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This report reviews state-of-the-art artificial 
intelligence/machine learning (AI/ML) hardware 
and software technologies supporting autonomy 
on small, inexpensive platforms.  It focuses on 
commodity hardware components and widely 
available software ecosystems for deep learning, 
the subset of AI/ML that uses multilayered neural 
networks to deliver best-in-class performance  
and accuracy for the low-level tasks that drive 
higher-level applications of autonomy.
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SECTION

01
From self-driving cars and warehouse inventory 
robots to delivery drones and micro-aerial vehicles 
(MAVs) small enough to land on a person’s hand, 
autonomous mobile platforms of various scales 
are transforming industries across the public and 
private sectors.  The popular Roborace competition 
[1], for example, demonstrates the promise 
of artificial intelligence/machine learning (AI/
ML) capabilities in revolutionizing mainstream 
pastimes, such as auto racing, while unmanned 
aerial systems (UASs), such as the tactical resupply 
vehicle (TRV) [2] depicted in Figure 1-1, provide 

game-changing capabilities to the Warfighter for 
logistics resupply.  These platforms are powered 
by deep learning (DL), a class of AI/ML algorithms 
that solve the representation learning problem by 
building complex representations from simpler 
concepts [3].

Broadly, AI is a branch of computer science that 
seeks to replicate or simulate human intelligence in 
a machine.  AI systems are powered by algorithms 
that exhibit intelligence through decision-making.  
ML is a subset of AI and uses statistical techniques 

INTRODUCTION

Figure 1-1:  DL for Next-Generation Autonomous Platforms (Source:  SURVICE Engineering Company).  
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to enable an AI system to learn—the system gets 
better at tasks over time, without having to be 
specifically programmed to do so.  Similarly, DL is a 
subset of ML in which learning algorithms attempt 
to mimic the human brain using multilayered 
algorithmic structures called neural networks.  The 
relationship between AI, ML, and DL is depicted in 
Figure 1-2.

Deep neural networks (DNNs) are one approach  
to DL in which a network composed of artificial 
neurons takes several inputs and produces an  
output.  These neurons are grouped together  
into layers such that one layer is connected to  
both the preceding and subsequent layers.   
Flexible DNN architectures enable a diverse range 
of applications, from computer vision and speech 
recognition to medical imaging and combat  
support.

With the mapping of DNNs to modern massively 
parallel computing architectures [4], DNNs 
now achieve breakthrough performance in 
modern computer vision tasks, including image 
classification, object detection, and image 
segmentation—tasks that form the basis of 
autonomous mobile platforms.  In fact, DNN 
performance in these tasks rivals or even surpasses 
human capabilities [5].  The neuron layers, or 
convolutional layers, in so-called convolution 
neural networks (CNNs) drive performance in these 
tasks.  The convolutional layers automatically learn 
important visual features from vast collections 
of training data by optimizing convolutional 
operations applied to these data—features that 
were previously extracted by complex algorithms 
laboriously handcrafted and explicitly programmed 
by computer vision experts.

High-performance DNNs, massively parallel 
computing architectures, and hardware-optimized 
software components now combine with real-
world training data to solve problems in autonomy 
for small, inexpensive platforms.  This report 
reviews state-of-the-art AI/ML hardware and 
software technologies supporting autonomy on 
these platforms, focusing on commodity hardware 
components and widely available software 
ecosystems for DL.  Together, these technologies 
deliver best-in-class performance and accuracy 
for the low-level tasks that drive higher-level 
applications of autonomy.

Figure 1-2:  AI, ML, and DL (Source:  SURVICE Engineering Company).

ARTIFICIAL  
INTELLIGENCE

A program that can sense, reason,  
act, and adapt

MACHINE 
LEARNING

Algorithms whose performance improve 
as they are exposed to more data over time

DEEP 
LEARNING

Subset of machine learning 
in which multilayered neural 

networks learn from vast 
amounts of data
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SECTION

02
DL is a class of AI/ML that uses DNNs, or 
multilayered artificial neural networks (ANNs), to 
deliver state-of-the-art performance in complex 
tasks, such as image classification and speech 
recognition, among others.

ANNs are statistical models that adapt (via self- 
programming) by using learning algorithms 
to build complex representations from simpler 
concepts.  These networks date back to the early 
1940s, when mathematicians McCulloch and Pitts 
built a simple algorithm-based system to emulate 
human brain function [6].  They used a combination 
of mathematics and algorithms, or what they 
called “threshold logic units,” to encode logical 
propositions.

As depicted in Figure 2-1, modern ANNs are 
composed of artificial neurons, or nodes, arranged 
in several layers that operate in parallel.  Each 
neuron has one or more inputs and produces a 
single output, which is then forwarded to one or 
more nodes in the next layer.  The input layer is 
analogous to dendrites in the human brain.  The 
hidden layer, comparable to the cell body, sits 
between the input layer and the output layer, which 
itself is analogous to synaptic outputs in the human 
brain.  The hidden layer ingests inputs based on 
synaptic weight, the amplitude or strength of a 
connection between nodes.  These weighted inputs 
generate an output through a transfer or activation 
function to the output layer.

In 1958, Rosenblatt introduced the perceptron— 
a groundbreaking algorithm designed to perform 

BACKGROUND

Figure 2-1:  DL via DNNs (Source:  NVIDIA and SURVICE Engineering).

In
pu

ts
 (D

en
dr

it
es

)

Activation
Function

Artificial Neuron

Cell 
Body Output

I1

I3

I2

I4

Dendrites

Synapse

Cell Body

Axon

Human Brain Neuron



2-2

State-of-the-A
rt Report: SEC

TIO
N

 2

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release:  distribution unlimited.

complex recognition tasks [7].  The perceptron 
was designed for image recognition, and, 
though originally conceived as machine, the first 
implementation was a software program.  Initially 
promising, practitioners quickly proved that 
perceptrons could not be trained to recognize 
many pattern classes.  Nevertheless, mathematical 
and algorithmic progress continued throughout 
the 1960s, 70s, and 80s, with notable advances, 
including development of the basis of back 
propagation [8, 9], polynomial activation [10], the 
first “convolutional” neural network [11], and the 
first practical demonstration of back propagation 
[12].  However, throughout this time, lack of 
computing power sufficient to process large 
amounts of data hindered application of these 
developments in practical settings.

Not until the 2000s, when massively parallel  
computing hardware and large repositories of  
real-world training data became commonplace, did 
practitioners have the necessary components to 
realize practical applications.  In fact, by 2011,  

modern graphics processing units (GPUs) offering 
hundreds or even thousands of processing 
elements made it possible to train CNNs without 
tedious layer-by-layer pretraining [13].  With 
increased computing power, the significant 
advantages of DL in terms of speed and efficiency 
became obvious.  The timeline of historical AI/ML 
developments is summarized in Figure 2-2.

Unlike traditional AI/ML techniques, DL 
automatically learns representations from data 
(images, video, text, etc.) and does not require 
explicitly programmed rules or significant domain 
knowledge from human experts.  Instead, DNN 
models learn directly from real-world data in a 
process called training—the first of two phases 
necessary to utilize DL models.  The second phase, 
called inference, is the use of a trained DNN model 
to make predictions against previously unseen 
data.  These phases are depicted in Figure 2-3.  
Loosely speaking, research demonstrates that more 
training data leads to lower estimation variance 
and, thus, better predictive performance; that is, 

Figure 2-2:  Timeline of AI/ML Developments (Source:  NVIDIA).
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more data increases the probability that the DNN 
encounters useful information during training, 
which can be advantageous for inference [14].

