and make data-
driven decisions that optimize project 
and mission objectives.  There is still 
much to learn and discover about 
how to optimize simulated systems 
from the theoretical and practical 
points of view.  The rich variety of 
practical applications and the dramatic 
gains already achieved by simulation 
optimization ensure that this area will 

provide an intensive focus for study 
and a growing source of practical 
advances in the future.  Simulation 
optimization software and tools can 
provide great support to analysts as 
they explore their data and achieve 
project/mission objectives. 

REFERENCES
[1] Boginski, V., E. L. Pasiliao, and S. Shen.  “Special 
Issue on Optimization in Military Applications.”  
Optimization Letters, vol. 9, no. 8, pp. 1475–1476, 
2015.

[2] Dirik, N., S. N. Hall, and J. T. Moore. “Maximizing 
Strike Aircraft Planning Efficiency for a Given Class 
of Ground Targets.”  Optimization Letters, vol. 9, no. 8, 
pp. 1729–1748, 2015.

[3] Kannon, T. E., S. G. Nurre, B. J. Lunday, and 
R. R. Hill.  “The Aircraft Routing Problem With 
Refueling.”  Optimization Letters, vol. 9, no. 8,  
pp. 1609–1624, 2015.

[4] Hill, R. R., J. O. Miller, and G. A. McIntyre.  
“Simulation Analysis:  Applications of Discrete Event 
Simulation Modeling to Military Problems.”  Winter 
Simulation Conference Proceedings, Arlington, VA, 
IEEE Computer Society, 2001.

[5] Samuelson, D.  “When Close Is Better Than 
Optimal.”  ORMS-Today, vol. 37, no. 6, pp. 144–152, 
2010.

[6] Fu, M.  “Optimization for Simulation:  Theory 
and Practice.”  INFORMS Journal on Computing,  
vol. 14, no. 3, pp. 192–215, 2002.

[7] Gerencser, L., S. D. Hill, and Z. Vago.  
“Optimization Over Discrete Sets via SPSA.”  
Proceedings of the 38th IEEE Conference on Decision and 
Control, Phoenix, AZ, vol. 2, pp. 1791–1795, 1999.

[8] Andradottir, S.  “A Review of Simulation 
Optimization Techniques.”  Proceedings of the 1998 
Winter Simulation Conference, D. J. Medeiros, E. F. 
Watson, J. S. Carson, and M. S. Manivannan (editors), 
pp. 151–158, 1998.

[9] Katoch, S., S. S. Chauhan, and V. Kumar.  “A 
Review on Genetic Algorithm:  Past, Present, and 
Future.”  Multimedia Tools and Applications, vol. 80, pp. 
8091–8126, https://doi.org/10.1007/s11042-020-
10139-6, 2021.

[10] Glover, F., M. Laguna, and R. Martí.  Scatter 
Search:  Advances in Evolutionary Computation:  Theory 
and Applications, New York, NY:  Springer-Verlag, 
2003.

Simulation optimization 

tools provide analysts with 

powerful resources to analyze 

complex systems and make 

data-driven decisions that 

optimize project and mission 

objectives. 

49Volume 8  //  Number 2TABLE OF  
CONTENTS



HAVE AN IDEA FOR
AN ARTICLE? If you would like to 

publish with CSIAC or 
have an idea for an 
article, we would love 
to hear from you.  
To learn more, visit  
www.csiac.mil/publish

Photo Source:  Katerina Holmes (Canva)

[11] Glover, F., M. Laguna, and R. Martí.  Scatter 
Search and Path Relinking:  Advances and Applications:  
Handbook of Metaheuristics, Boston, MA:  Kluwer 
Academic Publishers, 2003.

[12] Glover, F., M. Laguna, and R. Martí.  “New 
Ideas and Applications of Scatter Search and 
Path Relinking.”  New Optimization Techniques in 
Engineering, Berlin, Germany:  Springer, 2004.

[13] Laguna, M., and R. Martí.  Scatter Search:  
Methodology and Implementations in C.  Boston, MA:  
Kluwer Academic Publishers, 2003.

