
Software Analvsis and
Test Technologies

Contract Number F30602-89-C-0082

(Data & Analysis Center for Software)

February 1992

Prepared for:

Rome Laboratory
RLlC3CB

525 Brooks Road
Griffiss AFB, NY 13441-4505

Prepared by:

Kaman Sciences Corporation
P.O. Box 120

Utica, NY 13503-0120

and

Center for Digital Systems Research
Research Triangle Institute

Research Triangle Park, NC 27709

Data & Analysis Center fo r Software
P.O. Box 120
U-tica, NY 13503-0120

The Data &Analysis Center for Software (DACS) is a Department of Defense (DoD) Information Analysis Center (IAC), administratively managed by
the Defense Technical Information Center (DTIC) under the DoD IAC Program. The DACS is technically managed by Rome Laboratory (RL). Kaman
Sciences Coporation manages and operates the DACS, serving as a source for current, readily available data and information concerning software
engineering and software technology.

SOFTWARE ANALYSIS AND

TEST TECHNOLOGIES

Contract Number F30602-89-C-0082
(Data & Analysis Center for Software)

February 1992

Prepared for:

Rome Laboratory
RUC3C

Griffiss AFB, NY 1 3441 -5700

Prepared by:

Kaman Sciences Corporation
258 Genesee Street

Utica, New York 13502-4627

and

Center for Digital Systems Research
Research Triangle Institute

Research Triangle Park, North Carolina 27709

REPORT-DOCUMENTATION PAGE

1 1 February 1992 I N/A

F O ~ A ~ ~ W O P M N ~ . urn-OW
-.

(Software Analysis and Test Technologies

~ ~ l ~ l l w ~ ~ ~ a ~ ~ ~ m n ~ i k . w ~ ~ ~ ~ ~ ~ ~ - . = m q r r r r) u ~ ~ ~
m h l - - . ~ - kl- ~ - r m r r r r m r m - r - ~ ~ - -
c - m - m m - m - - r - F - - - 1 a 1 f i - ~ - ~ - n = . - - - - - -
r . r r ~ r r u - a m - - i X m .

I. AGENCY use MY ~ u - I ZREKRTMTE I I. R ~ O R T ~ F A N O OATES rim

/ RTI and RSC Staff

I Sponsoring Org. Monitoring Org.
Defense Technical I ~ f o . C t r . Rome Laboratory

7. PEWQHUIQ cmun~nau HIYUS)AMAC~~ESSCESI

Kaman Sciences Corpora t ion Center f o r Digi ta l Systems
258 Genesee S t r ee t Research
Utica, NY 13502 Research Triangle I n s t i t u t e

Research Triangle Park, NC

I DTIC/AI', Cameron Sta t ion
.4lexandria, VA 22304

4. P E F I M R U ~ ~ ORGIWUTION
REPOCCT PUUaER

N/A

RLlC3C.2.
Gr i f f i s s AFB, NY 13441

I Availabie from: Data & Analysis Center f o r Software
258 Genesee S t ree t

I Approved f o r p b l i c release

I Distribution Unlimited

1

~ % ~ C T (V ~ A . * I ~ . O ~)

This report e m n e s current software analysis and t e s t technology and needs that
should be f i l l e d by future technology. Analysis and t e s t i ng of software includes a l l
l i f e cycle a c t i v i t i e s conducted to verify and val idate the software product. These
ac tLvi t i es a r e zde r t aken with the goal of assuring the robu tnes s of the development
process and the i n t eg r i t y of the developed product throughout the l i f e cycle.
Successful s ta teg ies fo r analysis and t e s t must provide decision support information
t o the acquis i t ion manager, the cer t i fy ing agent, and the f i e l d engineer. There is a
need fo r quant i ta t ive empirical data to demonstrate when and where various techniques

' a r e most successful. There is a need fo r integrated developinent environments which
include analysis and t e s t support. This report a lso considers improvements i n
analysis and t e s t required t o support trends i n formal methods, object oriented
development, pa r a l l e l programming, and system engineering.

14. S-CTTERIQ
Software t e s t , software analysis , software measurement, software
process maturity, software tools , object-oriented design, p a r a l l e l

Unclassified I In
I I a w - 2 5 k - 2 2 wsw ~ 1 - 7 1 0 ~ 3 m - c ~ Y u - - ~

-1

1% Y ' U PAGES
80

l a . ~ R ~ - ~

a w r r r ~ ~ ~ l l u ASSWT
processing, sys tern engineering

10. SECUAITY CUSSLFLU~W 17. SECUPATY U Y Y = A ~ ~
Of ASTR*CT

la. SLCUTPPI QLSSLF-
OC R E M

Unclassified
OC TmS CAGE

Unclassified

TABLE OF CONTENTS

1 . INTRODUCTION ..

... 2 . CURRENTTECHNOLOGY
.. 2.1 Maturity of Current Technology

........... 2.2 Maturity of the Industry in Using Analysis and Test Technology

.......................... 3 . ANALYSIS AND TEST PROCESS IMPROVEMENT
3.1 Improving Early Life Cycle Analysis and Simulation Capabilities
3.2 Software Measurement and Life Cycle Analysis and Test Activities -.,
3.3 Strategies fcr Efficie~tfy Allccating Test Effort ...

4 . SOFTWARE ANALYSIS AND TEST TOOLS ...
.. 4.1 Development Support Tools
.. 4.2 Maintenance Support Tools

4.3 Knowledge-Based Tool Support fcr Software Analysis and Test

5 . INTEGRATION WITH ADVANCED SOFTWARE
DEVELOPMENT TECHNOLOGY ..
5.1 Formal Methods ..
5.2 Object-Oriented Deve1opmer:t ..
5.3 Analysis and Test of Pa.ra.ilel Software ..
5.4 System Engineering Issues ...

6 . SUMMARY AND RECOMMENDATIONS ...

7 . REFERENCES ...

Appendix A: ACRONYMS ...

................... Appendix B: SOFTWARE ANALYSIS AND TEST TOOLS

Appendix C- STANDARDS RELATED TO SOFTWARE
ANALYSIS AND TEST ..

... Appendix D: ADDITIONAL READING

iil

LIST OF TABLES

................... Table 4-1 : Examples of Life-Cycle Validation Techniques and Tools
..................... Table 5-1 : Some Factors in Analysis and Test of Parallel Software

Table 5-2: Analysis and Test Activities for Parallel Software

LIST OF FIGURES

Figure 1-1:
Figure 1-2:
Figure 2-1 :
Figure 2-2:
Figure 3-1 :
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:

...................... Critical Components of Quality Software Development
................................. Effect of Maintainability and Supportability Costs

Software Analysis and Test Techniques ...
........... Software Analysis and Test Activities at each Maturity Level

............................. Levels of Software Measurement and Assessment
................... Overview of Software Measurement. Analysis. and Test

... A RiskICriticality Driven Strategy
.. A Fault Coverage Driven Strategy

........................ Data in Support of a Fault Coverage Driven Strategy
........... Data in Support of a Fault Coverage Driven Strategy (cont.)

corroborated by the 1987 survey on testing practices and trends [3].

Safety and Security Evaluation

I threat analysis
I preliminary hazards analysis

fault-nee analysis
rn fi lure modes & effects criticality analysis
r system hazard cross-check analysis

cause-effect graphing
r operating support hazard analysis

Static and Dynamic Analyses

w formal verification
w structure analysis

inspections, reviews, walkthroughs

system or acceptance testing
(functions, performances, stress)

requirements- based functional testing
statistical or random testing
integration testing (top down, bottom up

or big bang)
strucuual testing (path. branch. and

statement testing)
mutation testing
back-to-back testing
error seeding

Risk halysis

= risk identification checklists
decision driver analysis
assumption analysis

m decision tree
B network analysis
m compound risk analysis
m requirements traceability
B process mammy assessment
rn objective re!ese criteria

ha.dware/software codesign

Measurement and Assessment

quality goal specification and assessment
design and code complexity analysis

a fault classification analysis
B root cause analysis for defect prevention

markov, semi-markov, and analytic system
reliability mode%g

petri net analysis of performance
discrete event perfonnance simulation

a standardized & application specific performance
benchmarking

a operational failure characterization
a mcdeling of software reliability

growth duiIr.g test
a cost modeling
a queueing models

Figure 2-1 : Software Analysis and Test Techniques

I MATURITY LEVEL

. . -
in process I hcmlve process I continuo u i
improvemcnl m ~ ~ ~ r e m c n t s process I

1
"initial"

2 I 3 I 4 5

Figure 2-2: Software Analysis and Test Activities at each Maturity Level

"40 orderly progrcss 1 Rcpcatable lcvel I Advanced tech- I Initinted. comprc- I Foundation for

*Variable debugging
efforts by program-
rn ers

User acceptance
testing

"Optimizing" "Reoeatabie" I "Deiined" "Manaqed"

Ufe-cycIe test
and analysis
strategies based
on effectiveness
and efficiency
evaluations

Root cause
analysis for
defect prevention

Refined,
comprehensive
stopping rules

Tracking of test
and analysis
effectiveness and
efficiency

Use of objective,
quantitative
stopping rules

Fault classification

use of design for
validation
techniques

I
Quality assprance
group

End of life-cycle
testing

Possibly design and
code revlews

Test and analysis
eifon tracjring and
identtficadon of
resource
requirements

Defined role and
procedures for
V&V

Development V&V plan .aady of in
life cycle

Design and code
lnspectlons

Independent unR
test

Problem report
tracldng

3. ANALYSIS AND TEST PROCESS IMPROVEMENT
Cost-effective strategies are criiical to improving the software analysis and test process. These

strategies should include early life cycle analysis and simulation, involve complementary techniques, be
based on quality measurement, and efficiently allocate analysis and test effort [lo]. For example, the
Cleanroom approach which combines proofs of correctness with statistical quality control has had
demonstrated success [I I]. There are a number of issues remaining, however, with respect to improving
the software analysis and test process. These include improving early life cycle analysis and simulation
capabilities, incorporating software product and process measurement into life cycle analysis and test
activities, and refining strategies for efficiently allocating test effort.

3.1 Improving Early Life Cycle Analysis and Simulation Capabilities
Software is an integral part of complex real-time embedded systems. Data has shown that tracing

a problem or bug late in the software life cycle is more costly [12]. Wih this in mind, it becomes
increasingly important to identify problems, whether they are requirements, design, performance,
reliability, cost, or complexity related, early in the software development life cycle. Early life cycle
analysis and test techniques can be used to assist developers in making system design decisions (e.g.,
hardware and software tradeoffs, performance and reliablity tradeoffs).

Systems can be analyzed in many different ways. One approach is to separate functional
requirements and quality attributes. Functional requirements define what the system is supposed to do,
how it is expected to operate, and whether or not the system properly performs the functions specified.
Quality attributes are divided into a variety of dependability categories, such as performance, reliability,
safety, fault tolerance, security, testability, maintainability, and supportability [13].

Analyzirlg functional requirements and quality attributes prior to actually building the system
requires the development of models. Requirements must translate into models in consistent,
understandable, and standardized ways. Structured Design and Analysis techniques incorporated into
Computer Aided Software Engineering (CASE) tools assist developers in graphically modeling system
functional requirements and interactions at a high level which can be extended to include very minute,
low-level process interaction and design information. What is lacking are methods and tools for
additional integration of these functional models with models that are used to demonstrate and make
tradeoffs among quality requirements [14]. For example, a need for safety-critical applications is to
relate software fault-tree models to system performance models to functional design models. Once
models are constructed, they must be "validated" if they are going to provide any useful information.
Model validation suites used to test the model at this stage of development need to be expanded into
test cases for each stage of the development process.