With hardware-accelerated DL frameworks, 
the time required to train DL models is reduced 
from days or weeks to just hours or days.  When 
these trained models are ready for deployment, 
hardware-accelerated inference platforms (from 
the smallest embedded systems and mobile 
devices to desktop personal computers [PCs], 
workstations, and the cloud) deliver high-
performance, low-latency inference for the most 
computationally intensive DNNs across all scales.

AlexNet [4], a CNN architecture that won several 
international computer vision competitions during 
2011 and 2012, is the most well-known example 
of the impact massively parallel computing 
architectures (modern GPUs, in particular) have 
had on ML with DNNs.  The depth of AlexNet (i.e., 
the number of convolutional layers) was certainly 
critical to its record-breaking performance in these 
competitions.  However, because deeper networks 
impose more computation, training AlexNet only 
became feasible with the use of contemporary 
GPUs [15].

In particular, the AlexNet architecture consists of 
five convolutional layers and three fully connected 
layers.  However, depth alone is not the only novel 
aspect of AlexNet; additional breakthrough  
features include:

•	 Rectified Linear Units (ReLU) Nonlinearity.  
AlexNet uses ReLU instead of the sigmoid or  
hyperbolic tangent (tanh) functions, which 
were standard at the time.  ReLU was first 
shown to enable training supervised DNNs  
in 2011 [16], and it allows fast and effective 
training of DNN architectures on large,  
complex datasets.

•	 Multiple GPUs.  AlexNet allows parallel  
training by distributing the model across two 
GPUs, or so-called model-parallel training.   
Parallel training increases the size of models 
that can be trained and reduces the time  
required to train any particular model.

•	 Overlapping Pooling.  Prior to AlexNet,  
typical CNNs pooled outputs of neighboring 
neuron groups without overlapping.  However, 
by introducing overlapped pooling, AlexNet 
reduced both top-1 and top-5 error rates [17].

Figure 2-3:  Phases of DL (Left:  DNN Training; Right:  DNN Inference) (Source:  NVIDIA).
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AlexNet is a large model with 60 million parameters 
and 650,000 neurons, which increases the model’s 
capacity to learn critical features for the task at 
hand.  However, training a large model can also 
lead to overfitting—a problem in which the model 
effectively memorizes features in training samples 
and is unable to generalize these features to 
new, previously unseen data.  AlexNet combats 
overfitting using the following:

•	 Data Augmentation.  Label-preserving 
transformations introduced additional variation 
in the training data.  Specifically, the number of 
training samples was increased by more than 
2000x using image translations and (horizontal) 
reflections, and image channel intensities were 
modified using principal component analysis to 
create more training data.

•	 Dropout.  Here, neurons are disabled with  
a predetermined probability so that every 
iteration uses a different subset of the model’s 
parameters.  Dropout is just one approach 
to regularization—any method or process 
designed to prevent overfitting by reducing 
interdependent learning among neurons.  
Dropout increases the training time required 
for convergence but forces neurons to learn  
features more robustly.

AlexNet achieved a top-5 error of 15.3% in the 2012 
ImageNet Large Scale Visual Recognition Challenge 
[18], or nearly 11 percentage points better than its 
closest competitor.  With the success of AlexNet,  
the practical application of DL began in earnest.

Later, Google DeepMind’s AlphaGo became the  
first computer program to defeat a professional 
human Go player and the first to defeat a Go world 
champion [19].  AlphaGo combines advanced tree 
search with DNNs.  One neural network (the policy  
network) selects the next move to play, and a 

second neural network (the value network) predicts 
the winner of the game.  AlphaGo was first exposed 
to amateur Go games to develop an understanding 
of reasonable human play, followed by play 
against different versions of itself thousands of 
times—each time learning from its mistakes.  This 
process, known as reinforcement learning, rewards 
desired behaviors, punishes undesired ones, or 
both.  In general, a reinforcement learning agent 
(in this case, the AlphaGo program) perceives 
and interprets its environment, acts with that 
environment, and learns through trial and error.  
AlphaGo eventually defeated Go world champions 
in different global arenas and has arguably become 
the greatest Go player of all time.

DNNs have found similar success in natural 
language processing (NLP), or algorithms that 
represent and analyze human language.  NLP-
based systems enable a wide range of applications, 
including virtual-assistant technologies, machine 
translation, dialogue generation, and others.  
Much like computer vision, NLP techniques were 
traditionally based on shallow ML models and 
time-consuming, hand-crafted features.  More 
recently, however, DNNs have achieved superior 
results on various language-related tasks compared 
to traditional ML models.  For example, early work 
by Collobert et al. [20] demonstrated a simple DL 
framework that outperformed most contemporary 
state-of-the-art approaches in several NLP tasks, 
and numerous algorithms based on DL have been 
proposed to solve difficult NLP tasks since then [21].

DL finds successful application across a wide range 
of other domains, including medical image analysis 
[22], wireless communication [23], robotics [24], and 
more [25, 26].  Interested readers are encouraged 
to consult the many available resources to learn 
more about the application of DNNs to problems in 
science, engineering, and medicine.
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SECTION

03
Widely available massively parallel computing 
architectures have revolutionized DL, making it 
practical to apply complex DNN models to real-world 
problems.  For example, consider DNN training, as 
outlined in Figure 3-1.  The DNN ingests data at its 
input layer, multiplies these inputs by the synaptic 
weights (or more simply, weights) in its hidden 
layers, and then outputs a prediction.  Weights are 
adjusted throughout training to extract meaningful 
patterns and thus make better predictions.

3.1  CORE OPERATIONS

Typically, the goal of training is to reduce prediction 
error or loss—the difference between predicted 
outputs and reference data.  Reference data 

is constant; therefore, training must change 
prediction values by updating synaptic weights  
to reduce error.

Backpropagation is a commonly used mechanism 
to update weights via gradient descent—an 
iterative first-order optimization algorithm that 
finds a local minimum or maximum value of a 
function.  In training, backpropagation computes 
the gradient of the loss function with respect 
to each weight one layer at a time and iterates 
backward from the last layer to avoid redundant 
calculation of intermediate terms.  This approach 
makes the application of gradient methods feasible 
for training deep multilayer neural networks.

HARDWARE

Figure 3-1:  Practical DL via Parallel Computing (Source:  NVIDIA).
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Backpropagation refers only to the algorithm for 
computing gradients, not how the gradient is used; 
however, the term is often used loosely to refer to 
the entire learning algorithm.  Backpropagation 
generalizes the gradient computation in the 
delta rule—the gradient descent learning rule 
for updating weights in a single-layer version of 
backpropagation.  It is, in turn, generalized by 
automatic differentiation—a set of techniques for 
evaluating the derivative of a function.  Interested 
readers are encouraged to consult the many 
available resources to learn more about DNN 
training; for example, Goodfellow et al. [3] provide 
a modern overview of backpropagation and 
differentiation algorithms in DL.

DNN inference, also outlined in Figure 2-3, proceeds 
in much the same way—the network ingests data  
at its input layer, multiplies these inputs by its 
weights, and then outputs a prediction.  In contrast 
to the training phase, however, DNN weights are 
not adjusted during inference and instead use the  
values determined by training and are fixed at  
the time of deployment.

In both phases, the core operation is tensor 
multiplication.  Generally, tensors are mathematical 
objects that describe relationships between other 
mathematical objects that are themselves linked in 
some way.  In DNN training and inference, tensors 
are simply two-dimensional matrices, so tensor 
multiplication is essentially matrix multiplication—
an array of inputs multiplied by an array of weights.  
Modern DNN models comprise potentially billions 
of such weights, however, so computations for even 
a single training iteration could require hours, days, 
or even weeks.