BIOGRAPHIES
JOSE RAMIREZ is vice president of government 
services at OptTek Systems, Inc.  He served as the 
Warfighting Analysis Division Chief (Colonel) in 
the Joint Staff J-8, where he led, managed, and 
provided analytical guidance to a 40-personnel 
team of analytical modelers, national defense 
strategists, and cybersecurity personnel.  He has 
guided campaign-level, state-of-the-art, discrete-
event modeling and simulation and data analytics 
supporting the Chairman of the Joint Chiefs of Staff 
and Combatant Commanders.  He has strategized 
and conducted operational assessments of capabilities 
vs. peer adversaries for insights on future equipment 
modernization investment options and implemented 
advanced data analytics technology on the DoD’s 
global munitions requirements process.  Dr. Ramirez 
holds a B.S. in civil engineering from the University 

of Notre Dame, an M.S. in government information 
leadership from the National Defense University’s 
College of Information and Cyberspace, an M.S.E. 
in operations research and industrial engineering 
from the University of Texas at Austin, and a Ph.D. 
in operations management (operations research) from 
the University of Colorado at Boulder.  

BENJAMIN THENGVALL is chief operating 
officer at OptTek Systems, Inc.  He is an expert 
in mathematical modeling, real-time optimization 
software and services, transportation and scheduling 
problems, agent-based and discrete-event simulation, 
and simulation optimization and analysis.  He has 
spent his career providing innovative software 
solutions to complex real-world problems through 
mathematical modeling, simulation, and metaheuristic 
techniques in commercial and government spheres.  
Dr. Thengvall holds a B.S. in mathematics from 
the University of Nebraska-Lincoln and an M.S.E. 
and Ph.D. in operations research and industrial 
engineering from the University of Texas at Austin.  

50 CSIAC Journal  //  2024 TABLE OF  
CONTENTS

https://www.csiac.mil/publish


 ARTIFICIAL INTELLIGENCE  
IN CYBERSECURITY
HOW SUBSTITUTING AND SCALING IMPACT INVESTMENT RETURNS

BY MAZAHER KIANPOUR   
(PHOTO SOURCE:  GURT.SPACE, 

PIXABAY [CANVA])

51Volume 8  //  Number 2TABLE OF  
CONTENTS



SUMMARY

W ith the growing 
integration of artificial 
intelligence (AI) in 

cybersecurity, this article investigates 
the economic principles of substitution 
and scale’s elasticity to evaluate their 
impact on the return on security 
investment.  Recognizing the potential 
of AI technologies to substitute human 
labor and traditional cybersecurity 
mechanisms and the significance 
of cost ramifications of scaling 
AI solutions within cybersecurity 
frameworks, the study theoretically 
contributes to understanding the 
financial and operational dynamics 
of AI in cybersecurity.  It provides 
valuable insights for cybersecurity 
practitioners in public and private 
sectors.  Through this analysis, ways 
in which AI technologies can redefine 
economic outcomes in cybersecurity 
efforts are highlighted.  Strategic 
recommendations are also offered for 
practitioners to optimize the economic 
efficiency and effectiveness of AI in 
cybersecurity, emphasizing a dynamic, 
nuanced approach to AI investment 
and deployment.

INTRODUCTION
In the rapidly evolving landscape 
of cybersecurity, the integration of 
artificial intelligence (AI) technologies 
represents a paradigm shift, offering 
unprecedented opportunities for 
enhancing security measures against 

complex cyberthreats [1, 2].  This 
transition, driven by the increasing 
sophistication of cyberattacks and 
extremely large and diverse collections 
of structured and unstructured data 
generated in digital ecosystems, 
necessitates a reevaluation of 
traditional cybersecurity frameworks.  
As such, governments recognize the 
imperative to adapt and innovate, 
leveraging AI to strengthen and 
improve defense mechanisms [3] and 
ensure efficient utilization of resources 
in public security domains [4].