3.2 Software Measurement and Life Cycle Analysis and Test Activities
The integration of measurement and assessment with verification activities is necessary for

building software with an acceptable quality level. Software measurement is defined to be the activity
where attributes in both the software product and process can be quantified for specifying the level of
quality of the software product, the productivity and effectiveness of the software process, or any
specific goal defined in the early phases of the software process. Some progress has been made in the
development and use of system, product, process, and acquisition metriis. More is needed [I 51.

Three levels of measurement exist as shown in Figure 3-1. The baseline or descriptive level
provides measures of industry trends across many projects such as failure rate and fault density [16].
These measures are helpful when comparing where an organization stands in achieving product quality
or understanding product quality across application domains. The next level of measurement provides
decision support within a project. The use of objective stopping rules during analysis and test [17, 181 is
an example of this level of measurement. Tools, such as the Assistant for Specifying the Quality of
Software (ASQS), the Quality Evaluation System (QLIES), the Tailoring an Ada Measurement
Environment (TAME) system, and AMADEUS (an automated measurement and emprical analysis
system), are emerging to support this type of measurement.

The third level of measurement deals with the assessment of method effectiveness. This
assessment involves software engineering experimentation [19, 41 and provides technology transfer
across projects. There are four general types of studies in use for addressing the effectiveness of
current tools and techniques. These are descriptive evaluations, case studies, formal experiments, and
quasi-experiments.

Figure 3-1 : Levels of Software Measurement and Assessment

Software Measurement
and Assessment

J

Descriptive evaluation studies use an objective approach to gather data and a qualitative approach
to evaluate it [20]. An example of a descriptive evaluation is a study that sought to evaluate automated
software cost-estimation models. 'This study evaluated seven cost-estimation models used by the US
Defense Department software comrnunrty. Each model's capabilities were graded, from having full
capability to having minimal capability [21].

Case or multiplecase studies are empirical inquires that investigate a phenomenon in its real-life
context. These studies are used most effectively to address methods applied across the Ile cycle on
actual projects [22]. A joint NASA-LangleyIFAA study is using this approach for addressing the
effectiveness of methods used in compliance with the DO-178A guidelines [23, 241. One benefit to this
approach is that it provides a realistic context for interpreting the results. A drawback is that it takes a
long time to obtain meaningful results - a single study requires that you engineer a complete software
system.

Formal experiments use formal statistical designs that let researchers make quantitative
inferences about an observation [25]. For example, formal experiments have been used successfully to
compare the effectiveness of test techniques [5, 261. The findings of one formal experiment gave the
researchers reason to be more optimistic about the effectiveness of reading code to find software errors.

Baseline Decision
Support

Method
Effectiveness
and Efficiency

Establish industry
baseline

Describe what
was observed

(SEIMahry
Level 3)

I

Feedback during
current projed

a Devetop desaip
tive repons for
management
decision making

(SEI Maturiry
k e l 4)

Improvement in
strategy for
future projects

Comparative
analysis of
dierent
devdopment
and verificafion
strategies

a Influence
standards and
guidelines

(SEI Mamiry
LNcl5)

Quasi-experiments are field investigations of, for example, the use of a new method or language
(271. They differ from formal experiments in that what you want to observe cannot be clearly delineated
from other observations. Quasi-experiments d i e r from case studies in that the researcher is actively
manipulating a change in the development process that did not exist before. An example is the study of
a flight-dynamics simulator that was developed in both Fortran and Ada [28].

Figure 3-1 shows a proposed mapping of these levels to the DoD SEI software maturity
f ramework.

Figure 3-2 provides an integrated overview of software measurement and analysis and test.
Progress needs to be made at each of the three levels of software measurement described above. At
the first level, more data (e.g., test effectiveness, coverage, effort, failure rate, fault density, and Mean
Time Between Failure) needs to be collected to define an industry baseline. This baseline can provide
insight, for example, into the relationship between analysis and test practices and achieved product
quality.

Figure 3-2: Overview of Software Measurement, Analysis, and Test

At the second level of measurement, two activities are important. First, additional use and
evaluation of decision support tools (e.g., ASQS, QLIES, AMADEUS, TAME) for DoD mission-critical
application software development needs to occur. Second, much of the current software analysis and
test technology development efforts focus on the software developer's perspective. Additional decision
support measures and tools that address analysis and test from an acquisition specialist, certrfying
agent, and field engineer's perspective are needed. To gain confidence that the software is of quality, a
four-fold framework has been discussed:

evaluation of analysis and test process

-

ANALYSIS
AND

TEST ACTIVITIES

e.g..

Static and dynamic
. analyses

Safety and secuirty
evaluation

Risk analyses

-
QUALITY GOALS

e.g..

Performance
Reliability
Safety
Faun Tolerance
Security
Maintainabiiitv
Testability
Supportability

MEASUREMENT
1 AND

measurement of end-product quality

m -

credentials of the developing organization

ASSESSMENT
e.g..

Design and d e
mrnplexrty

Test effectiveness
Test effort
Test coverage
Test cost
Failure rate
Fault density
MTBF

past performance of the developing organization

The challenge is to define what information about the software analysis and test activities and end-
product quality is needed for the independent evaluator to be convinced that the delivered product is
robust.

'The method effectiveness level of measurement addresses the view that by using good methods
throughout the manufacturing process a quality software product will resutt. This is the view taken by
DoD-2167A [29] and RTCA DO-1 78A [30] where documents at key points in the process are evaluated
to see what the detailed processes are and how well the defined process is being followed. This level of

measurement builds on the decision support level of measurement. Specifically, the instrumentation of
product quality measurement at analysis and test process milestones provides data for evaluating
method effectiveness, as shown in Figure 3-1. These measures are used to gauge if additional analysis
and test activities are warranted and raise the technical problem of specifying objective stopping rules
for different methods. Note that this view represents a longitudinal or strategy oriented perspective on
method effectiveness.

3.3 Strategies for Efficiently Allocating Test Effort
In the long term, insights gained from method effectiveness studies will provide better strategies

for efficiently allocating analysis and test effort. Two strategies are currently being discussed. These
are risk-driven, as shown in Figure 3-3, and fault coverage driven, as shown in Figure 3-4. Both these
strategies fit within the quality goal specification and assessment framework shown in Figure 3-2.

In a risk driven strategy, such as that described in Boehm (311 and in Sherer [32], the goal is to
allocate software analysis and test effort in a manner which demonstrates the absence of certain types
of risks. For example, a preliminary hazard analysis may be conducted for identifying what hazards are
to be avoided. This hazard analysis data will factor into design considerations for the software. It will
also factor into the development of functional test cases which are then used to demonstrate that the
hazard cannot occur. This type of strategy is sometimes referred to as a software safety analysis and
can be carried forward through the life cycle, as is proposed in MIL-STD 8828 [33]. Two issues remain
before this strategy can be maximally effective. First, data on the frequency, type, and severity of
hazards and how these hazards can be invoked by software specification, design, and code faults are
typically unavailable. The second issue is how to effectively complement the safety analysis techniques
with other non-functionally based black-box dynamic testing techniques (e.g., usage-based statistical
testing techniques) and white-box dynamic techniques (e.g., data or control flow guided techniques).

The goal of a fault coverage driven strategy is to cover multiple classes of faults by
complementing techniques. This strategy is the same as a risk-driven strategy if the fault classes are
based on criieria related to a hazardous outcome (e.g., critical, serious, nonessential). If the classes are
based on fault types (e.g., logic, data, interface, etc.), then this strategy results in a different allocation of
test effort.

The fault coverage driven strategy is illustrated using data taken from the software test technique
experiment summarized in [5]. The goal is to allocate effort by complementing test techniques so that
the overlap in the faults found by these techniques is minimized. Figure 3-5 shows percent
effectiveness for three dynamic and three static test techniques. Percent effectiveness is an average
measure of the number of faults found by that technique divided by the total known faults in the
software. Figure 3-6 shows this same data when the techniques are applied in pairs. Assuming that a
fault class is of size 1, these data show that a meaningful fault coverage strategy is to combine the use
of a static analysis technique with a dynamic test technique. Although the data are limited, this study
suggests that combinations of static and dynamic strategies other than that chosen in the Cleanroom
approach may be effective. However, two issues remain before a fault coverage driven strategy can be
maximally effective. First, a framework for fault classification is needed. Second, additional data on
which test techniques are better at finding which types of faults is needed.

..-..---... ? SoftwarelSystem Functional, Safety
and Security Requirements

Figure 33: A RiskICriticality Driven Strategy

1
4

I

1

Potentia.1

Software Ha.za.rds

~ri,t;cal
Con~ponents or

Operations

Softwa.re

-
Allocation

of Safety and
Design Security

Decisions Evaluation
Effort

Key:

{A) faults removed by technique A

{B) faults removed by technique B

{C) faults removed by technique C

{D) faults removed by technique D

UI : set of all faults in software product

Q : universe of faults

Figure 3-4: A Fault Coverage Driven Strategy

Branch

DYNAMIC

Random Functional ! Code
i Review

TEST TECHNlQLlE

CSC

Error Sbucture
And Anomaly Analyses

Analyses

Figure 3-5: Data in Support of a Fault Coverage Driven Strategy

Key:

8: Branch
C: Cods

Review
E: Erru 6

Anmaty
F: Func(lond
R: Random
S: Struelure

** +: 2 slatic

Figure 3-6: Data in Support of a Fault Coverage Driven Strategy (cont.)

4. SOFTWARE ANALYSIS AND TEST TOOLS
Computer Aided Software Engineering (CASE) tools now exist for all phases of the software life

cycle, but particularly for the support of coding and debugging. Over the last few years, tools that
support both the earliest stages of the software life cycle and the software maintenance process have
become increasingly important. This is because a substantial body of empirical evidence shows that
significant cost savings and higher software quality can be achieved if these two phases of the software
life cycle can be improved.

Software analysis and test also benefit from existing tools and techniques, particularly in the areas
of test case generation and test coverage analyzers. Table 4-1 shows some of the tools and methods
that are available to support validation and verification activities during different parts of the life cycle.

Table 4-1 : Examples of I-ife-Cycle Validation Techniques and Tools

With the advent of electronic capture of software specification and design information, it has
become easier to develop specialized software analysis and test tools. Parts of the software life cycle
which could benefit from the development of additional tools include early life cycle analysis and

Tec hnlques
Hequirements t valuation:
Error tracking
Reviews, walkthroughs, and audits
Completeness, consistency checking
Design Evaluation:
Error tracking
Reviews, walkthroughs, and audits
Design metrics
Implementation:
Debugging
Compiletime-analyses
Code metrics
Test and Analysis
Statk Analysls

Syntaxlstyle
Languagelproject standards
Reviews, walkthroughs, inspections,

and audits
Structurelinterfaceldata flow analysis
Code metrics

Formal verification
Dynamic Analysis
Statlc Analysls

Statement, branch, basis,
path coverage

Statistical testing
Functional testing
Mutation analysis
Symbolic execution
Run-time assertions
Performance measurements
Regression testing

ALL PHASES:
Requirements-to-test tracking
Configuration management

Tools

requirements-to-test-tracker
CASUSA
CASUSA

requirements-to-test-tracker
CASUSD, consistency checkers
McCabelACT

Symbolic Debuggers
Compiler options
AMS, MlTS

RXVP80, DECISCA, LDRA Testbed
Log iscope
RXVP80, DECISCA, Logiscope

RXVP80, DECISCA, Logiscope
McCabelACT, AMS, MITS, Logiscope,
LDRA Testbed
Theorem provers

RXVP80, DECIPCA, McCabeIACT,
Logiscope, LDRA Testbed, etc.
random number generating routine
requirements-to-test-tracker
MOTHRA
custom hardwarelsoftware simulators
ATVS, assertion translators
DECIPCA, etc.
DEC/TM, etc.

requirements-to-test-tracker
DECICMS, DECIMMS, etc.

software maintenance activlies. The development of knowledge based support for software analysis and
test practice would also be of benefit.