3.2  PARALLEL COMPUTING

Fortunately, massively parallel architectures 
execute multiple, simultaneous computations 
across tens, hundreds, or even thousands of 
processing cores, each of which uses fewer 
resources than a more traditional central 
processing unit (CPU).  These architectures 
implement parallel computing—an approach  

in which a complex task (e.g., DNN training) is 
divided into smaller, independent computations 
that can be executed simultaneously.  The results 
of these independent computations are then 
combined to form the result of the original task.  
The number of computations into which a task 
is divided depends, in part, on the number of 
available processing cores.  Typical CPUs have 
4, 8, or 16 cores, while GPUs have hundreds or 
thousands.

In fact, DL tasks are embarrassingly parallel, 
meaning little or no effort is necessary to divide 
a task into smaller, independent computations.  
Recall that, during both training and inference, 
a DNN ingests data at its input layer, multiplies 
these inputs by weights in its hidden layers, and 
outputs a prediction.  Here, the most common 
functions are basic linear algebra operations, such 
as matrix multiplication and addition.  At the same 
time, computations for each node in a layer are 
independent of every other node in that layer; 
therefore, these computations can be executed 
simultaneously.  Massively parallel computing 
architectures are thus well matched to both 
training and inference.

Modern GPUs are the most prevalent massively 
parallel computing architectures at present.  GPUs 
are specialized processors with dedicated memory 
originally designed to accelerate the operations 
required for graphics rendering—the process 
of generating images from three-dimensional 
models or scene descriptions via a computer.  
Rendering is itself an embarrassingly parallel 
problem; consequently, GPUs have evolved 
to execute hundreds or thousands of these 
operations in parallel to support increasingly faster 
rendering times.  Moreover, GPUs began to expose 
programmable elements in their otherwise fixed-
function rendering pipelines, giving software 
developers low-level control over many aspects 
of computation.  Together, these GPU features 
(unprecedented levels of parallel hardware under 
explicit programmer control) paved the way for 
accelerated DL, as demonstrated by AlexNet.  
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Although not the first CNN to exploit GPUs for 
accelerated DL, AlexNet is often seen as the catalyst 
behind the GPU-accelerated DL revolution [15].

The parallelism inherent to DNN training extends to 
even larger scales via distributed training, wherein 
either computation or data is distributed across 
many independent processors (e.g.,  multiple CPUs 
in a cluster or multiple GPUs in a workstation).  As 
illustrated in Figure 3-2, distributed training usually 
proceeds in one of two ways:  model parallel or data 
parallel.

In model-parallel training, each layer’s parameters 
and the corresponding computations in the DNN 
(i.e., the model itself ) are distributed across the  
processors, and each one ingests the same 
data.  With data-parallel training, training data 
is distributed across the processors and each 
one executes the entire DNN model on its data 
subset.  Model-parallel training permits DNNs with 
increasingly more parameters to improve model 
performance, while data-parallel training permits 
training with progressively more data to complete 
within practical timeframes.  Distributed training is 
thus essential to robust, large-scale DL solutions.

3.3  COMMODITY HARDWARE PLATFORMS

Major processor manufacturers, including AMD, 
ARM, Intel, and NVIDIA, offer scalable, accelerated 
solutions for DL training, typically comprising 
their respective processor technologies and a DL 
software stack optimized for that platform.  From 
multi-GPU workstations to purpose-built DL 
systems of various scales, these products (as well 
as those offered by top cloud service providers, 
original equipment manufacturer partners, and 
various resellers) provide easy access to the 
latest massively parallel computing architectures 
that enable fast, efficient, and economical DNN 
design, training, and optimization.  Some of these 
commodity hardware platforms are depicted in 
Figure 3-3. 

Whereas these platforms are typically designed  
for DL training in the laboratory, in the data center, 
or in the cloud, other platforms are designed for DL 
inference in the field.  For example, NVIDIA Jetson is 
a DL platform designed for autonomous machines 
and other in-situ applications running at the edge.  
The Jetson platform includes Jetson modules 
(small, low size, weight, and power [SwaP] and 

Figure 3-2:  Parallelism for Large-Scale Distributed Training (Left:  Model Parallelism; Right:  Data Parallelism)  (Source:  Jordi Torres).
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high-performance system-on-module computers, 
complete with a CPU, GPU, memory, power  
management, and high-speed input/output 
[I/O] interfaces); the NVIDIA JetPack software 
development kit (SDK); and an entire ecosystem of 
compatible sensors, SDKs, services, and products 
to support application development.  Jetson also 
executes the same DL software and workflows used 
across other NVIDIA DL platforms, which enables 
these applications to scale up or down as required 
by deployment targets.  Together, these features 
make NVIDIA Jetson an ideal and unique platform 
for low-cost, low-SwaP, and high-performance 
DL inference on next-generation autonomous 
machines.

3.4  SPECIAL-PURPOSE HARDWARE

Just as GPUs originally evolved to enable fast 
rendering times with specialized hardware 
designed for rendering operations, these 
architectures are now evolving to enable 
increasingly faster DNN training and inference 
operations with specialized hardware.  For example, 
the recently announced NVIDIA Hopper GPU 
architecture includes NVIDIA’s latest Tensor Cores—
special-purpose hardware designed to accelerate 
the tensor operations underlying DNN training 
and inference.  The AMD CDNA2 GPU architecture 

includes similarly special-purpose hardware called 
Matrix Cores.  These specialized compute units 
provide high-performance reduced- and mixed-
precision operations, while direct support in native 
DL software frameworks via hardware-optimized 
libraries provides automatic implementation, 
reduces training times, and maintains accuracy.  
These same features (high-performance reduced- 
and mixed-precision operations and direct 
support in native DL software frameworks) provide 
low latency at high throughput and maximize 
utilization to deploy inference reliably across scales.

Whereas NVIDIA Tensor Cores and AMD Matrix 
Cores are specialized GPU components designed 
to accelerate core DL operations, the Google 
Tensor Processing Unit (TPU) and Intel Neural 
Compute Stick 2 (NCS2) are entire devices designed 
to accelerate DNN operations.  The Google TPU, 
introduced in 2016, is a custom, application-specific 
integrated circuit built specifically for ML and 
tailored for the Google TensorFlow ML software 
platform.  Google TPUs are available commercially 
via Google Cloud, where they can be connected 
to virtual machines and mixed with other types 
of hardware for DNN training.  Likewise, the Intel 
NCS2 is a dedicated hardware accelerator for DNN 
inference.  Packaged as a plug-and-play Universal 
Serial Bus thumb stick, this special-purpose 
device exploits Intel’s Neural Compute Engine 
and 16 programmable cores to accelerate DNN 
inference.  These devices are depicted in Figure 3-4.  
Unlike GPUs, which support compute-intensive 
applications beyond DL, these purpose-built 
devices are specifically designed to accelerate 
DNN operations and are not intended to support 
applications in other domains.

Similarly, vision processing units (VPUs) are a 
type of system-on-chip designed to acquire and 
process visual data.  VPUs typically target mobile 
applications and are optimized for small size and 
power efficiency.  For example, Intel’s Movidius 
Myriad X VPU [27] can interface with an image 
sensor, preprocess captured image data, and pass 
results through a pretrained DNN to compute 

Figure 3-3:  Commodity Hardware for Scalable DL (Source:  NVIDIA).
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predictions, all in a low-cost, low-SwaP design that 
balances computational performance and power 
efficiency.