Building on this foundation, the 
economic principles of elasticity 
of substitution and elasticity of 
scale emerge as pivotal factors 
in this context, providing a lens 
through which the impact of AI 
on cybersecurity can be assessed 
for operational efficiency and 
investment return.  The elasticity of 
substitution explores the extent to 
which AI technologies can replace 
traditional human labor and non-
AI cybersecurity measures.  The 
elasticity of scale examines the cost 
implications of scaling AI solutions 
within cybersecurity infrastructures.  

This scaling is especially important in 
public sector contexts where budget 
constraints are ongoing issues and 
maximizing resource efficiency is 
crucial [5].

Given the strategic importance 
of cybersecurity investments, 
understanding these elasticities' 
influence on the return on security 
investment (ROSI) is crucial for 
organizations, including government 
entities, navigating the digital 
transformation.  This article aims to 
explore the interplay between the 
elasticity of substitution, the elasticity 
of scale, and ROSI in the context of AI 
in cybersecurity, framing an analysis 
that aids in strategic decision-making 
for investments in cybersecurity 
technologies.  The core research 
question guiding this exploration is:  
How do the elasticities of substitution 
and scale influence ROSI?  Addressing 
this question is significant for several 
reasons.  

Firstly, it contributes to the 
literature at the intersection of 
economic theory and cybersecurity, 
offering an analytical framework 
for understanding the financial 
and operational dynamics of AI 
integration.  Secondly, by examining 
the economic implications of 
deploying AI in cybersecurity, the 
study provides practical insights 
for businesses, policymakers, and 
cybersecurity professionals, facilitating 
informed decisions that balance cost, 
efficiency, and security outcomes.  
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Lastly, the investigation into ROSI 
underscores the financial viability of 
AI cybersecurity solutions, a critical 
concern for stakeholders in an era 
of tightening budgets and escalating 
cybersecurity risks.

This article is structured as follows.  
The Theoretical Foundations section 
presents the theoretical foundation of 
this article by exploring the concepts 
of return on security investment along 
with the elasticities of substitution 
and scale.  The Analysis section is 
dedicated to presenting an analysis.  
Following this, the Implications and 
Suggested Strategies for Practitioners 
section highlights the implications 
and proposes strategies for the 
cybersecurity practitioners.  Finally, 
the Conclusions section concludes the 
article.

THEORETICAL 
FOUNDATIONS
In digital ecosystems, AI does not 
just automate tasks typically reserved 
for low-skilled labor but is also 
involved in domains once thought 
to be exclusive to high-skilled labor 
through its innovative capabilities 
[6].  For instance, in cybersecurity, 
AI algorithms are not only replacing 
routine tasks like malware detection 
but are also stepping into roles 
requiring complex decision-making, 
such as identifying subtle patterns 
of sophisticated cyberattacks or 
automating the response to incidents 

in real-time.  This leap signifies a shift 
from AI as a tool for automation to a 
comprehensive strategic asset capable 
of driving innovation in cybersecurity 
measures [7].  This transformative 
potential of AI in cybersecurity directly 
ties into the study's examination of 
the elasticity of substitution and scale, 
highlighting the economic impacts of 
integrating AI into security strategies.

The elasticity of substitution emerges 
as a critical factor when considering 
the replacement of human labor 
and non-AI cybersecurity measures 
with AI-driven tools.  This elasticity 
measures the ease with which AI 
technologies can be substituted 
for traditional security methods, 
influenced by the technological 
advancement of AI, its compatibility 
with existing security infrastructures, 
regulatory compliance requirements 
and accountability measures, and 
the dynamic nature of cyberthreats.  
The relative costs of labor and AI 
technologies play a significant role in 
this dynamic, where advancements 
in AI capabilities and labor market 

fluctuations can shift the balance, 
potentially making AI solutions more 
economically attractive [8].  Such 
cost shifts can accelerate or hinder 
the adoption of AI in cybersecurity, 
reflecting on the broader implications 
for security effectiveness and 
organizational resilience.

Parallelly, the elasticity of scale 
addresses how the expansion of AI in 
cybersecurity affects cost structures, 
focusing on the implications of 
scaling AI solutions for the overall 
economics of cybersecurity efforts.  
By their automated and digital 
nature, AI technologies present 
unique opportunities for economies 
of scale, where the marginal cost 
of cybersecurity operations could 
decrease as AI solutions are deployed 
more extensively.  However, this 
optimistic view is balanced by 
considering possible diseconomies of 
scale, such as the added complexity 
and overhead that might accompany 
large-scale AI deployments, potentially 
eroding the cost benefits of scalability.