4.1 Development Support Tools
Formal or semi-formal representations of a software system provide the basis for an emerging

class of analysis tools, particularly in the earlier stages of the software life cycle. Formal representations
include specifcation languages with a rigorously defined set of semantics. Z [34], VDM 1351 and HOL
(361 are three well-known examples.

Semi-formal representations include, for example, the Structured AnalysisJStrudured Design
methods supported by the majority of commercial CASE tools. Others include various object-oriented
design methodologies and design tools and methodobgies for the support of Ada.

Formal methods are not widely used, mostly because of perceptions of difficulty in their use.
However, certain high reliability or safety-critical systems have benefitted from the use of formal
methods. Semi-formal methods enpy a far wider following. Hence, the remainder of this discussion will
be confined to semi-formal representations.

Integrated tool environments are a significant ernerging trend. Such environments allow
developers to build models using one type of modeling tool and perform another type of analysis on the
model using another tool with little or no extra effort. An example of a hybrid toolset which performs this
type of integration is a CASE tool, which describes a system in terms of a static structured analysis
model, and then uses another related tool which can "execute" a real-time simulation of the modeled
system by simply reading the static model from the CASE tool [6].

An additional benefit of an integrated environment is that all of the relevant design information can
be contained in a central location. This makes the software maintenance process more cost-effective
because all of the needed information is readily available. These environments are still evolving, and it
will be some time before their benefits are fully realized.

Another example of an integrated software development environment is the Software Life Cycle
Support Environment (SLCSE) [37] developed by the Rome Laboratory. This environment provides
many of the support tools needed for developing and maintaining large embedded Ada programs.

simulators, system architecture modeling tools, and software performance evaluation tools can
assist developers in predicting the performance, reliability and behavior characteristics of a system by
executing a "model" of a proposed system long before it is ever built. These simulators allow designers
to change various parameters of a system and simulate the effect of the parametric modifications on the
rest of the system and can assist in the development of software test cases for use later in the life
cycle. Tools of this nature have been built around commercial CASE tools. Statemate and Teamwork
both provide the ability to execute specifications developed within their respective environments. In
addition, Teamwork has a performance evaluation capability. These types of analysis tools can help find
design errors at a time in the life cycle when they are less expensive to correct.

Researchers at Research Triangle Institute (RTI) used an integrated toolset consisting of a CASE
tool (that used structured analysis and real-time system specification techniques described by Hately
[38]), along with an integrated performance modeling tool, to assist factory automation design engineers
illustrate and identify performance bottlenecks and component interaction [39]. A benefit of using the
tightly coupled toolset was that a change to the static structured analysis model automatically became
part of the real-time simulation model as well. By reviewing information from the simulation model,
researchers were able to evaluate the "correctness" of certain system activlies by observing the
simulation behavior, and when a problem was encountered in the simulation, the toolset forced changes
to be made to the structured analysis model in order for the change to appear in the real-time simulation
model. The models stayed completely consistent, as opposed to what might have occurred if the two
tools required separate model forms (one for real-time simulation and one for structured analysis) in
order to operate.

Test case generation and coverage analysis tools are also emerging which permit the identification
of test cases based on a high-level specification of the system. For example, "T" [40], a test case
generation tool, provides a specification language from which a minimal set of test cases can be
derived. Without specialized tools, testing is a haphazard activrty which is difficult to control. Testing
tools allow test personnel to quantify and control the test process.

4.2 Maintenance Support Tools
Certain long-lived software systems continue to incur substantial costs after they have been

fielded. These costs can represent a significant part of the total system l i e cycle cost. Software system
modifications and improvements occur throughout the life cycle. Modifications are usually carried out by
personnel who were not involved in the development of the software system. As a result, they are often
faced with inadequate information about many aspects of the system's behavior and design.

To provide maintenance personnel with adequate information to maintain the system, new tools
are being developed. These include tools for visualizing the structure of code and tools for navigating
through a large volume of design information. For example, the Air Force is constructing a hypermedia
system to provide maintenance personnel with a mechanism for navigating through a large set of
system documents as part of the Modular Embedded Computer Software (MECS) for the Advanced
Avionics Systems (MECS) program. The DoD is developing the Computer Aided Logistics System
(CALS) to automate the collection and dissemination of design information throughout the life cycle.

Other tools which support the maintenance phase for complex software include high-fidelity
hardwarelsoftware simulators and run-time data collection and monitoring systems which provide
information that can be used to diagnose faults.

More research-oriented tools include visualization systems which provide a graphical
representation of the system's behavior. 'This could include the behavior of individual programs or more
global views of system operation in the case of a distributed system.

Perhaps the most important issue for the support of the maintenance portion of the software life
cycle relates to determining what kinds of design information should be carried through to the
maintenance phase and how this information should be represented for the best use by maintenance
personnel. The experimentation needed to achieve the third level of measurement described in Section
3.2, the assessment of method effectiveness, should be used to explore this issue. Current approaches
based on wriien documentation leave much to be desired.

4.3 Knowledge-Based Tool Support for Software Analysis and Test
The use of Artificial Intelligence (Al) technology is a current trend in the automation of software

engineering technology. Knowledge-based tools, a type of Al technology, would also prove beneficial for
the software test engineer. Knowledge-based tools should incorporate rules for testing gleaned from
experimentation and the most effective testers. By thereby enhancing the ability of the average tester to
approximate the abilities of the best, this type of tool support would reduce the variability in
analystltester productivity and effectiveness. This support should include:

a Guidance for selecting test techniques based on detecting desired faults classes

Building libraries of hazards and rules which check against these hazards

a Providing fault classes, rates, and severiiy as input for software risk analysis methods (For
example, see Sherer [32])

a Procedural guidance, for example, statistical sampling support, data flow guided testing support

a Visualization tools for exploring the input domain and analysis tools for spanningobtaining
coverage of this domain

An example of a knowledge-based system for supporting software engineering is the Knowledge-
Based Software Assistant (KBSA) [41]. Mid-term goals for the KBSA included automatic test generation.
Knowledge based support was planned to assist in the generation of tests "based on specific test
knowledge about the user and the application domain," "to increase the density of tests in areas of most
relevance," and to track "a mixture of user-defined test cases, test cases generated by uniform,
automatic procedures, and those generated from specific domain and design knowledge."

The long term goals of the KBSA were much more revolutionary. The KBSA uses formal
reasoning and formal specification throughout the life cycle. By use of a rapid prototyping style, the
developer can ensure that a system meets the user needs. As each lower level of abstraction is
developed (for example, preliminary designs, detailed designs, code), a formal proof is developed that
ensures implementations and specifications are equivalent. These derivations are stored so a change to
the specification can automatically generate the needed changes at lower levels. Wih this strong
emphasis on requirements, prototyping, and formal verification, the need for testing as a separate phase
at the end of development is much diminished. The long-term KBSA goal for testing was that testing

would disappear as a separate activity. Testing was planned to be redistributed into the validation and
development activities.

The actual development of the KBSA emphasized this long-term goal of integrating testing with
other system validation activities. KBSA, then, is a demonstration of this report's central thesis, that
testing should be considered just one of many analysis activities conducted throughout the life cycle.
Knowledge-based testing tools, even if they do not all promote as radical a paradigm change as KBSA,
can support a development style consistent with modern notions about analysis and test as a
preventive, systemsoriented activity.

INTEGRATION WITH ADVANCED SOFlWARE DEVELOPMENT
TECHNOLOGY
The technical challenge in advancing the state of software analysis and test techniques is made

more difficult by advances in software development technology. Analysis and test techniques need not
only to support traditional practices, but also to meet concerns that will develop as these advanced
methods and architectures become more widely used. At present, the advanced development
technobgies of interest are formal methods, object-oriented development, artificial intelligence, and
parallel and distributed systems. The growing importance and complexity of software also requires that
software analysis and test deal with system engineering issues. These technologies are intenelated.
However, the folbwing sections examine the key issues for each technology area.

5.1 Formal Methods
Due to the increased application of software in high integrity applications and the development of

associated standards (e.g., UK Defense Ministry MOD Standards 00-55 and 00-56), there has been a
resurgence of interest in the use of formal methods of program specification and verification. Formal
methods are techniques for rigorous reasoning about software properties. In the strictest view, formal
methods require axiomatic reasoning and proofs of correctness based on the constructs and rules of
mathematical logic. According to [42], a formal development effort consists of four steps:

1. Formalization of the set of assumptions characterizing the intended operating environment.
2. Formal characterization of the system specification.

3. Formalization of an implementation, where an implementation is a decomposition of the
specification to a more detailed specification.

4. Proof that the implementation satisfies the specification under the assumptions for the operating
environment.

While the benefits of formal specifications are being increasingly recognized and several languages
exist, proofs of correctness have not yet proven practical for most systems. A strategy under
development at NASA Langley Research Center addresses the use of formal methods by considering
levels of its use [43], the lowest level being the development of a formal specification and the highest
level being the use of a formal theorem prover. Thus, a critical issue is how to complement the use of
formal methods, particularly formal verification techniques, with other less rigorous but perhaps more
practical analysis and test techniques. This critical issue needs to be addressed in the context of
defining a software process model that integrates the use of formal methods with other software analysis
and test techniques.

Some examples of this integration are the Microelectronics and Computer Technology
Corporation's (MCC's) definition and development of the SPECTRA environment, which facilitates
communication between the developers of the formal models and the system user [44]; Mannering and
Cohen's [45] work on integrating formal methods within a total analysis framework; and Mill's Cleanroom
approach [I 11.

Key to defining this new software process model is the identification of the role that formal
methods should play and the means of interfacing formal methods to other techniques. The appropriate
role depends on which life cycle activities would benefit the most from formal methods and which
system properties are better veriiied by proof than by testing. For example, securiiy, safety, and
temporal properties are not easily tested. As more parallel and distributed systems are developed, the
temporal behavior becomes more complex and less amenable to testing. However, temporal logics show
promise for proving properties of concurrency [46], [47], [a], [49]. The means of interfacing formal
methods to other techniques may require the development of a formal semantics for those techniques. It
would then be possible to reason about the correctness of their representation of system properties vis a
vis a formal specification of the system.