Typical VPUs are not specifically designed for DNN 
operations; however, these processors excel at 
convolutions and other parallel operations due 
to single-instruction, multiple-data (SIMD) vector 
units.  Intel’s VPUs, for example, combine traditional 
CPU cores and SIMD units to accelerate the highly 
branching logic typical of DNNs and other 
computer vision algorithms.

Moreover, power-efficient designs make VPUs 
particularly well suited for embedded applications, 
such as those running on handheld or mobile 
devices that require long battery life.  Though 
less powerful than GPUs, VPUs are quite small; for 
example, Teledyne FLIR’s Firefly DL camera [28] 
offers on-camera, DNN-based decision-making 

without a host computer system, and it is designed 
specifically for low-SwaP-embedded applications, 
including mobile platforms.

Field-programmable gate arrays (FPGAs) offer  
an interesting middle ground between fully  
programmable processors and purpose-built,  
application-specific devices.  An FPGA is a hardware 
circuit with reprogrammable logic gates that 
enables users to create or program a custom circuit 
while the chip is deployed, not just during the 
design or fabrication phases.  This programmability 
contrasts with standard processors in which circuits 
are hard wired and cannot be reprogrammed.  
FPGAs with thousands of memory units enable 
circuits to implement a massively parallel 
computing model, much like GPUs.  Moreover, 
FPGAs are particularly well suited for embedded 
applications due to lower power requirements than 
either CPUs or GPUs.

Programming FPGA circuits typically requires  
significant expertise, however, and though  
some work has been done in this area (e.g., the  
DL Accelerator Unit [29]), implementing FPGAs for 
practical DL applications is relatively untested.  Lack 
of support and minimal community knowledge 
also suggest that FPGAs are not yet widely  
accessible as a commodity DL technology.

3.5  HARDWARE CONSIDERATIONS

Modern CPUs, GPUs, DL-specific devices, VPUs,  
and even FPGAs form the foundation for high- 
performance DL applications.  These processors 
execute and accelerate the core operations 
required to design, train, and deploy complex DNN 
models, typically through widely accessible DL 
software stacks featuring platform-specific libraries, 
flexible application programming interfaces (APIs), 
and end-to-end frameworks optimized for the  
underlying hardware architecture.

Each of these architectures offers certain advantages 
and suffers from certain disadvantages; therefore,  
hardware selection is a key consideration in 

Figure 3-4:  Special-Purpose Hardware for DL (Top:  Google TPU;  
Bottom:  Intel’s NCS2) (Source:  Google and Intel).
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planning an end-to-end DL system.  Potentially, 
significant differences in architecture between 
CPUs, GPUs, VPUs, and FPGAs make performance 
comparisons in terms of floating-point operations 
per second of little practical value, however.  
Comparing published inference time is a useful 
starting point, but inference time alone may 
be misleading.  For example, processor A may 
process a single frame faster than processor B, 
but processor B could process multiple frames in 
parallel and yield greater throughput.  As outlined 
in Figure 3-5, other considerations, including, cost, 
power consumption, physical size, and software 
support, may be a factor as well.

Testing is the only sure-fire method for comparing 
available architectures.  Prior to selecting the 
hardware for a DL-enabled system, practitioners 
should conduct various tests to determine the 
accuracy, performance, and efficiency requirements 
necessary to satisfy application constraints.  These 
parameters will determine the characteristics of the 
DL hardware onto which the required DNN can be 
successfully deployed.

The specific hardware components highlighted 
in this report represent only a small subset of the 
current hardware technologies supporting DL 
applications.  Interested readers are encouraged 
to consult the many available resources to learn 
more about these and other hardware technologies 
enabling modern, high-performance DL.

Figure 3-5:  Possible Tradeoffs When Considering Modern Processors 
for DL Applications (Source:  SURVICE Engineering Company). 
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SECTION

04
Massively parallel computing architectures provide 
significant performance gains when algorithms are 
designed to fully exploit their underlying hardware 
configuration.  While several implementations 
of these architectures are available, many share 
a common computational model:  data-level 
parallelism.  The SIMD model is one approach to 
data-level parallelism in which a single instruction 
stream executes across multiple data streams 
simultaneously.  To exploit the benefits of data-level 
parallelism, programmers must understand and 
use these SIMD units carefully and correctly, which 
is often a difficult and time-consuming task.

4.1  PROGRAMMING MODEL

As illustrated in Figure 4-1, SIMD architectures 
impose the constraint that all SIMD units 
associated with a single control unit execute the 
same instruction across a group of data elements.  
Most available SIMD architectures support wide 

memory-fetch operations that fill an entire SIMD 
vector unit in a single fetch.  These memory 
operations take several orders of magnitude longer 
to execute than a SIMD arithmetic operation; 
therefore, arranging data elements in a manner 
that minimizes memory fetches per arithmetic 
operation in turn maximizes computational 
throughput, leading to higher performing code.  
The parallel programming models for SIMD units 
underlying modern processor architectures thus 
dictate that computations be arranged differently 
than with traditional programming models.

Nearly all computing devices (from traditional 
workstation- and desktop-class computers to 
low-power tablets, smartphones, and other 
embedded systems) now include some form of 
SIMD unit.  Although not specifically designed 
for DNN operations, these units accelerate the 
highly parallel algorithms supporting modern DL 
techniques, and thus form the basis of low-cost, 

SOFTWARE

Figure 4-1:  SIMD Processor Architectures (Source:  SURVICE Engineering Company).
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low-SwaP hardware architectures supporting 
applications in edge computing, including 
autonomous platforms.

Despite the ubiquitous nature of these units, SIMD 
processors require algorithms and data structures 
radically different from those used in traditional 
software [30, 31], making it difficult for existing 
approaches to realize the performance promised by 
massively parallel computing.  As a result, software 
applications across many domains do not leverage 
SIMD units effectively, due in part to the challenges 
of developing efficient algorithms for these 
processors.  However, with careful consideration of 
the low-level architectural features, the SIMD units 
of modern processors offer potentially significant 
increases in runtime performance across the full 
range of computing platforms.

Modern parallel programming paradigms and 
compiler technologies help to address some 
difficulties imposed by massively parallel 
computing architectures.  For example, NVIDIA’s 
Compute Unified Device Architecture (CUDA) 
or Intel’s Single Program, Multiple Data (SPMD) 
Program compiler (ispc) offer variants of the C/
C++ programming language with extensions 
for SPMD programming.  In this model, a parallel 
program appears to be a regular serial program; 
however, the compiler and language runtime 
implement an execution model that runs several 
program instances in parallel on the underlying 
SIMD hardware.  When implemented correctly, 
SPMD programs frequently achieve performance 
improvements of about 2×–16× on modern CPUs 
and 10×–100× on modern GPUs—all without 
the difficulty of code using SIMD intrinsics.  These 
programming tools also support parallelization 
across the full range of processor architectures so 
that programs achieve performance portability 
by scaling with both core count and SIMD unit 
width—all without device-specific code paths.

Rarely are practitioners required to develop DL 
applications for massively parallel computing 
architectures at this low level, however.  Instead, 
popular DL libraries, APIs, SDKs, software 

frameworks, and product ecosystems leverage 
these technologies to exploit the computational 
power afforded by modern massively parallel 
computing architectures and expose DL functionality 
and workflows (from core operations to end-to-end 
DL solutions) to increase productivity, promote 
flexibility, and realize scalability for modern DL 
applications.