A pertinent real-world example 
that illustrates the elasticity of scale 
in AI-driven cybersecurity is the 
implementation of AI technologies to 
enhance software supply chain (SSC) 
security within the Defense Industrial 
Base (DIB).  This approach, as detailed 
in the report published by the 
Cybersecurity & Information Systems 
Information Analysis Center (CSIAC) 
[9], leverages AI to automate threat 
intelligence processing and expedite 
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cybersecurity risk management.  
As these AI systems scale across 
the defense industry's complex 
infrastructure, they demonstrate 
economies of scale by spreading the 
development and operational costs 
over a larger network of military 
and government installations.  For 
instance, AI-driven systems can 
provide continuous scanning and real-
time threat assessment across various 
platforms, significantly reducing the 
marginal cost of enhancing security for 
each additional system component.

However, the scalability and cost-
effectiveness of these AI-driven 
solutions can be tempered by 
diseconomies of scale as they grow.  
For example, as AI solutions are scaled 
up to protect SSCs across the DIB, 
which comprises various branches of 
the military with distinct operational 
environments, the complexity 
of ensuring compliance with the 

National Institute of Standards and 
Technology controls adds significant 
overhead.  According to the CSIAC 
report [9], integrating and managing 
AI-driven threat assessment tools 
across different branches involves 
substantial costs related to system 
customization to adhere to specific 
security standards, training personnel 
to handle sophisticated AI tools, and 
updating systems to keep up with 
the latest security protocols.  These 
complexities can lead to slower 
response times to emerging threats 
and increase the operational costs, 
thereby potentially diluting the initial 
cost benefits associated with scaling 
AI solutions in such a regulated and 
diverse environment.

This study aims to investigate the 
impact of elasticity of substitution 
and scale on the ROSI, given that 
ROSI is profoundly affected by the 
cost-effectiveness and efficiency of 
cybersecurity measures.  By integrating 
the effects of substitution and scale, 
understanding how strategic AI 
integration can significantly enhance 
ROSI is explored.  This metric has 
been extensively studied in the 
literature of cybersecurity economics 
[10, 11].  ROSI provides a quantitative 
measure of the financial value derived 
from implementing cybersecurity 
countermeasures [12], serving as 
a pivotal tool for assessing the 
economic viability of investments in 
cybersecurity technologies, including 
AI.  One method to quantitatively 

calculate ROSI is as follows [13]: 

, (1)

where:

•	Cost Avoided (CA) includes potential 
losses from cybersecurity incidents 
that are prevented due to AI-
enhanced security measures.  It 
can also consider saved costs and 
efficiency gains, such as reduced 
downtime or faster threat detection 
and response times.

•	Cost of Investment (CI) encompasses 
the total expenditure on AI 
technologies, including initial 
purchase, implementation, training, 
and ongoing maintenance costs.

Understanding the elasticity of 
substitution sheds light on the 
potential of AI to replace existing 
cybersecurity measures efficiently, 
potentially leading to a substantial 
reduction in CA due to risk 
mitigation and response capabilities.  
Concurrently, examining the elasticity 
of scale allows for an assessment of 
how the costs associated with AI-
driven cybersecurity solutions evolve 
as these solutions are deployed at 
larger scales, affecting the overall 
ROSI calculation.  Through this lens, 
the next section explores the complex 
interplay between these elasticates and 
ROSI, highlighting the nuanced ways 
in which AI technologies can redefine 
economic outcomes in cybersecurity 
efforts.
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ANALYSIS
This section presents an analysis 
to elucidate the theoretical impact 
of elasticity of substitution and 
elasticity of scale on ROSI outcomes 
within the framework of AI-driven 
cybersecurity measures.  Integrating 
these foundational economic theories 
to construct a comprehensive 
understanding of how the adaptability 
and scalability of AI technologies 
influence their economic viability 
and effectiveness in enhancing 
cybersecurity defenses is the goal.  
The elasticity of substitution is a 
measure of how easily one (economic) 
good or input can be substituted for 
another in response to changes in 
their relative prices or productivity 
[14].  The following widely applicable 
formula is adapted for calculating the 
elasticity of substitution [15] to better 
fit the unique context and specific 
requirements of the analysis:

	 .	 (2)

In this equation, A and X represent 
the inputs of AI investment and 
traditional inputs (labor and non-
AI technologies), respectively.  
θ(A) captures the efficiency or 
effectiveness of AI technology as 
a function of AI investment (A), 
reflecting how advancements in AI 
technology improve its contribution 
to cybersecurity effectiveness.  
Technological advancements in 
AI (θ(A)) can alter the marginal 

productivity of AI (MPA), potentially 
increasing its substitutability with 
traditional inputs (X).  This enhanced 
substitutability, driven by AI's 
technological advancements, affects 
both the cost avoided and the cost of 
investment, thereby influencing ROSI.

The elasticity of scale examines 
how the total output, in this case, 
cybersecurity effectiveness (Y), changes 
in response to a proportional increase 
in all inputs (A and X) [16].  This 
analysis is crucial for understanding 
the scalability of AI investments in 
cybersecurity and their potential to 
yield returns to scale.  Identifying the 
conditions under which AI investments 
lead to enhanced scalability of 
cybersecurity operations can inform 
strategic decisions about the pace 
and extent of AI integration. The 
elasticity of scale, modified to account 
for external factors (ϕ), examines 
how the scalability of cybersecurity 
effectiveness is influenced by these 
factors as follows:

	 .	 (3)

This equation measures how the 
output (Y) changes in response to 
a proportional change in all inputs, 
scaled by a factor of λ.  Moreover, it 
indicates that the overall returns to 
scale in cybersecurity effectiveness 
can be affected by external factors, 
which can either amplify or diminish 
the effectiveness of scaling up inputs, 
including AI.  Ψ(ϕ) is a function that 
modifies the overall effectiveness of 

the cybersecurity system based on 
external factors.  In this study, it is 
assumed that Ψ(ϕ) increases with 
positive external developments (e.g., 
effective AI regulations) and decreases 
with negative developments (e.g., 
sophisticated cyberthreats).

These two refined metrics, 
encompassing technological 
advancements in AI (θ(A)) and the role 
of external factors (ϕ), delineate four 
distinct scenarios that significantly 
influence the ROSI in the domain of 
AI-driven cybersecurity.  Each scenario 
represents a unique combination of 
the elasticity of substitution and scale, 
providing a nuanced understanding of 
how AI's integration into cybersecurity 
strategies can be optimized for 
economic efficiency and effectiveness, 
as follows:

1. High Elasticity of Substitution 
(σA,X)>1) With High Elasticity of 
Scale (ε>1) 

This scenario signifies an ideal state 
where technological advancements in 
AI not only enhance its substitutability 
with traditional cybersecurity measures 
but also facilitate economies of scale 
as AI solutions are expanded.  The 
dual presence of a high σA,X due 
to significant θ(A) improvements, 
alongside a favorable ε influenced 
by positive external factors (ϕ), 
suggests an optimal environment for 
AI investments, yielding substantial 
improvements in ROSI.  This 
combination reflects a scenario where 
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AI's deployment maximizes cost 
avoidance and minimizes investment 
costs, presenting a compelling case 
for aggressive AI integration in 
cybersecurity frameworks.

2. High Elasticity of Substitution 
(σA,X)>1) With Low Elasticity of 
Scale (ε<1)

In this scenario, while AI exhibits 
strong substitutability due to 
advancements (θ(A)), scaling AI 
solutions encounters challenges, 
possibly due to negative externalities 
(ϕ) that diminish the returns to scale 
(ε<1).  This juxtaposition leads to 
mixed outcomes for ROSI, where 
the benefits of substituting AI for 
traditional measures may be partially 
offset by the increased costs or 
diminished effectiveness associated 
with scaling.  Strategic considerations 
must be employed to navigate this 
landscape, balancing the push for 
substitution with careful scaling 
strategies.