5.2 Object-Oriented Development
The term objectariented applies to many areas of software development technology. These areas

include object-oriented specification, requirements analysis, design techniques, applications,
programming, languages, and test strategies, to name a few. An objectariented approach to software
development can best be defined as the development of software systems structured as collections of
Abstract Data Types (ADTs). Unlike traditional process-centered software development efforts, object-

oriented development centers around the representation, relationship, and manipulation of objects which
"contain" both data and the methods (operations) which define how objects can be manipulated. One of
the key differences in applying object-oriented methods to software problems is that the focus of the
development effort shifts toward constructing more tangible product-centered objects and away from the
abstract process-centered concepts.

In a recent study, a project conducted by Research Triangle Institute in conjunction with a team of
students and a professor from a graduate-level software engineering class1 addressed how object-
oriented design approaches differ from processcentered solutions [50]. The project, nicknamed
DAGOBAH, involved the development of space vehicle guidance and engine control software [51] that
had previously been developed using extended structured analysis [38]. In attempting to use object-
oriented methods for the DAGOBAH project, it was discovered that though the actual problem was a
good application for object-oriented programming, researchers had to change their thinking about the
entire problem and its solution.

The most formidable stumbling block encountered during the object-oriented development was
that the specification was written with "processes" not "objects" in mind. One difficutty the DAGOBAH
development team encountered was the inability to reuse non-object-oriented external interface routines
that already existed in code libraries. It is important to note that although some object-oriented
languages (like C++) allow the inclusion of code written in other non-object-oriented languages which
"solves" the problem of interfacing and using non-object-oriented code libraries with object-oriented
code, such "flexibility" violates the whole purpose of developing an object-oriented solution and
complicates the validation of the solution by mixing two separate approachs. With this in mind, the team
decided that in order to achieve a completely object-oriented solution, all external interface routines
needed to be rewritten as object-oriented routines. This problem, while of minor scale for this
application, indicates that there would be considerable effort in the translation of larger scale non-
objected-oriented applications and tested code libraries. Object-oriented translations of existing
applications and code libraries will have to be validated against the original non-object-oriented versions.

In general, the decomposition of a system using an object-oriented approach becomes, in the
most elementary sense, a collection of abstract objects. Detailed information about the objects (their
data and procedures) tends not to be available at the design stage and in fact is deferred almost to the
coding stage because the hiding of information that is private to the object is considered the desired
behavior of an object. Object-oriented programming is, for the most part, a bottom-up, iterative
development effort opposed to the process-centered top-down approach [52].

Though the object-oriented paradigm is dramatically different than the more typical process-
centered paradigms, many early life cycle analysis techniques can still be effective because certain
aspects of object-oriented software development can be categorized into DoD-2167A-like phases, but
the techniques applied at each phase need to be modified to map to the iterative object-oriented
paradigm.

Requirements analysis, for example, is a technique that is important for both process-centered
and object-oriented system development. If a requirement is not specified accurately and completely, an
object (in the case of object-oriented) or a function (if process-centered) will not fulfill its desired
purpose. One technique used in object-oriented system development to assist in the identification and
behavior of objects [53] is rapid-prototyping. Through these prototypes, objects, their behavior, and
relationships with other objects can be identified and this information can then be folded back into the
specification to provide more detailed requirements.

In an object-oriented system, analysis of objects, their relationship to other objects and the entire
interaction of the system is similar to the process interaction analysis performed on process-centered
systems. While quality assessment techniques such as performance modeling, reliability modeling,
safety analysis, and security analysis can be used early in the life cycle of object-oriented systems,
these analysis techniques need to be modified to address the analysis of objects, as opposed to
functions found in traditional processes-centered solutions.

In object-oriented approaches, encapsulation and information hiding cause us to modify our testing
strategy. Object-oriented encapsulation impacts the way test designers view software testing. For

'The students, from Duke University, were enrolled in a software engineering course taught at the University of North Caro-
lina by a UNC professor.

example, in an object-oriented application, a basic testable unit is no longer a subprogram. In fact in
terms of object-oriented software, the smallest basic testable unit is a class (a collection of objects, an
abstract data type). Because subprograms do not exist in the traditional sense in object-oriented
applications, test designers need to modify strategies for integration testing. Test designers will be
dealing with larger program units (e.g., a class) and will need to be concerned with two separate aspects
of a class, the operation (the capabilrty and external interface) and the method (the hidden internal
algorithm that carries out the "operation"). Due to the fact that classes can "inherit" characteristics from
other classes, the issue of testing some components as they are developed may not provide us with any
useful information until the system is fully integrated. Only through careful planning and design will
testers be able to avoid the "big-bang" integration effect. Information hiding also impacts the type of
testing we can use on object-oriented programs. Objects tend to be "black-boxes" which carefully hide
information from other parts of the system. Test strategies will need to emphasize the creation of test
cases which explore the boundaries of the objects they are testing [54]. Structural (white-box) testing
strategies tend to be difficult to apply since much of the internal working objects are not visible outside
the object itself.

As objectoriented libraries are developed and objects are reused, test techniques need to be
applied to both the OM and the new objects in the system. Extensive testing of proven objects does not
"excuse" an object from testing when it is used in a new system. Object-oriented systems comprised of
many objects are difficult to test because every object in the system has the potential of being removed,
replaced, or modified. This requires the development of strategies and tools for evolving test plans,
procedures, and test cases during the frequent changes that may result from the highly iterative nature
of object-oriented development.

5.3 Analysis and Test of Parallel Software
The development of software for parallel and distributed architectures presents analysis and test

issues of greater magnitude and complexity than that of sequential software. While optimal performance
and tolerance to faults are generally required of parallel systems, the effects of intertask communication
and the match between inherent application task granularity and hardware architecture structure make it
difficult to achieve these goals. lntertask communication and the need to match task granulariiy to
architecture structure cause the parallel software engineering paradigm to differ from the existing
software engineering paradigms in two primary ways. First, significantly more emphasis needs to be
placed on the consideration of performance, reliability, and fault tolerance early in the life cycle during
specification and design analysis activities. Second, the development and evaluation of parallel software
requires the consideration of system and hardware issues to an extent that parallel applications
programmers deal with issues in the parallel domain that are typically dealt with by systems
programmers in sequential software development efforts.

Although parallel software analysis activities need to be conducted with knowledge both about the
target architecture and the system reliability and performance requirements, many of the language-
extension approaches that are in use today (e.g., Linda) ease part of the parallel software development
burden by isolating the programmer from the target architecture. Fully utilizing these architectures,
however, still requires an intimate knowledge of the target hardware's structure and behavior.
Depending on software developers for this knowledge may not be realistic, particularly when using
multiple target architectures. Fortunately, this knowledge does not have to be directly available to the
parallel algorithm designers, software analysts, and programmers. It can be encapsulated in models,
incorporated in language features, or hidden in expert systems and refined automatically as the system
is developed. The use of complementary modeling and simulation methods to determine performance
and reliability trade-offs for various algoriihrn decompositions, even at a low fidelity, provides a method
for evaluating parallel software with respect to system requirements and hardware characteristics early
in the life cycle.

The information contained in Table 5-1 shows some of the factors related to producing high-
performance, high-quality parallel software at minimal cost. Even where these characteristics also relate
to nondistributed systems, the problems in producing parallel software are more complex. For example,
I10 rates affect both the performance of a sequential and parallel system. In parallel systems, however,
I10 rates are of concern for both the interfaces between components within the system and the interface
between the system and the external environment; only the latter concern exists for sequential systems.
Language features are drivers of the quality of both sequential and parallel system. The ability to
concisely express an algorithm in high-level terms relating to the application domain supports the

development of higher quality software. The compiler should encapsulate machine-level details such as
the allocation of variables to memory locations and registers. How to hide such details is a much more
contentious issue for parallel systems. Of course, many of the factors in Table 5-1 apply only to parallel
systems.

Table 5-1: Some Factors in Analysis and Test of Parallel Software

Effective parallel applications depend on more than providing the basic computational capacity. It
is also not sufficient to break the algorithms into somewhat uniformly sized tasks and map the tasks to
resources within the architecture. Effective decompositions are based on trade-offs between
architectures and what has been termed "algotecture". That is, algorithms may need to be restructured
to enhance opportunities for parallelism. Often the algorithm structure coupled with data or parameter
dependencies may render a particular decomposition ineffective. For example, a mission planning
algoriihm may be broken down into a large number of independent integer programming problems. If
these tasks were mapped to separate resources, some tasks would complete before others due to the
specific data supplied to them. If all tasks must complete before other processors can start, the
resources associated with all tasks, except the last one to complete, will remain idle until the last one
completes. Similarly, decomposing search algorithms typically allocates different portions of a search
tree to different processors. If one process determines that particular portions of a search can be
terminated, that information may need to be communicated to the other tasks. Until the other tasks
receive that information, they are likely to be performing unnecessary work. In both of the cases, the
approach to parallel decomposition may result in poor utilization of resources, and thus in poor
performance. Identifying the occurrence of structures with poor resource utilization is the first step in
finding improvements.

Performance

Algorithm characteristics

Granularity of parallelism
of problem and machine

Degree to which machine
and problem granularity
matches

I10 rates and limitations

Data distribution,
organization and
management

Degree of data and/or
function migration

Fault detection, isolation,
and recovery overhead

Programming language
featureslcompiler
optimization

Run-time environment
SuPPort

Quality

Design robustness

Fault detection, isolation,
and recovery strategy

Test effectiveness for
concurrent, asynchronous,
and real-time conditions

Data flow and control
flow characteristics (e.g.,
complexity, data, volume,
and distribution)

Processor workload
utilization and balance

Amount of memory,
processor, and
interconnection resource
contention activity

Probability of deadlock,
race, and starvation
conditions

Reproducibility of testing

Language features

Cost

Portability of Code

Amount of life cycle tool
support

Extent of code reuse

Amount of automated
code generation

Whether the application is
new or existing

Degree to which machine
and problem granularity
matches

Problem size

Number of processors

Effectiveness and
efficiency of life cycle

activities

Tool and technique
maturity

The design of parallel software systems typically requires greater awareness of hardware details.
One facet of the problem of matching software and hardware characteristics is the comparison of
process and machine granularities for parallel applications. The level of parallelism in the algorithm
required for a system may imply that vectorized computations are desirable for a specific set of
calculations. If the hardware for the target architecture does not offer these facilities and their emulation
cannot utilize the whole architecture, the resutting system will have periods of under-use while the
vectors are processed. On the other hand, several complex and sparsely interacting execution
processes would be practically unable to efficiently use most vector machines. In both of these cases,
the hardware facilities must restrict the design space of the system's software to obtain the maximum
system performance.

More than general knowledge about the type of hardware architecture is needed for the analysis
of parallel software systems. Specific details, such as the number of processors, their memory
capacities, and their interconnection topology, constrain the design space for replicating software tasks
and assigning these tasks to processors, thus imposing restrictions on the grain size of each task.
Typical goals of the assignment of software tasks to processors are to achieve performance or to
maintain degraded performance levels upon processor failure through static and dynamic load balancing.
Optimizing this assignment strategy requires knowledge about system reliability, performance, and fautt-
tolerant requirements and the target parallel architecture.

A mixed relationship exists between parallelism and fault tolerance. Parallelism implies well
demarcated synchronization points, thus enabling the establishment of recovery points. Increased
parallelism also implies smaller grain tasks, permitting incorporation of redundancy at very granular
levels and frequent state recovery if needed. The effectiveness of fautt-tolerant parallel programs cannot
be ascertained, however, without considering the additional cost of the supporting hardware. For
example, providing many parallel tasks with multiple recovery points while maintaining timelines may
require special hardware, such as content addressable memory.