4.2  DL PROGRAMMING LIBRARIES

Processor manufacturers offer several hardware-
optimized software libraries for applications 
requiring highly customized DL components, as 
highlighted in Figure 4-2.  For example, NVIDIA 
CUDA-X provides core libraries delivering high 
performance for customized DL applications  
across various deployment targets (from  
resource-constrained embedded devices to big 
iron machines in high-performance computing 
[HPC] centers).  CUDA-X includes highly optimized 
libraries for common math, communication, and DL 
tasks, including GPU-accelerated DNN primitives 
(cuDNN), high-performance inference (TensorRT), 
and real-time streaming analytics and multisensor 
processing (DeepStream SDK), among others.  The 
CUDA-X libraries are themselves implemented 
using CUDA and exploit the specialized hardware 
components of NVIDIA GPUs, including NVIDIA 
Tensor Cores.

Similarly, AMD offers ROCm—an open software 
platform that enables developers to execute 
applications on CPUs, GPUs, or both.  ROCm 
supports a broad range of both AMD and non-AMD 
GPUs and is open to enable support for third-
party GPU and FPGA devices.  Moreover, ROCm 
encourages a write-once, run-anywhere (WORA) 
development model, allowing developers to write, 
test, and debug software applications in a device-
independent manner.  These applications can 
then be deployed across all supported systems 
at all supported scales.  Similar to CUDA-X, ROCm 
includes highly optimized libraries for common 
math, communication, and DL tasks, including 
accelerated DNN primitives (MIOpen) and the 
OpenVX computer vision API (MIVisionX), among 
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others.  Where possible, these libraries exploit the 
specialized hardware components of AMD GPUs, 
including AMD Matrix Cores.

Intel offers the oneAPI DL Framework Developer 
Toolkit (DLFD Kit)—a suite of libraries for building 
and optimizing DL applications targeting Intel 
CPUs, GPUs, or FPGAs.  The DLFD Kit includes the 
oneAPI DNN Library (oneDNN) and the oneAPI 
Collective Communications Library (oneCCL).  
oneDNN enables developers to create fast 
DNNs using performance-optimized building 
blocks and improves programmer productivity 
by exposing the same API across deployment 
targets.  oneCCL enables developers to train larger 
and deeper DNN models more quickly using 
optimized communication patterns to distribute 
training across multiple nodes.  It is implemented 
using lower-level communication middleware, 
including the Message Passing Interface (MPI), 
to support several different distributed-system 
interconnects, including InfiniBand and Ethernet.  
The DLFD Kit is part of Intel’s oneAPI initiative—an 
open, cross-industry, standards-based, unified, 
multiarchitecture, multivendor programming 

model that delivers a common developer 
experience across accelerator architectures [32].

4.3  DL FRAMEWORKS

Whereas these library collections provide low-level 
control for highly customized DL application 
development, processor manufacturers also 
provide higher-level frameworks that simplify 
common DL tasks, including DNN model 
development, training, and inference.  For 
example, the NVIDIA Train, Adapt, and Optimize 
(TAO) Toolkit implements transfer learning—a 
training approach in which features learned by an 
existing model are extracted or transferred to a 
new model.  Transfer learning is particularly useful 
when training data for a new application domain is 
scarce or insufficient but a large pool of data exists 
for a similar domain.  For example, developers can 
refine an existing object detection model trained 
with electro-optical (EO) imagery using limited 
quantities of infrared (IR) training data to detect 
objects of interest in IR imagery.  NVIDIA TAO hides 
the underlying complexity of transfer learning 
by exploiting NVIDIA’s pretrained DNN models, 

Figure 4-2:  Hardware-Optimized DL Libraries, APIs, SDKs, and Frameworks (Source:  NVIDIA).
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enabling practitioners to fine-tune these models for 
new domains with significantly less training data 
compared to training a DNN model from scratch.

The NVIDIA DL GPU Training System (DIGITS) 
is another high-level framework that hides the 
underlying complexity of DNN model development 
and training, specifically for computer vision tasks, 
such as image classification, object detection,  
and image segmentation.  DIGITS streamlines  
data management, performance monitoring,  
and results visualization, and even scales  
training across multi-GPU systems in an interactive, 
browser-based graphical user interface (GUI).   
With DIGITS, practitioners focus on designing and 
training effective DNNs rather than programming 
and debugging.

The Intel oneAPI AI Analytics Toolkit (AI Kit) similarly  
streamlines DL tasks for applications running 
on Intel processors.  AI Kit components are 
implemented using oneAPI libraries, including 
oneDNN, to exploit low-level hardware features 
for optimal performance.  Similar to NVIDIA TAO, 
Intel AI Kit provides access to pretrained models 
that have been optimized for Intel processors, 
and, once again, enables practitioners to focus on 
designing and training effective DNNs (here using 
a scriptable Python interface) rather than low-level 
programming and debugging.

Efficient DNN model training and DL application 
development workflows are critical to any 
DL solution’s long-term performance and 
maintainability.  NVIDIA TAO, NVIDIA Digits, 
and Intel AI Kit provide hardware-optimized 
components and streamlined workflows for model 
training and application development.  However, 
DL inference performance is as important, perhaps 
even more important, particularly for deployments 
targeting autonomous mobile platforms.  In these 
scenarios, split-second decisions based not only 
on accurate, correct, and robust DNN predictions 
but also fast predictions can mean the difference 
between mission success and mission failure.

Recall that during both training and inference, 
DNNs ingest data at their input layers, multiply 
these inputs by synaptic weights in their hidden 
layers, and finally output predictions.  Whereas 
DNN weights are updated to reflect and improve 
prediction accuracy during training, these weights 
are not adjusted during inference and are instead 
fixed at the time of deployment.  In this case, the 
simplest inference methods simply execute the 
DNN model in framework but disable synaptic 
weight updates.

This approach is far from optimal, however, 
particularly for real-time, latency-sensitive 
production deployments on small, inexpensive 
autonomous platforms.  In this context, approaches 
in which DNN computations are offloaded to the 
cloud attempt to address both latency and energy 
consumption—cloud-based processing potentially 
provides sufficient computation and storage 
resources for DNN operations, anytime and  
anywhere [33].  These approaches trade onboard 
processing latency and energy requirements 
for latency in data transfer and communications 
bandwidth; however, potentially significant 
amounts of data must be transferred to the  
cloud over wireless networks, typically over  
long distances.

To reduce total latency, data transfer latency 
must also be reduced.  Computation and storage 
resources could be deployed at the edge of 
mobile network, as in so-called edge clouds (e.g., 
cloud-based resources integrated in network base 
stations) [34].  Resources in edge clouds are still 
limited, but model-parallel inference suggests 
partial offloading as a viable alternative.  In this 
case, mobile devices process subsets of DNN layers 
using a combination of onboard and edge-cloud 
resources [35].

Even so, an autonomous platform’s mobility will 
itself impose challenges for continuity of service  
in any cloud-based processing infrastructure,  
edge-based or otherwise [36].  For example,  
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frequent connection failures seriously affect the 
edge devices’ quality of service (QoS); therefore, 
mobile scenarios require stable partition offloading 
schemes to ensure service continuity [37], which 
is itself a difficult problem and an area of active 
research.

Ideally, real-time, latency-sensitive production 
deployments on autonomous platforms would 
execute standalone, optimized DNN inference.  
Toward this end, processor manufacturers provide 
tools to minimize resource demands and maximize 
inference performance in these scenarios.