3. Low Elasticity of Substitution 
(σA,X)<1) With High Elasticity of 
Scale (ε>1)

Here, AI's technological advancements 
may not sufficiently enhance its 
substitutability, possibly due to 
limitations in AI's applicability or 
integration complexities.  However, 
positive external factors support 
economies of scale, suggesting that 
while AI may not replace traditional 
measures as effectively, scaling up AI 
deployments is economically beneficial.  
This scenario requires a focused 

approach to leveraging the scalability 
of AI to improve ROSI, possibly by 
enhancing AI capabilities or finding 
niches where AI's integration delivers 
clear benefits.

4. Low Elasticity of Substitution 
(σA,X)<1) With Low Elasticity of 
Scale (ε<1)

Representing the most challenging 
scenario, this combination arises 
when AI's technological advancements 
fail to significantly increase its 
substitutability and external factors 
lead to diseconomies of scale.  The 
convergence of these factors results 
in the lowest potential for ROSI 
improvement, indicating a need 
for a reevaluation of AI investment 
strategies.  Organizations in this 
quadrant must critically assess their AI 
deployments, focusing on overcoming 
barriers to AI effectiveness and 
scalability to realize positive economic 
outcomes.

Through these scenarios, Table 1 
represents a comprehensive matrix that 
captures the multifaceted impacts of 
AI's elasticity of substitution and scale 
on ROSI in cybersecurity.

Investigating the details of each 
scenario—identifying what factors 
make AI more scalable or substitutable 
to determine which scenario is 
more likely—is beyond the scope of 
this article and requires a specific, 
detailed analysis tailored to the 
distinct needs of each organization 
and their cybersecurity context.  
Nonetheless, based on this theoretical 
foundation, the next section draws 
practical implications of elasticity 
of substitution and scale on the 
economics of cybersecurity, guiding 
organizations in navigating the 
complexities of AI integration to 
optimize security investments and 
operational effectiveness.

Table 1.  The Interplay Between Elasticities of Substitution and Scale on Return on 
Cybersecurity Investment

ELASTICITY OF  
SUBSTITUTION/SCALE

HIGH ELASTICITY OF SCALE  
(ε>1)

LOW ELASTICITY OF SCALE 
(ε>1)

High Elasticity of 
Substitution (σA,X>1)

High ROSI:  Efficient 
substitution leads to 
significant CA, and 
increased returns to scale 
reduces CI per unit.

Mixed ROSI:  While 
substitution is efficient, 
increasing CI due to 
diseconomies of scale 
could offset CA benefits.

Low Elasticity of 
Substitution (σA,X<1)

Mixed ROSI:  Economies 
of scale lower CI per unit, 
but lower substitution 
efficiency reduces CA 
gains.

Low ROSI:  Diseconomies 
of scale increase CI, and 
low substitution efficiency 
minimally impacts, 
resulting in minimal ROSI 
improvement.
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IMPLICATIONS AND 
SUGGESTED STRATEGIES 
FOR PRACTITIONERS
Integrating the insights from the 
analysis of elasticity of substitution 
and elasticity of scale on ROSI, 
the practical implications can be 
synthesized into a cohesive strategy 
for cybersecurity practitioners.  This 
strategy revolves around optimizing 
the economic efficiency and 
effectiveness of AI-driven cybersecurity 
measures by understanding and 
acting upon the interplay between 
these elasticities and ROSI.  Figure 1 
presents a consolidated action plan 
that reflects these insights.

These strategies together enable 
cybersecurity practitioners to construct 
a comprehensive approach that 
maximizes the economic efficiency and 
effectiveness of AI in cybersecurity.  
This approach acknowledges the 
complexity of the interplay between 
the elasticity of substitution and 
scale, guiding practitioners in making 
informed decisions that optimize ROSI 
in an ever-evolving cybersecurity 
landscape.

CONCLUSIONS 
This article has provided a thorough 
analysis of the intricate dynamics 
between the elasticity of substitution 
and scale of AI technologies and 
their consequential impact on ROSI 
within the realm of cybersecurity.  