The analysis and test process is more difficutt in parallel software. The interaction of multiple
execution streams increases the frequency and complexity of the class of errors known as
synchronization or "timing" errors. The asynchronous or loosely synchronous execution streams often
found in parallel sottware can exhibit deadlock, race, overflow, and starvation conditions, causing failures
to propagate from execution stream to execution stream. Research has shown that addressing these
types of errors in distributed, message-passing systems can be a non-trivial task [55]. Also, shared
memory systems are particularly vulnerable to the situation in which a failed memory device or software
element can contaminate a properly executing stream by feeding it with incorrect data. Testing is also
complicated by execution-order variations among interacting software processes. Reproducibility is
generally not a problem in the behavior of sequential software, but parallel software may not be as
cooperative. Repeatability of execution order is not generally guaranteed in loosely coupled
architectures. This feature dramatically increases the possible number of software states and actions,
making their testing much more difficult.

Review of these factors suggests that a cohesive framework for the design, development, analysis
and test of parallel software within a total systems context is needed if both near and long-term insight
into parallel software engineering problems is to emerge. Table 5-2 identifies a list of activities that could
be conducted at each life cycle phase within such a framework. Actual system developments should
select appropriate analysis and test activities as part of upfront life cycle design based on system
characteristics.

Due to being on the forefront of advanced computing technology, procedures for simultaneously
addressing fautt tolerance and performance requirements for sparallel architectures are not well
established. These procedures should rely on achieving complementary completeness through diverse
models. That is, they should integrate and reconcile the diverse points of view necessary for parallel
system design and evaluation, including fautt-tolerant behavior, reliability, and performance. Reconciling
and combining these diverse points of view is a present challenge.

Table 5-2: Analysis and Test Activities for Parallel Software

5.4 System Engineering Issues
The increasing visibilrty and importance of software in modern systems, the more stringent system

requirements being levied against software applications as a result, and the more complex nature of
ever larger software applications necessitate addressing software issues in a system context. Systems
engineering is a rapidly growing discipline for attacking these issues. After the very early life cycle
phases, a system is partitioned into various component parts, some of which may be hardware and
others software. Traditionally, these component subsystems are developed independently with very little
attempt to keep an overall systems perspective. Systems engineering approaches provide this systems
perspective, with consequent changes in the software life cycle and development methodobgies. With
such radical changes in approach and viewpoint, the demands on software analysis and test
technologies are quite different.

Since parallel systems, by definition, are composed of several interacting componments, many of
the analysis and test issues discussed in Section 5.3 are concrete illustrations of more general system
engineering problems. For example, the decomposition of a software application to take best advantage
of the hardware structure is a concern in both parallel processing and systems engineering. In fact, one
could consider the design of parallel systems to be a subfield of systems engineering.

Mission requirements establish criteria for various system characteristics such as functionalrty,
reliability, testability, maintainability, computing performance, and life cycle cost. For complex systems,
the design trade-offs between these attributes are not confined to isolated design areas such as
hardware architecture, application algorithm structure, application software structure, operating systems

PHASE
Specification
and
Design

Implement

Test

ANALYSIS ACTIVITIES
Algorithm Specification and Analysis
- Data Distribution and Flow
- Control Flow
- Mapping to Architecture Models
System Attribute Trade-off Analysis
- Reliability vs. Performance
- Task Replication Requirements
Design Simulations or Walkthroughs
- Number of Processes Required
- Processor Utilization
- Workload Balancing
- Memory, Processor, Interconnection,

Resource Allocation, and Contention
- Operation Sequencing
Object-Oriented Analysis
Manual and Automated Code Generation
Software Reuse Analysis
Static Analysis of Code
- Walkthroughs
- Settuse and Order of Operations
- Timing and Memory Requirements
Symbolic Debugging
Functional and Usage Testing
Failure Mode Testing
- Deadlock
- Race
- Starvation
Reconfiguration
Timing and Latency
Operation Sequencing and Memory
Addressing

architecture, or communications system architecture. Design decisions are dependent upon the effects
they have on other system elements. Moreover, localized optimization of each system element does not,
in general, lead to global optimization of system design. For example, the computing performance for
application software optimized for a given hardware architecture and a given algorithm for a specified
function may not meet requirements. Another algorithm for the same specified function and given
architecture could lead to an application software structure that results in far better computing
performance.

The trade-offs needed to develop an optimal system generally cannot be carried out solely by an
algorithm designer, a hardware architect, or a software architect. Consequently, system design will
involve multidisciplinary teams. Each team member must analyze the effects of design decisions on their
portion of the design.

This multidisciplinary nature of system engineering introduces new requirements for analysis and
test technology. There is a critical need for automated tools that manage the design complexity and
provide appropriate design analysis and metrics across the various design disciplines. Reliability and
performance are two areas of concern to system engineers where additional automated analysis support
would be particularly valuable.

To satisfy extremely high reliablity requirements, software must be developed that can both detect
and correct hardware, software, and hardware-induced software faults. Some techniques have already
been applied to these areas in both sequential and multiprocessor architectures, including the use of
recovery blocks, check-pointing, atomic-actions, assertion-checking, and multi-version programming.
Unfortunately, fault detection and correction are handled to different extents and to varying degrees of
transparency in today's multiprocessor development tools. Many of the multiprocessing software support
tools understand the limitations of their target architectures, particularly the constraints on the number of
processors that can be made available, but fail to take advantage in applying them to provide fault
tolerance. Multi-processor architectures should be able to utilize their innate redundancy by
reconfiguring the assignment of functions and/or objects to processing elements or by selecting alternate
communications paths in response to a component or subsystem failure. Few muliprocessor software
tools in existence today address the software implications of their target hardware's fault tolerance
capabilities.

System performance requirements may also constrain the design and implementation of the
software for that system, particularly in real-time systems. Software abstractions that hide lower-level
details may consume excessive systems resources, rendering them unusable for the given system. In
fact, the strict deadline requirements of real-time systems can force a dramatic restructuring of software
in order to meet the specified cycling rate or response time.

The performance of many systems is achieved by an effective utilization of one or more limited
resources. Many times this limited resource is hardware, frequently processing power, storage, or
bandwidth. In these situations, the proper matching between the demands of software and the hardware
resources is critical. The choice of a particular algoriihm, or software mechanism, can be the difference
between a highly utilized system, a poorly performing one, and one that fails completely due to an
insufficient resource.

These problems are best addressed in the early stages of system development so that specific
performance requirements can be included in the software requirements and clear design constraints for
achieving performance requirements can be included in the software specifications. One technique for
performing the analysis necessary to develop the requirements and constraints is to use models of the
application and target hardware components to examine system behavior. In particular, Petri net and
directed graph models have been used to develop a system model from a computational model of the
application and a structural model of the hardware. The Petri net or directed graph model can then be
analyzed statically or dynamically, through simulation, to examine properties of the system and predict
system performance. The computational model of the application captures the processing and
communications workloads of application functions based on the types and sizes of data, the types of
instructions, and the data and control flows necessary for processing the application. The system model
captures the dependencies and interactions among elements of the computations model and their
competition, or contention, for elements in the hardware structural model.

This discussion has highlighted certain enhancements that analysis and test technology needs to
support system engineering:

Analysis techniques that integrate local concerns with global systems views

Tools supporting multidisciplinary analyses

Software analysis tools and techniques that permit speclication of all relevant hardware
characteristics

System level models.

Enhancements such as these will permit trade-off studies of alternative approaches, thus allowing the
best system designs to be reflected in software requirements and specifications and allowing the
identification of pitfalls to be avoided.

6. SUMMARY AND RECOMMENDATIONS
There is much room for improvement in software analysis and test technology. Improvement in the

analysis and test process, integration of software analysis and test tools in software development
frameworks, and approaches for advanced software development technology are a few areas where
contributions can be made. By viewing software analysis and test activity from a systems perspective
and by taking a preventive approach, this technology can be made more cost-effective.

A key recommendation is to develop a roadmap which addresses the following needs:
life cycle integration of software analysis and test techniques with systems engineering analysis
techniques
integrated tools that enable analysis and testing of electronically captured specification and design
information
knowledge bases which provide data on error classes by application domain and which guide the
development of strategies for effective analysis and test
decision support tools which enable the acquisition specialist or certifying agent to assess the
quality of the analysis and test process and of the resulting end-product
As components of this roadmap are developed, the costhenefits and commercial availability of

software analysis and testing technology will improve.

7. REFERENCES
[I] Frost and Sullivan. The U.S. Defense Department Commercial Computer and Software Markets.
Frost and Sullivan, Inc., New York, 1990.

[2] G. B. Finelli and D. L. Palumbo. "Design and Validation of Fault-Tolerant Flight Systems." In
AIAAIAHBASEE Aircraft Design, Systems and Operations Meeting, September 1987.

[3] David Gelperin and Bill Hetzel. "The Growth of Software Testing." Commnkations of the ACM, 31,
June 1988.

[4] Janet R. Dunham. "Verification and Validation in the Next Decade." IEEE Software, May 1989.

[5] L. Lauterbach and B. Randall. "Experimental Evaluation of Six Test Techniques." In COMPASS '89,
June 1989.

[6] Lisa Maliniak. "A Real-time Simulator is Tghtly Integrated with CASE Early Evaluation of System
Behavior and Performance." Electronic Design, November 1990.

[q Watts S. Humphrey. Managing the Software Process. Addison Wesley, Reading, MA, 1989.

[8] W. S. Humphrey and W. L. Sweet. A Method for Assessing the Software Engineering Capabilities of
Contractors. Technical Report, Software Engineering Institute, Carnegie-Mellon University, Pittsburgh,
PA 1521 3, September 1987.

[9] W. S. Humphrey, D. H. Kitson, and T. C. Kasse. The State of Software Engineering Practice: A
Preliminary Report. Technical Report CMUJSEI-89-TR-1, Software Engineering Institute, Carnegie-
Mellon University, Pittsburgh, PA 1521 3, February 1989.

[lo] Research Triangle Institute. "Strategies, Tools, and Techniques for High Risk Applications." In
Tutorial Presented at COMPASSSO, Research Triangle Park, NC, 1990.

[Ill R. H. Cobb and H. D. Mills. "Engineering Software Under Statistical Quality Control." IEEE
Software, November 1990.

[12] Bany W. Boehm. Software Engineering Economics. Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1981.

[13] Air Force Systems Command. Software Quality Indicators. Technical Report AFSC Pamphlet 800-
14, Department of the Air Force, Andrews Air Force Base, DC 20334-5000, 1987.

[14] C. 0. Scheper and R. L. Baker. Integration of Tools for the Design and Assessment of High-
Performance, Highly ReliaMe Computing Systems (DAHPHRS) Phase ii Final Report. 1990. To be
published by RADC.

[15] The Technology Cooperation Program. Software metrics workshop. May 1990. RADCJRochester
Institute of Technology.

[I 61 Methodology for Software and System Reliability Prediction: Final Report. Rome Air Development
Center, Griffiss AFB, NY, 1987.

[17] J. D. Musa and A. F. Ackerman. "Quantifying Software Validation: When To Stop Testing." IEEE
Software, May 1989.

[18] Anita M. Shagnea and Kelly J. Hayhurst. "Managing the Development and Verification of Avionics
Software." In Proceedings of the Seventh International Conference on Testing Computer Software, June
1990.