NVIDIA TensorRT is an SDK for high-performance 
DL inference that includes an inference optimizer 
and runtime designed to optimize trained 
models for the highest throughput and lowest 
latency while maintaining prediction accuracy.  
Optimizations include model quantization, layer 
and tensor fusion, optimized kernel selection, 
and multistream execution, among others.  These 
optimizations improve latency, throughput, and 
runtime efficiency across NVIDIA GPU architectures, 
application-specific SDKs, and DL problem 
domains.

TensorRT is part of NVIDIA’s DL Inference Platform, 
which combines the specialized hardware features 
of its GPU architectures with an optimized end-to-
end DL software stack for easy model deployment 
across application domains.  The inference platform 
also includes NVIDIA Triton Inference Server—an 
open-source software platform designed to 
simplify production DNN model deployment.  
Using NVIDIA Triton Inference Server, practitioners 
can deploy models trained using popular DL 
frameworks from local storage or the cloud to 
any CPU- or GPU-based infrastructure, including 
autonomous mobile platforms.

Similarly, Intel’s distribution of the OpenVINO 
toolkit provides a comprehensive, open-source 
solution for optimizing and deploying DL  
inference across domains, including computer 
vision.  Using OpenVINO, practitioners can again 

deploy models trained with popular frameworks 
that have been optimized to reduce resource 
demands and increase efficiency across Intel CPUs, 
GPUs, and computer vision accelerators.  DNN 
models optimized with OpenVINO thus maximize 
inference performance for deployment targets 
ranging from tablets, smartphones, and  
embedded processors at the edge to desktop  
PCs, high-performance workstations, and enterprise 
servers in large data centers and the cloud.

Other DL frameworks also use hardware-
accelerated libraries and APIs to deliver scalable, 
high-performance DNN model development, 
training, and deployment.  For example, TensorFlow 
is an end-to-end, open-source ML platform created 
by Google and popular among DL practitioners, 
especially for DNN training.  A flexible collection of 
tools and libraries, as well as extensive community 
resources, support model development, training, 
and deployment across hardware targets, including 
Google TPU and at-the-edge or embedded processors.  
In fact, TensorFlow includes TensorFlow Lite—a 
library supporting model deployment on mobile 
platforms and edge devices.  The TensorFlow API 
targets Python but also provides limited support for 
APIs in C/C++, Java, and several other languages.  
Only the Python API is guaranteed to be stable, 
however [38].  Beyond extensive language support, 
a wide range of libraries, extensions, models, 
datasets, and tools that integrate with or are built 
on top of TensorFlow support and accelerate 
common DL tasks and workflows.

PyTorch is also an open-source ML framework 
supporting DL application design, training, and 
deployment.  Created by Facebook’s AI Research 
Lab, PyTorch is focused largely on computer vision 
and NLP tasks.  Similar to TensorFlow, the primary 
PyTorch API is Python (with limited support for 
C++), and several other libraries and tools integrate 
with PyTorch as well.  Although PyTorch has 
experimental (beta) support for mobile devices, 
it is optimized for cloud-computing platforms; 
therefore, some features may not be available on 
embedded or mobile platforms.
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Similar to TensorFlow and PyTorch, MXNet is an 
open-source DL framework, sponsored by The 
Apache Software Foundation, that supports both 
fast prototyping and production deployment.  
The MXNet Python API called Gluon enables 
practitioners to switch between imperative mode 
for dynamic, flexible execution; symbolic mode for 
fast, optimized execution; and model deployment 
using different language bindings, including C++.  
MXNet also enables scalable, distributed training 
and performance optimization with multi-CPU 
or multi-GPU support.  Integration with Python, 
as well as support for other languages including 
C++ and Java, enables a smooth transition from 
Python-based training to optimized deployment 
for production.  Additionally, a collection of libraries 
and tools extends MXNet to enable applications in 
computer vision, NLP, and several other domains.

4.4  SOFTWARE CONSIDERATIONS

The DL frameworks provided by hardware  
manufactures, third-party software vendors, and 
the open-source community build directly on low-
level, platform-specific libraries and APIs to enable 
DL application development.  These frameworks 

offer building blocks for designing, training, and 
deploying models, typically through a high-level 
programming interface or GUIs and other user-
friendly interaction modalities.

Each of these frameworks provides functionality 
necessary to develop an end-to-end DL system.  
Differences in support for the various underlying 
processor architectures, including degree of 
optimization for any particular architecture, 
suggest that vendor-specific frameworks provide 
better performance for DNN training and inference 
operations.  However, as with the hardware 
architectures themselves, other considerations, 
including actual DL functionality, cost, licensing, 
open- vs. closed-source implementation, and level 
of vendor or community support, may become 
factors as well.

The specific software libraries and frameworks 
highlighted in this report represent only a small 
subset of the currently available DL ecosystems.  
Interested readers are encouraged to consult the 
many available resources to learn more about these 
and other DL libraries, APIs, SDKs, and frameworks.
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Developments in DL hardware and software are 
exceptionally fast paced, accelerated not only by 
major processor manufacturers but also by DL 
projects across academia, industry, and the wider 
open-source community.  The array of algorithms, 
libraries, APIs, SDKs, and frameworks is extensive 
and growing rapidly, and the domains in which DL 
finds successful application is equally extensive 
and growing at least as rapidly.  Perhaps among 
these, nowhere is DL more revolutionary than for 
autonomous platforms.

5.1  AUTONOMOUS SYSTEMS

In his 2017 report, “Artificial Intelligence and  
Autonomy:  Opportunities and Challenges,” Andrew 
Ilachinski characterizes an autonomous system as:

[A] system that can independently 
compose and select among alternative 
courses of action to accomplish 
goals based on its knowledge and 
understanding of the world; of itself; and 
of the local, dynamic context.  Unlike 
automated systems, autonomous systems 
must be able to respond to situations that 
are not pre-programmed or anticipated 
prior to their deployment.  In short, 
autonomous systems are inherently, and 
irreducibly, artificially intelligent robots [39].

Of particular importance in this characterization is 
a system’s ability to respond to situations that are 
not preprogrammed.  Recall that, historically, AI 
systems require explicitly programmed algorithms 

to handle each anticipated situation and response, 
which necessarily limits the scope of potential 
scenarios to make the explicit logic handling each 
scenario tractable.  In contrast, DL approaches 
avoid explicit programming and instead expose 
an AI system to a wide variety of scenarios with 
known correct actions during training.  The system 
learns correct behaviors (even for scenarios not 
explicitly encountered in training) and performs 
appropriately during deployment.

5.2  CONVOLUTIONAL NEURAL NETWORKS

With modern DL techniques, an autonomous 
system can learn and then execute correct 
responses based on visual inputs.  Recall that 
massively parallel computing architectures (and 
modern GPUs, in particular) have transformed  
AI/ML with DNNs, leading to significant advances 
in supervised representation learning tasks.  For 
example, in object detection, machine accuracy 
now rivals human capabilities [5].  Recognition 
accuracy is accomplished by augmenting 
traditional DNNs operating on image data with 
convolutional layers that learn complex visual 
features (i.e., with CNNs).