Figure 1.  Consolidated Action Plan for Cybersecurity Practitioners (Source:  Visual 
Generation, 0721-Team, and Vir Leguizamón [Canva]).

Recognize scenarios where low elasticity of substitution suggests AI 
cannot fully replace human tasks.  In such cases, invest in hybrid models 
that leverage AI to augment human capabilities, focusing on scalability 
(high ε) to enhance overall cybersecurity posture.  This approach can 
include AI-assisted threat detection and response, where AI algorithms 
identify potential threats and human experts make final determinations.

HYBRID AI-HUMAN CYBERSECURITY MODELS5

Engage in industry collaborations and knowledge-sharing initiatives to learn 
from the experiences of others and add insights.  This can help in identifying 
best practices for leveraging AI in cybersecurity, understanding how other 
organizations have navigated the challenges of elasticity, and finding 
innovative solutions to common problems.

COLLABORATION AND KNOWLEDGE SHARING7

Begin with a comprehensive assessment of current cybersecurity measures 
and AI technologies.  Align AI investments with strategic security objectives, 
considering both the elasticity of substitution (σA,X) and elasticity of scale (ε) to 
identify areas where AI can either replace traditional methods (high σA,X) or 
augment them efficiently at scale (high ε).

ASSESSMENT AND ALIGNMENT1

Regularly evaluate the cost-efficiency of AI deployments in cybersecurity, 
considering both direct costs (e.g., licensing, development, and operation) 
and indirect costs (e.g., training and integration challenges).  Optimize AI 
applications where the ratio of elasticity of substitution to the cost of 
implementation and scaling yields the highest ROSI.

COST-EFFICIENCY OPTIMIZATION3

Adjust the scale of AI investments based on the elasticity of substitution 
and scale.  In scenarios where both elasticities are high, scale investments 
aggressively to capitalize on both substitution and scale efficiencies.  
When elasticity of substitution is high but elasticity of scale is low, focus 
investments on high-impact, targeted AI applications that can replace or 
enhance specific cybersecurity tasks without the need for extensive scaling.

DYNAMIC INVESTMENT SCALING2

Identify and address the externalities (ϕ) that negatively impact the 
elasticities of AI applications in cybersecurity.  This includes technological 
limitations, regulatory constraints, interoperability issues with existing systems, 
and scalability challenges.  Develop and implement strategies to mitigate 
these barriers, such as investing in technology upgrades, advocating for 
regulatory changes, or enhancing AI integration capabilities.

MITIGATION OF NEGATIVE EXTERNALITIES4

Embrace a culture of incremental innovation and continuous learning 
within a cybersecurity team.  This involves staying abreast of the latest 
advancements in AI and cybersecurity, conducting pilot projects to 
evaluate new approaches, and learning from both successes and 
failures to refine an AI strategy over time.

INCREMENTAL INNOVATION AND 
CONTINUOUS LEARNING
6
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Exploration revealed that the strategic 
integration of AI in cybersecurity is 
not merely a technological upgrade 
but a complex economic decision 
that hinges on understanding and 
leveraging the elastic properties of 
AI.  The ideal scenario—characterized 
by high elasticity of substitution and 
scale—underscores the potential for 
AI to deliver substantial improvements 
in ROSI through cost-effective 
substitution and scalable deployment.  
However, the mixed and challenging 
scenarios present a call to action for 
organizations in public and private 
sectors to navigate the intricacies of AI 
deployment with agility and foresight, 
addressing barriers to scalability and 
enhancing substitutability where 
necessary.  The interrelated nature 
of substitution and scale elasticities 
demands a dynamic, nuanced approach 
to AI investment and deployment 
in cybersecurity.  Organizations 
must adopt a continuous evaluation 
mindset, recalibrating strategies in 
response to technological evolutions 

and shifting threat landscapes to 
harness AI's full economic and security 
potential.  Moreover, this article 
calls for empirical evidence and case 
studies that illustrate the real-world 
applications and implications of these 
elasticities in cybersecurity strategies. 
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