[I91 Victor R. Basili, Richard W. Selby, and David H. Hutchens. "Experimentation in Software
Engineering." IEEE Transactions on Software Engineering, 1 986.

[20] M. B. Miles and A. M. Huberman. Qualitative Data Analysis: A Sourcebook of New Methods. Sage
Publications, London, 1984.

[21] E. K. Bailey, T. P. Frazier, and J. W. Bailey. A Descriptive Evaluatbn of Automated Software
Cost-Estimation Models. Technical Report, Institute for Defense Analysis, 1986. Tech Report P-1979.

[22] R. K. Yin. Case Study Research: Design and Methods. Sage Publications, London, 1984.

[23] Janet R. Dunham and George B. Finelli. "Real-time Software Failure Characterization." In
Proceedings of the Fifth Annual Conference on Computer Assurance, June 1990.

[24] Anita M. Shagnea and Kelly J. Hayhurst. "Application of Industry-standard Guidelines for the
Validation of Avionics Software." In DASC 90: Proceedings of the 9th Digital Avionics Systems
Conference, Virginia Beach, VA, October 19 90.

[25] W. G. Cochran and G. M. Cox. Experimental Designs. John Wiley & Sons, New York, NY, 1957.

[26] Victor R. Basili and Richard W. Selby. "Comparing the Effectiveness of Software Testing
Strategies." IEEE Transactions on Software Engineering, 1986.

[27l T. D. Cook and D. T. Campbell. Quasi-Experimentation: Design and Analysis for Field Settings.
Houghton Mifflin, Boston, MA, 1979.

[28] F. McGarry and W. Agresti. "Measuring Ada for Software Development in the Software-Engineering
Laboratory. In Proceedings of the 21st Hawaii lnternational Conference System Science, Vol. II, pages
302-31 0, CS Press, Los Alamitos, CA, 1988.

[29] Military Standard Defense System Software Development DOD-STD-2 167A. Department of
Defense, Washington, DC, February 1988.

[30] RTCA. Software Considerations in Airborne Systems and Equipment Certification. Technical Report
DO-1 78A, Radio Technical Commission for Aeronautics Secretariat, Washington, DC, March 1985.

[31] Barry W. Boehm. Software Risk Management. IEEE Computer Society Press, Washington, DC,
1989.

[32] Susan A. Sherer. "A Cost-effective Approach to Testing." IEEE Software, March 1991.

[33] System Safety Requirements MIL-STD-882B. Department of Defense, Washington, DC, February
1 988.

[34] B. Sufrin, C. Morgan, I. Sorensen, and I. Hayes. Notes for a Z Handbook. Programming Research
Group, Oxford Univ., 1985.

[35] C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall International, Englewmd
Cliffs, NJ, 1986.

[36] M. Gordon. "Why Higher-order Logic is a Good Formalism for Specifying and Verifying Hardware."
In G. J. Milne and P. Subrahmanyam, editors, Formal Aspects of VLSl Design, pages 153-177, North
Holland, Amsterdam, 1986.

[37) General Research Corporation. Software User's Manual for the Software Life Cycle Suppod
Environment. Technical Report Contract Number F30602-86-C-0206, General Research Corporation,
P.O. Box 6770, Santa Barbara, CA 931 60-6770, August 1989.

[38] Derek J. Hatley and lmtiaz A. Pitbhai. Strategies for Real-Time System Specification. Dorset
House Publishing Company, New York, New York, 1987.

[39] Douglas S. Lowman and W. G. Ransdell. Finding the Boftlenecks: A Retrospective Analysis of a
Factory Automation Application. 1991. Research Triangle Institue, Research Triangle Park NC 27709.

[40] Programming Environments Inc. T User Guide. Programming Environments Inc., Tinton Falls, NJ,
1990.

[41] C. Green and et. al. Report on a Knowl*e-Based Software Assistant. Technical Report
KES.U.83.2, Kestrel Institute, 1801 Page Mill Road, Palo Alto, CA., June 1983.

[42] Ben L. Di Vito, Ricky W. Butler, and James L. Calctwell. Formal Design and Verification of a
Reliable Computirg Platform for Real-Time Control. Technical Report, NASA Langley Research Center,
Hampton, Virginia, October 1990. NASA Technical Memorandum 102716.

[#I Rick Butler. Personal communication. Systems Validation Methods Branch, NASA Langley
Hampton, VA.

[44] Microelectronics and Computer Technology Corporation. Spectra 0. I: Demonstration and Research
Issues and Spectra 0.2. Technical Report STPIEI-329-90, Microelectronics and Computer Technology
Corporation, 3500 West Balcones Center Drive, Austin, Texas, 1991.

[45] Derek P. Mannering and Bernard Cohen. "The Rigorous Specification and Verification of the Safety
of a Real-time System." In COMPASS '90, 1990.

[46] C. Rattray, editor. Specification and Verification of Concurrent Systems. Springer-Verlag, 1990.

[47) M. Z. Kwiatkowska, M. W. Shields, and R. M. Thomas, editors. Semantics for Concurrency:
Proceedings of the International BCS-FACS Workshop. Springer-Verlag , July 1990.

[48] J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors. Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency. Springer-Veriag, May 30 - June 3 1988.

[49] B. Banieqbal, H. Barringer, and A. Pnueli, editors. Temporal Logic in Specification. Springer-Verlag,
1989.

[SO] Douglas S. Lowman and B. Edward Withers. A Comparison of Desgn Strategies Using Object-
oriented Methods, Structured Analysis, Structured Design and CSDL CASE. 1991. Research Triangle
Institue, Research Triangle Park NC 27709.

[51] B. Ed Withers, Janet R. Dunham, Don C. Rich Buckland. Guidance and Control Software (GCS)
Development Specification. Technical Report, Research Triangle Institute, Research Triangle Park, NC,
1988. Prepared under NASA contract NAS1-17964; Task Assignment No. 8 Contractor Report #
182058.

[52] Brian Henderson-Sellers and Julian M. Edwards. "The Object Oriented Systems Liecycle."
Communications of the ACM, 33(9):142-159, September 1990.

[53] Elizabeth Gibson. "Objects - born and bred." BYTE, 245-254, October 1990.

[54] Edward V. Berard. Issues in the testing of object-oriented software. 1990. Berard Software
Engineering, Inc., 18620 Mateney Road, Germantown, Maryland 20874.

[55] Alan M. Roberts, Don C. Rich, and Douglas S. Lowman. A Computer Architecture for Research in
Meteorology and Atmospheric Chemistry. Technical Report Cooperative Agreement CR814316-01-0,
Research Triangle Institute, Research Triangle Park, NC, February 1989.

Appendix A.
ACRONYMS

ACT Analysis of Complexity Tool

ADAS Architecture Design and Assessment System (A registered trademark of Research Triangle
Institute)

ADICYCLE Application DevelopmenffCycle

Al Artificial Intelligence

AISLE Ada lntegrated Software Lifecycle Environment

AMS Automated Measurement System

ANS American Nuclear Society

ANSI American National Standards Institute

ASA Automata and Structured Analysis

ASQS Assistant for Specifying the Quality of Software

ASTM American Society for Testing and Materials

ASSIST Abstract Semi-Markov Specification Interface to the SURE Tool

AT&T American Telephone and Telegraph

ATVS Automated Test and Verification System

BASE Boeing Applied Systems Environment

BSI British Standards Institution

CAFTA Computer Aided Fault Tree Analysis

CALS Computer Aided Logistics System

CARE Ill Computer-Aided Reliability Estimation

CASE Computer-Aided Software Engineering

CCC Change and Configuration Control

ClSLE C lntegrated Software Lifecycle Environment

CMORT Management Oversight and Risk Tree

CMT Configuration Management Tool

DARPA Defense Advanced Research Projects Agency

DEC Digital Equipment Corporation

DECICMS DEC Code Management System

DECIMMS DEC Module Management System

DECIPCA DEC Performance and Coverage Analysis

DECISCA DEC Static Code Analysis

DECKM DEC Test Manager

DG Data General

DoD Department of Defense

EMROCAE European Commission for Aeronautics

EWlCS European Workshop on Industrial Computer Systems

FAA Federal Aviation Administration

FlPS Federal Information Publication System

HOL Higher Order Logic

HP Hewlett Packard

IBM-PC International Business Machines Personal Computer

IDA Institute for Defense Analysis

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronic Engineers

I-P-0 Input-Process-Output

IPT Inc. Integrated Program Technologies Incorporated

KBSA Knowledge-Based Software Assistant

MALPAS MALvern Program Analysis Suite

MAT Maintainability Analysis Tool

MCC Microelectronics and Computer Technology Corporation

MECS Modular Embedded Computer Software

MOD Ministry of Defense

MTBF Mean Time Between Failure

NASA National Aeronautics and Space Administration

NASA-LaRC NASA Langley Research Center

NATO North Atlantic Treaty Organization

0-0 Object-Oriented

PAT Process Activation Table

PDL Program Design Language

POSE Picture Oriented Software Engineering

PVCS Portable Voice Communications System

QUES Quality Evaluation System

RADC Rome Air Development Center

RL Rome Laboratory

RTCA Radio Technical Commission for Aeronautics

RTI Research Triangle Institute

SA Structured Analysis

SAE Society of Automotive Engineers

SAlC Science Applications International Corporation

SAW Software Analysis Workstation

SD Structured Design

SDIINTB Strategic Defense InitiativeINationa Test Bed

See Software Engineering Environment

SEI Software Engineering Institute

SLCSE Software Life Cycle Support Environment

SMARTS Software Maintenance and Regression Test System

SPADE Southampton Program Analysis and Development Environment

SPARK SPADE Ada Kernel

SQL Structured Query Language

SSADM Structure Systems Analysis Design Method

SSE Software Support Environment

STANAG NATO Standardization Agreement

STARS Software Technology for Adaptable Reliable Systems

START Structured Testing and Requirements Tool

SURE Semi-Markov Unreliability Range Evaluator

TAME Tailoring an Ada Measurement Environment

TCAT Test Coverage Analysis Tool

TDGEN Test filelData Generator

UK United Kingdom

VDM Vienna Development Method

V&V Verifiction and Validation

WITS Westinghouse Information Tracking System

Appendix B.
SOFTWARE ANALYSIS AND TEST TOOLS

CASE TOOL DESCRIPTIONS

Tool Name
Vendor

AnalysVDeslgner
Toolkit
Yourdon Inc.
Auto-mate Plus
Learmonth &
Burcheti
Management
Systems
DesignAi
NASTEC Corp.