CNNs capture patterns in multidimensional spaces 
quite efficiently, making CNNs especially well 
suited for image-based data (though they are used 
to process other types of data as well).  Specifically, 
convolutional layers in CNNs apply convolution 
kernels of a fixed size to each pixel in the input 
layer.  A convolution kernel is a filter or matrix that 
encodes the weights applied to a pixel’s nearest 

APPLICATIONS
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neighbors.  Each filter has different values and 
extracts different features from the input image.  
These weights are learned by the network during 
training.  The output of each convolutional layer 
is a set of images, so-called convolutional images 
or feature maps, to which the kernel has been 
applied.  The number and size of the feature maps 
vary according to the kernel size and network 
topology, but together the convolutional layers 
detect a hierarchy of visual patterns.  For example, 
lower layers produce feature maps for vertical 
and horizontal edges, corners, and other simple 
patterns, while deeper layers detect more complex 
patterns, such as grids, circles, and other geometric 
shapes.  Layer by layer, the network detects 
complicated objects, such as cars, houses, trees, 
and people, by building complex representations 
from simpler features.

Most CNNs use pooling layers to gradually reduce 
the size of their feature maps while retaining 
the most important features.  For example, max-
pooling retains the maximum value in a patch of 
pixels.  Using a pooling layer of size 2, max-pooling 
extracts 2×2-pixel patches from the feature maps of 
the preceding layer and retains the highest value, 
as illustrated in Figure 5-1.  This operation halves 

the size of the maps but retains the most relevant 
features.  Pooling layers enable CNNs to generalize 
their capabilities and reduce sensitivity to the 
location of objects within images.

Ultimately, this process is applied repeatedly, layer 
by layer, until feature maps comprise a single pixel.  
The collection of single-pixel outputs is encoded 
as a one-dimensional matrix that represents, 
numerically, the prominent image features and 
serves as input to a fully connected DNN that 
performs the target task (e.g., image classification 
or object detection).

As illustrated in Figure 5-2, modern CNNs achieve 
superhuman performance in image classification 
[18].  With high accuracy in common computer 
vision tasks, CNNs are now powering the next 
generation of autonomous mobile platforms.  For 
example, Bojarski et al. [40] demonstrate a CNN 
controlling a car on various ground surfaces.  
Likewise, TrailNet enables MAVs to navigate dense 
forest trails [41], demonstrating autonomous flights 
up to 1 km.

These and other autonomous systems require 
accurate, robust, and high-performance computer 

20 30

112 37
2 x 2 Max-Pool

12 30

34 37

8 2

112 25

20 0

70 4

12 0

100 12

Figure 5-1:  Pooling Layers in a CNN (Source:  SURVICE Engineering Company).
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vision techniques that support a broad range 
of tasks, including autonomous operation.  An 
example autonomous platform architecture is 
depicted in Figure 5-3.  Here, machines sense and 
perceive their environment with computer vision 
to extract meaningful information from the real 
world, ultimately classifying, detecting, locating, 
or tracking objects within that environment 
[42].  When combined with hardware and 
software components for decision and action, 

these technologies realize a fully autonomous 
system—one that achieves a set of goals in a 
changing environment by gathering information 
about its environment without human control or 
intervention [43].

5.3  MODERN COMPUTER VISION

As outlined in Figure 5-4, core computer vision 
techniques for machine perception include 

Figure 5-2:  Image Classification on ImageNet (Source:  SURVICE Engineering Company).

Figure 5-3:  Example Autonomous System Architecture (Source:  BlackBerry QNX).
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image classification, object detection, and image 
segmentation.  Image classification determines or 
classifies objects in an image or video frame and 
predicts an image label.  Classification models are 
trained using large datasets comprising thousands 
of ground-truth images and object labels relevant 
to the anticipated deployment scenarios.  As with 
all supervised DL techniques, prediction accuracy 
depends in part on the training data used—
increasingly more diverse, training data tends to 
result in higher-accuracy predictions.

Object detection extends classification not only to 
identify but also to localize objects within an image 
or video frame.  Detection models typically output 
rectangular bounding boxes around detected 
objects that indicate or bound their locations 
within an image.  Similar to image classifiers, object 
detectors are trained to identify and locate objects 
relevant to the anticipated deployment scenarios; 
moreover, prediction accuracy depends, in part, on 
the size and diversity of the training dataset.

Finally, image segmentation extends classification 
to locate objects precisely by assigning a label 
to every pixel in an image or video frame—
segmentation implements per-pixel classification.  
In semantic segmentation, pixels with the same 
label compose the same type of object or share 
similar characteristics, such as color, texture, or 

material.  Here, multiple objects of the same class 
make up a single semantic entity.  In contrast, 
instance segmentation treats multiple objects of 
the same class as distinct instances (e.g., individual 
cars on a busy roadway) and each object is assigned 
a unique instance label.  Panoptic segmentation 
combines the concepts of both semantic and 
instance segmentation by assigning two labels 
to every pixel:  a semantic label and an instance 
identifier.  Pixels thus belong to the same class and 
instance (i.e., the same object) only when their 
respective semantic and instance labels agree.

Segmentation models are the most widely 
applicable and versatile models because they 
provide the highest information content and 
they are common in applications that require 
high precision, such as medical imaging, remote 
sensing, or autonomous navigation.  However, 
they are also the most expensive to develop, train, 
and execute because they require ground-truth 
training data with per-pixel labels and generating 
these datasets is a laborious and often tedious 
process.  Although flexible, segmentations models 
may be unnecessarily complex or expensive for 
machine perception tasks in which simpler image 
classification or object detection models will suffice 
or for application domains that do not necessarily 
require precise, per-pixel labels.

Figure 5-4:  Computer Vision Techniques for Machine Perception (From Left to Right:  Classification, Object Detection, Semantic Segmentation, 
and Instance Segmentation) (Source:  SURVICE Engineering Company).
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5.4  EXAMPLE DoD USE CASES

Together with the commodity hardware and 
software components accelerating DL, modern 
computer vision techniques provide the basis for 
autonomous platforms in several applications 
across the U.S. Department of Defense (DoD).  
For example, the U.S. Navy and Marine Corps 
Small Tactical UAS Program Office (PMA-263) 
envisions rapid-deploy autonomous systems that 
are modular, open-architecture aerial platforms 
equipped with advanced sensors and payloads to 
resupply Warfighters on the front line.  The PMA-
263 Tactical Resupply Unmanned Aircraft System 
(TRUAS) effort seeks a UAS capable of transporting 
at least 60 lb of cargo in various configurations 
commonly found in U.S. Marine resupply 
operations [44].  Vision-based autonomous 
navigation powered by DL will enable small, 
inexpensive aerial platforms, such as SURVICE 
Engineering’s TRV-150 Tactical Resupply UAS 
depicted in Figure 5-5, to support assured logistics 
resupply, even in GPS-denied regions, to satisfy the 
TRUAS program requirements.

Similarly, the Artificial Intelligence for Maneuver 
and Mobility Essential Research Program endeavors 
to reduce soldier distractions on the battlefield 
through the integration of autonomous systems 
in U.S. Army vehicles, including the construction 
of a robotic combat vehicle that operates 
independently of the main vehicle.  The recent 
advances in commodity DL technologies enable 
narrow AI, or the ability to complete very specific 
tasks consistently, which is a first step necessary 
to realize autonomous teammates for soldiers.  
Continued development of these technologies will 
enable future combat vehicles that fully sense and 
perceive their environment and thereby realize 
an autonomous system that is able to analyze 
complex, adversarial environments and develop 
possible courses of action [45].

These technologies also serve as proof of concept 
for applications at the local, state, and federal 
levels.  For example, vision-based autonomous 

navigation will allow law enforcement to 
track fleeing individuals through dense urban 
environments.  Likewise, autonomous drones 
will track and capture unauthorized UASs using 
similar DL methods, while, prior to infiltration by 
manned forces, intelligent MAVs will navigate and 
map dense urban environments, potentially even 
building interiors.