Excelerator
Index Technology

Product Description
data flow, entity relationship modeling; structure,
flow chart, or state transition design; deslgn,
rule & consistency checks
British SSADM method; data flow, entity
relationship, or process dependence modeling;
structure or flow chart-based design; deslgn
rule, consistency, & crossdlagram checks

data flow, entity relationship, or process
dependencelaction modeling; structure or flow
chart, Jackson, state transition, decision tree, or
I-P-0 hierarchy design; deslgn rule, conslstency,
& cross-dlagram checks; multi-user
data flow, entity relationship modeling;
structure, flow chart, or decision tree design;
deslgn rule, conslstency, & cross-dlagram
checks; parallel-users

Platforms
PC

IBM-PC

IBM-PC

IBM-PC

IEW Analysis &
Design Workstation
Knowledge Ware
MicroSTEP
Syscorp
International
POSE
Computer Systems
Advisors Inc.
Software through
Pictures
Interactive
Developmenf
Environments
Teamwork
Cadre Technologies
Inc.

vsDesigner
Visual Sofhvare Inc.

specification and data flow editor, data dictionary,
and code generator

data flow or process action modeling; structure or
action chart design; deslgn rule & conslstency
checks
data flow, entity relationship, process action, or
object modeling; 0-0, state-transition, or
structured design; deslgn and dlctlonary
consistency checks; requirements tracing;
multiuser
data flow, entity relationship, or process
dependencelaction modeling; structure or flow
chart decision tree, state transition design;
decomposltlon & conslstency checks; similar to
mainframe version
data flow, entity relationship, or process action
modeling; structure or action charts, state
transition, Jackson, and other design; deslgn
rule & consistency checks

IBM-PC

IBM-PC

DEC VAX,
Apollo,
Sun,
HP9000

IBM-PC,
DEC VAX
Sun, Apollo

IBM-PC

TEST-PHASE SUPPORT TOOL DESCRIPTIONS

I v .~ 1 AutoTester
I I

I automated test executive: m u r e and I IBM-PC

Tool Name
Vendor

ACT
McCabe &
Associates

Software Recording replay-t ype with corn parat& ' I Corn.
(dial-up 1 I mainframe) I

Product Description
static analysis; module complexity
measurement; basis path analysis; speclfis
conditions for testlncl each c o d e m h

I CALLTEST
I

1 automated test executive; subroutine I IBM

Platforms
VAX

Logic Engineering ~nvocat~on-type for functional black-box I lnc. I tests I Mainframe I ~ - - -

I Check-mate
I

1 screen and keyboard carnure and com~arlson I IBM-PC.

I I

Loaisco~e I static and dynamic analyzer: Halstead & i is;. PCS, I

Cinnabar Software

Test Manager
DEC
lint-PLUS
IPT Inc.

system; savestest inpui and output f&
regression analysis
organizes and automates tests; regression
testlng
static & execution analyzer; interactive
debugger; allows traclng of execution flow
and/or data urxiates

- .
Verilog

SMARTS
Software Research
Inc.
TCAT
Software Research
Inc.

TDGEN
Software Research
Inc.

DEC VAX,
Prime, DG
DEC VAX

DEC VAX,
DG Nova,
Ecli~se

McCabe complexity; tesi coverage analysis;
dead and untested code determination
test manager, executive, and comparator;
program structurebased test selection;
reports regresslon dlscrepancles
segment-level test coverage analyzer for C,
PASCAL, BASIC, et. al.; reports untested
code

test data generator; random, range
spannlng, or selection modes

Minis,
Mainframes
IBM-PC,
DEC VAX

IBM-PC,
Sun, DEC
VAX, Apoilo,
AT&T 362
IBM-PC,
DEC VAX

REQUIREMENTS-TO-TEST TOOL DESCRIPTIONS

SOFTWARE METRIC TOOL DESCRIPTIONS

Tool Name

I

Tool Name
Vendor

ASA
Verilog

RTrace
NASTEC Corp.

START
McCabe & Associates

T
Programming
Environments Inc.

Vendor Product Description
C-Stat computes McCabe complexity for C software
Software Research
Inc.
FORTRAN-lint static analysis of FORTRAN code; common
IPT Inc. block matching, argumenUusage

consistency checklng, and code style
evaiuatlon

M ALPAS control flow, data usage, and path analysis;
Rex, Thompson, some rule checks on design refinements;
& Partners Ltd. uses intermediate language only, but translators

for PASCAL, Ada, etc. exist
MAT statlc analysls of FORTRAN code; common
SAlC block matching, argumentlusage

consistency checklng, program cross-

Product Description
requirements definition, edlting, structuring;
requirement allocation; spec i f i i i on
simuiatlon; automatic test scenario generation;
consistency & completeness checking
requirements definition, editing, structuring;
requirement allocation; multi-user
wlth audlt trail; SQL database; various
reports
uses CASE-based data flow & requirements
PDL; computes requirements
complexity; test generation for requirement
control flows
requirements definition, editing, and
refinement; consistency & completeness
checks; some reversespecification ability;
requlrement-tetest mapping; misc. reports

(referencing, and maintalnabiilty metrics
PC-METRIC I McCabe and Halstead code metrics: data

Platforms

%?&u","

DEC VAX

SUN, DEC
VAX

IBM-PC,
DEC VAX,
HP3000,
AT&T 36

SET Laboratories reference distance; user-specified standards I checklna
I -

ASQS 1 metric database and adviser for mana~ement:

Software presentation across life cycle; management
Productivity wlndow Into metrlcs; interfaces to SLSCE
Solutions

Platforms
IBM-PC,
any LlNlX

DG MV,
DEC VAX

DEC VAX

PCs & others

IBM-PC

DEC VAX

Sun 4,
DEC VAX

PERFORMANCE, RELIABILITY, & SAFETY TOOL DESCRIPTIONS

Tool Name

PCA
DEC
PAT
SAIC

SAW
MicroCASE

CAFTAIETA-Ill
RBDA
SAlC
CMORTIPC-TREE
EG&G
CARE Ill
NASA-LaRC
SURE
NASA-LaRC
ASSIST
NASA-LaRC
ADAS
R TI

software execution monitor; performance
analysis; statement-level test coverage
test coverage and performance analyzer;
minimal code instrumentation; modulelevel
Invocation count 81 ranking; deadade
determination; FORTRAN only
hardwaresoftware execution monitor;
execution history; Instructbn-level test
coverage; performance analysis
fault and event tree editing; failure rate,
avallabllfty, and cut-set calculation; cut-set
editing and threshold operations
fault tree editing; risk, fallure, and cut-set
calculatlon
Reliability evaluation

Reliability evaluation

Markov model input language for SURE

An engineering tool set for system level
simulation supporting softwarehardware
co-deslg n

D t C VAX 1

Misc. PCs,
Minis,
Mainframes

IBM-PC

IBM-PC

IBM-PC

DEC VAX

DEC VAX

DEC VAX

Minis,
Mainframes

REVISION CONTROL TOOLS

Tool Name
Vendor

Aide-De-Camp

~ . ~ - -

ccc sonwl corp.
I I

I generic configuration management system;) Misc. PCs,

Software ~aintenance
& Development
svstems. Inc.

Pmduct Description
code and document configuration

, . - - ~-
-~ ~- - -

CMS DEC I code and document configuration (DEC VAX

Platforms
Misc. PGs,

management system with relational database;
audit tralls and automated bulkls

CMT Experlware Inc.

Minis,
Mainframes

I
- - --

PVCS POL YTRON ' generic configuration management) IBM-PC,

audlt tralls, access control, component
dependency tracking
code and document configuratbn
management system; audit tralls, revlskn
rewr ts

Historian Plus
OPCODE Inc.

corp.

Minis,
Mainframes
Misc PCs,
Minis,
Mainframes

Macintosh,
DEC VAX

management system; audit trails, revlskn
reports; integrated with VAXset
code management system

- - - - -

IMPLEMENTATION ANALYSIS TOOLS

Misc. PCs,
Minis,
Mainframes

Tool Name
Vendor

SPADUSPAHK
Program Validation
Limited
TeleUSE Telesoft

Product Description
control & data flow analyzerltranslator;
pre- and post-condition analyzer; proof
checker; various language translators
automated user-interface constructor

Platforms
D t C VAX

TOOL FRAMEWORKS (CASE)

Appendix C.
STANDARDS RELATED TO SOFTWARE ANALYSIS AND TEST

ANS
(American Nuclear Society)

ANSIIANS-10.4-1987 Guidelines for the V&V of Scientific and Engineering
Computer Programs for the Nuclear lndustry

ANSIIIEEVANS-7-4.3.2-1982
NUREG-0653 Report on Nuclear Industry Quality Assurance

Procedures for Safety Analysis Computer
Code Development Use

NUREG. CR4640 Handbook of Software Quality Assurance Techniques
Applicable to the Nuclear Industry

Regulatory Guide 1 .I52 Criteria for Programmable Digital Computer
System Software in Safety-Related Systems of
Nuclear Power Plants

NUREGICR4473 A Study of the Operation and Maintenance of
Computer Systems to Meet the Requirements of
10 C.F.R. 73.55

ASTMSTANDARDS
(American Society for Testing and Materials)

ASTM E l 1 13-86 Standard Guide for Project Definition for Computerized
Systems

ASTM E623-89 Standard Guide for Developing Functional Requirements for
Computeriied Systems

ASTM E730-85 Guide for Developing Functional Designs for Computerized
Systems

ASTM E624-83 Guide for Developing Implementation Designs for
Computerized Systems

ASTM E627-88 Standard Guide for Documenting Computerized Systems

ASTM E919-83 Specification for Software Documentation for a
Computerized System

ASTM E l 029-84 Documentation of Clinical Laboratory Computer Systems

ASTM E622-84 Generic Guide for Computerized Systems

ASTM E625-87 Guide for Training Users of Computerized Systems

ASTM E1246-88 Standard Practice for Reporting Reliability of Clinical

Laboratory Computer Systems

ASTM E l 0 13-87 Standard Terminology Relating to Computerized Systems

ASTM E1206-87 Standard Guide for Computerization of Existing Equipment

BSI (British Standards Institution)

65A(Secretarial)96 Functional Safety of Programmable Electronics
Systems (draft)

65A(Secretarial)94 Software for Computers in Application of lndustrial
Safety-Related Systems

European Militaryllndustry Standards

UK HealthISafety Executive - Programmable Electronic Systems (PES's) in Safety Related Applications

UK Interim Draft Defense Standards 00-55, 00-56

EWlCS (European Workshop on lndustrial Computer Systems) - variety of reference documents:

Guidelines for the Assessment of the Safety and Reliability of High Integrity lndustrial Computer
Systems

Attributes, Criteria and Measures: their definition and use in safety related projects

Draft Guidelines to Design Computer Systems for Safety

Draft Guidelines on Safety Related Measures to be used in Software Quality Assurance

Guidelines for the maintenance and modification of safety related computer systems

Safety Assessment and Design of lndustrial Computer Systems - Techniques Directory

International Electrotechnical Commission (IEC)

Software for Computers in the Application of lndustrial Safety-Related Systems

EUROCAE

ED-12A Software Considerations in Airborne Systems and Equipment
(European equivalent of DO-1 78A)

FlPS STANDARDS
(Federal Information Publication System)

FIPS-PUB-99 Guideline: A Framework for the Evaluation and Comparison
of Software Development Tools

FIPS-PLIB-101 Guideline for Lifecycle Validation, Verification, and Testing
of Computer Software

FIPS-PUB-105 Guideline for Software Documentation Management

FIPS-PUB-106 Guideline on Software Maintenance

FIPS-Pub-132 Guidelines for Software Verification and Validation Plans

FlPS Special Pub 500-166 Software Verification and Validation: Role in Computer
Assurance and Relationship w l h Software
Project Management Standards

IEEE STANDARDS
(Institute of Electrical and Electronics Engineers)

IEEE Standards
IEEE Service Center

445 Hoes Lane
P. 0. Box 1331

Piscataway, NJ 08855-1 331 USA
1 -800-678-IEEE

Glossary of Software Engineering Terminology (Rev. March 1990)