5.5  APPLICATION CONSIDERATIONS

The size and complexity of practical DNNs is 
growing rapidly as researchers seek increasingly 
higher levels of accuracy in computer vision tasks.  
Large and complex DNNs require significant 
resources (i.e., computation, storage, and energy) 
to repeatedly execute inference operations.  
Small, inexpensive autonomous platforms are 
inherently resource limited; therefore machine-
perception algorithms with lower computational 
cost (i.e., smaller, less complex DNNs) typically 
perform best on such platforms.  For example, 
practitioners might consider solutions based on 
image classification or object detection for real-

Figure 5-5:  SURVICE Engineering’s TRV-150 Tactical Resupply UAS 
(Source:  U.S. Navy).  
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time systems operating at the tactical edge, while 
solutions based on semantic, instance, or panoptic 
segmentation, which enable potentially more 
detailed analyses, are a better match for systems 
operating in resource-rich environments.

As with the underlying hardware and software 
components, DNN-based computer vision 
techniques provide certain advantages and suffer 
from certain disadvantages; therefore, matching 
these techniques both to the problem at hand and 
to the target platform constraints is a critical step in 
planning an end-to-end DL system.  Here, testing is 
the only sure-fire method for ensuring an algorithm 
satisfies application constraints—first, in solving 
the problem, and second, in executing efficiently 
using available resources.  Practitioners should 
once again conduct various tests to determine 
the accuracy, performance, and efficiency 
requirements necessary to satisfy application 
constraints.  These parameters will determine the 
characteristics of the machine vision techniques 
appropriate to the task at hand.

Modern computer vision techniques provide 
a foundation for a wide range of tracking and 
navigation applications that are otherwise out 
of reach without modern, high-performance DL.  
These techniques deliver best-in-class performance 
and accuracy for the low-level visual perception 
tasks that drive higher-level applications of 
autonomy.

The specific techniques highlighted in this 
report represent only a small subset of the DL 
technologies enabling autonomy on small, 
inexpensive platforms, however.  Interested readers 
are encouraged to consult the many available 
resources to learn more about these and other 
applications of DL in autonomy.
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Despite success across several application domains, 
DL is not without challenges.  For example, a DNN’s 
effectiveness is, in part, dependent on both the 
quantity and quality of the data with which it is 
trained.  This data shapes a model’s ability to learn 
critical features and, as a result, must be carefully 
and deliberately curated for DL applications.

Typical DNNs require sufficient data (sometimes 
more than 10 million samples) to not only identify 
features on their own but to do so reliably.  In his 
paper “Deep Learning:  A Critical Appraisal” [46], 
Gary Marcus notes that many experts consider 
humans to be far more efficient in learning complex 
rules than DL systems [47–49].  He writes, “Deep 
learning currently lacks a mechanism for learning 
abstractions through explicit, verbal definition, and 
works best when there are thousands, millions or 
even billions of training examples…In problems 
where data are limited, deep learning often is not 
an ideal solution.”

At the same time, training data must provide 
sufficient variation in the critical features to prevent 
overfitting.  Recall that overfitting is the problem 
in which a model effectively memorizes features 
in training samples but is unable to generalize 
these features to new, previously unseen, data 
(i.e., prediction works well for the training set but 
not for samples gathered during inference in a 
real-world environment).  However, data quality is 
typically a task-specific measure; therefore, curating 
high-quality data often requires domain-specific 
knowledge.

In contrast, sources of erroneous data are common:  
errors in data collection; erroneous, irrelevant, or 
incomplete measurements; incorrect or irrelevant 
content; or even statistical outliers and duplicate 
samples.  DL algorithms are similarly vulnerable to 
adversarial samples—inputs crafted by adversaries 
with the intent of causing prediction failure [50, 
51].  Often, erroneous or adversarial samples are 
easily detected and ignored by human learners, but 
DL models are highly sensitive to the training data 
they ingest, as erroneous or adversarial samples 
can induce potentially catastrophic errors in DNN 
prediction.

DL practitioners also encounter a lack of 
transparency, or the so-called black box problem, 
where even DL experts do not yet fully understand 
exactly why DNNs make certain predictions.  
Whereas predictions made by rule-based software 
can be traced to previous decision blocks, DL 
models operate differently, effectively sifting 
through millions of samples to discover patterns 
and correlations among them—relationships that 
often remain hidden, even from human experts.  
Current DL systems have millions or even billions 
of parameters identifiable to model developers not 
in terms of well-known, well-understood software 
development constructs, such as structured 
programming control blocks, variables, and so 
forth, but only in terms of their location within 
incredibly complex networks of artificial neurons 
and synaptic weights [46]. 

CHALLENGES
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At the same time, lack of transparency complicates 
practitioners’ understanding of why DNNs fail.  
Accurate, correct, and robust predictions are as 
important as prediction performance and even 
more important in mission-critical scenarios, 
where split-second decisions based not just on fast 
predictions but on accurate, correct, and robust 
predictions can mean the difference between 
success and failure.  In this context, Marcus 
observes, “The transparency issue, as yet unsolved, 
is a potential liability when using deep learning for 
problem domains … in which human users might 
like to understand how a given system made a 
given decision” [46].

The specific challenges discussed in this report 
are just a few of the many-facing contemporary 
DL techniques, and the DL community is working 
hard to uncover, understand, and overcome these 
challenges.  Interested readers are encouraged to 
consult the many available resources to learn about 
these and other challenges facing modern DL  
techniques.
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DL combines recent developments in high-
performance DNNs, massively parallel computing 
architectures, and hardware-optimized software 
components with large collections of real-world 
training data to support autonomy for small, 
inexpensive platforms.

•	 DNNs.  Significant advances in computational 
performance have ignited a resurgence in 
AI/ML applications, particularly those based 
on DL.  DL is a class of AI/ML algorithms that 
solve the representation learning problem 
by building complex representations from 
simpler concepts [3].  Modern DL approaches 
exploit DNNs—multilayered neural networks 
composed of artificial neurons taking several 
inputs and producing a single output—to 
support a diverse range of applications (from 
computer vision and speech recognition to 
medical imaging and combat support).

•	 Massively Parallel Computing.  Massively 
parallel computing architectures (modern 
GPUs, in particular) offer a compelling platform 
to satisfy the demands of compute intensive 
applications, including AI/ML applications.  
These architectures boast tens, hundreds, and 
thousands of processing cores that provide a 
massively parallel computational environment 
at a fraction of the cost of traditional HPC 
systems.  With the mapping of DNNs to modern 
GPUs [4], DNNs now achieve breakthrough 
performance in the modern computer vision 
tasks that form the basis of autonomous 
mobile platforms.

•	 Hardware-Optimized Software.  Massively 
parallel computing architectures typically 
dictate that computations be arranged 
differently than with traditional processors.  
While modern parallel programming 
paradigms and compiler technologies address 
some of the difficulties, rarely are practitioners 
required to develop DL applications at a low 
level.  Instead, popular DL libraries, APIs, SDKs, 
and frameworks exploit these architectures 
effectively, while exposing higher-level DL 
functionality and workflows that increase 
productivity; promote flexibility; and enable 
modern, high-performance, and scalable DL 
applications.

These state-of-the-art AI/ML hardware and 
software technologies enable fast, accurate,  
and robust DL applications and, together, deliver 
best-in-class performance and accuracy for the 
low-level tasks that drive higher-level applications 
of autonomy.

07 SUMMARY
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Interested readers are encouraged to consult the many 
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state-of-the-art report (SOAR).  The scholarly articles, product 
websites, and news stories cited throughout this SOAR 
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