Standard for Software Qually Assurance Plans (Rev. December 1990)

Standard for Software Configuration Plans (Rev. December 1989)

Standard for Software Test Documentation (Rev. December 1989)

Guide for Software Requirements Specifications (Rev. June 1990)

Standard Dictionary of Measures to Produce Reliable Software

Guide for the Use of Standard Dictionary of Measures to
Produce Reliable Software

Guide for Software Quality Assurance Plans

Recommended Practice for Ada as a Program Design Language

Standard Taxonomy for Software Engineering Standards

Standard for Software Unit Testing

Standard for Software Verification and Validation

101 6-1987 Recommended Practice for Software Design Descriptions

101 6.2-1990 Guide to Software Design Descriptions

1028-1988 Standard for Software Reviews and Audits

1042-1987 Guide to Software Configuration Management

1044-1989 Standard for Classification of Software Errors, Faults,
and Failures

1045-1990 Standard for Software Productivity Metrics

1058.1 -1987 Standard for Software Project Management Plans

1059-1990 Guide for Software Verification and Validation (June 1990)

1061-1990 Standard for a Software Quality Metrics Methodobgy (June 1990)

1062-1990 Recommended Practice for Software Acquisition (March 1990)

1063-1987 Standard for Software User Documentation

1074-1 990 Standard for Software Life Cycle Processes

MIL-STD (Department of Defense Military Standards)

M IL-STD-2168 Defense Systems Software Quality Program

MIL-STD-2167A Defense Systems Software Development

MIL-STD-483A Configuration Mgrnt. Practices for Systems, Equipment,
Munitions, and Computer Programs

MIL-STD-1521 B Technical Reviews and Audits for Systems, Equipment,
and Computer Software

MIL-STD-882B System Safety Program Requirements

NATO Standardization Agreement (STANAG)

AQAP-13 NATO Software Quality Control System Requirements

AQAP-14 Guide for the Evaluation of a Contractor's Software Quality
Control System for Compliance w/ AQAP-13

RTC AlFAA
(Radio Technical Commission for Aeronautics and Federal Aviation Administration)

Advisory Circulars - Federal Aviation Administration
Public Inquiry Center, APA-230
800 Independence Avenue, SW

Washington, DC 20591

Advisory Circular 20-1 15A

Advisory Circular 25-1 309-1 B

Draft Verification Advisory Circular

Software considerations in the TSO Process

Checklists for DO-1 78A Documentation

SAE STANDARDS (Society of Automotive Engineers)

SAE
Department 362

400 Commonwealth Drive
Warrendale, PA 15096 USA

SAE ARP-1834, FauWFailure Analysis for Digital Systems and Equipment

Appendix D.
ADDITIONAL READING

"An Agenda for Improved Evaluation of Supercomputer Performance." Committee on Supercomputer
Performance and Development, Energy Engineering Board, Commission on Engineering and Technical
Systems, and National Research Council. National Academy Press, Washington, DC, 1986.

"Application of Fault Tolerance Technology; Volume I: Design of Fault-Tolerant Systems; Volume II:
Management Issues: Contractor Milestones and Evaluation; Volume Ill: Tools for Design and Evaluation
of Fault-Tolerant Systems; Volume IV: System Security and its Relationship to Fautt Tolerance." Rome
Air Development Center, SDlO BMlC3 Processor and Algorithm Working Group, October, 1987.

Victor R. Basili and H. Dieter Rombach. "Tailoring the Software Process to Project Goals and
Environments." In Proceedings of the ICSE Conference, Monterey, CA, March 30 - April 2, 1987.

Victor R. Basili and H. Dieter Rombach. "TAME: Tailoring an Ada Measurement Environment." In
Proceedings of the Joint Ada Conference, Arlington, VA, March 16 - 19, 1987.

Boris Beizer. Software Testing Techniques. Van Nostrand, New York, 1983.

Boris Beizer. Software System Testing and Quality Assurance. Van Nostrand, New York, 1984.

H. K. Berg, W. E. Boebert, W. R. Franta, and T. G. Moher. Formal Methods of Program Ven'fication and
Specification. Prentice-Hall, Englewoods Cliffs, New Jersey, 1982.

B. T. Blaustein, A. P. Buchmann, U.S. Chakravarty, and J. D. Halpern. "Database Consistency and
Security." RADC-TR-89-192, Rome Air Development Center, Griffiss Air Force Base, NY, October,
1 989.

Barry W. Boehm. Software Engineering Economics. Prentice-Hall Inc., Englewood Cliffs, New Jersey,
1981.

Barry W. Boehm. Software Risk Management. IEEE Computer Society Press, Washington, DC, 1989.

Fredrick P. Brooks, J r. The Mythical Man-Month - Essays on Software Engineering. Addison- Wesley
Publishing Company, Inc., Reading, MA, New York, 1975, 1982.

Fredrick P. Brooks, Jr. "No Silver Bullet - Essence and Accidents of Software Engineering." Computer,
10-19, April, 1987.

Michael G. Burke and Barbara Gershon Ryder. "Critical Analysis of Incremental Iterative Data Flow
Analysis Algorithms. " IEEE Transactions on Software Engineering, July, 1990.

William L. Bryan and Stanley G. Siegel. Software Product Assurance: Techniques for Reducing Software
Risk. Elsevier Science Publishing Co. Inc., New York, NY, 1988.

David N. Card and Robert L. Glass. Measuring Software Design Quality. Prentice Hall, Englewood
Cliffs, New Jersey, 1990.

Joseph P. Cavano and Frank S. LaMonica. "Quality Assurance in Future Development Environments."
IEEE Software, 26-34, September, 1987.

Robert N. Charette. Software Engineering Risk Analysis and Management. IntertexVMcGraw-Hill, 1989.

L. J. Chmura and A. F. Norcio and T. J. Wicinski. "Evaluating Software Design Processes by Analyzing
Change Data Over Time ." IEEE Transactions on Software Engineering, July, 1990.

Chin-Kuei Cho. Quality Programming: Developing and Testing Software Using Statistical Quality Control.

John Wiley & Sons, Inc., 1987.

Tsun S. Chow. Tutorial: Software Quality Assurance: A Practical Wroach. IEEE Computer Society
Press, 1985.

Richard H. Cobb and Harlan D. Mills. "Engineering Software under Statistical Quality Control." IEEE
Software, November, 1990.

Brian Connolly. "Software Safety Goal Verification Using Fault Tree Techniques: A Critically Ill Patient
Monitor Example." Hewlett-Packard Company. In Proceedings of the Fourth Annual Conference on
Computer Assurance on Systems Integrity, Software Safety and Process Security, June, 1989.

S. D. Conte, H. E. Dunsrnore, and V. Y. Shen. Software Engineering Metrics and Models.
BenjaminlCummings, Menlo Park, CA, 1986.

Michela Degl'lnnocenti, Gian Luigi Ferrari, Giuliano Pacini, and Franco Turini. "RSF: A Formalism for
Executable Requirement Specifications." IEEE Transactions on Software Engineering, November, 1990.

Richard A. DeMillo et. al. Software Testing and Evaluation. BenjaminlCummings, Menlo Park, CA,
1987.

M . S. Deutsch. Software Verification and Validation: Realistic Project Approaches. Prent ice-Hall Inc.,
Englewood Cliffs, New Jersey, 1982.

Michael S. Deutsch and Ronald R. Willis. Software Quality Engineering: A Total Technical and
Management Approach. Prentice-Hall, Englewood Cliffs, NJ, 1988.

6. S. Dhillon. Reliability in Computer System Design. Ablex Publishing Corporation, Norwood, NJ, 1987.

Ben L. DiVito, Ricky W. Butler, and James L. Caldwell. "Formal Design and Verification of a Reliable
Computing Platform for Real-Time Control: Phase 1 Results." Nasa Langley Research Center, Hampton,
VA, October, 1990.

Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ, 1976.

Robert Dunn. Software Defect Removal. McGraw-Hill, New York, NY, 1984.

Michael W. Evans and John J. Marciniak. Software Quality Assurance and Management. John Wiley
and Sons, New York, NY, 1987.

M. E. Fagan. "Design and Code Inspections to Reduce Errors in Program Development." ISM Systems
Journal, Vol. 15, No. 3, 1976.

Daniel P. Freedman and Gerald M . Wei nberg . Handbook of Walkthroughs, Inspections, and Technical
Reviews: Evaluating Programs, Projects, and Products. Third Edition. Little, Brown and Company,
Boston, MA, 1982.

James N. Fitzgerald. "FMEA or FTA: Which One When?" Hazard Prevention, 26-29,
NovemberIDecember, 1984.

Susan L. Gerhart. "Applications of Formal Methods: Developing Virtuoso Software." IEEE Software, Vol.
7, No. 6, September, 1990.

Robert L. Glass. Software Reliability Guidebook. Prentice-Hall, Englewood Cliffs, NJ, 1979.

Jack Goldberg. "An Evaluation Methodology for Dependable Multiprocessors." Final Technical Report,
RADC-TR-88-23, SRI International, March, 1988.

David Gries. The Science of Programming. Springer-Verlag, 1981

John Guttag. "Abstract Data Types and the Development of Data Structures." Communications of the
ACM, June, 1977.

Anthony Hall. "Seven Myths of Formal Methods." IEEE Software, Vol. 7, No. 5, September, 1990.

Dick Hamlet and Ross Taylor. "Partition Testing Does Not Inspire Confidence." IEEE Transactions on
Software Engineering, December, 1990.

Hans-Ludwig Hausen, editor. Software Validation: Inspection-Testing-Verification Alternatives.
Amsterdam: North-Holland, 1984.

Bill Hetzel. The Complete Guide to Software Testing. QED Information Sciences, Inc., Wellesley, MA,
1988.

M. Frank Houston. "What Do the Simple Folk Do? Software Safety in the Cottage Industry." Supplement
to the Proceedings of COMPASS '87, Second Annual Conference on Computer Assurance, 1987.

William E. Howden. Functional Program Testing and Analysis. McGraw-Hill, New York, 1987.

William E. Howden. "Comments Analysis and Programming Errors." IEEE Transactions on Software
Engineering, January, 1990.

W. S. Humphrey. Managing the Software Process. Addison Wesley, Reading, MA, 1989.

Charles W. Hunley, Jr., Anita M. Shagnea, Judy A. Stasel, Connie K. Stout, and Kelly J. Hayhurst.
"Software Verification Plan for GCS.", Contractor Report, NASA1-179W, NASA Langley Research
Center. August, 1990.

Larry Kahn and Steve Keller. "The Assistant for Specifying the Quality of Software (ASQS) Operational
Concept Document." RADC-TR-90-195, Vol I, Rome Air Development Center, Griffiss Air Force Base,
NY, September, 1990.

Larry Kahn and Steve Keller. "The Assistant for Specifying the Quality of Software (ASQS) User's
Manual." RADC-TR-90-195, Vol II, Rome Air Development Center, Griiiss Air Force Base, NY,
September, 1990.

Gerald M. Karam and Raymond J. A. Buhr. "Starvation and Critical Race Analyzers for Ada." IEEE
Transactions on Software Engineering, August, 1990.

H. Kopetz. Software Reliability. Springer-Verlag New York, Inc., 1979.

Bogdan Korel. "Automated Software Test Data Generation." IEEE Transactions on Software
Engineering, August, 1990.

Luiz A. Laranjeria. "Software Size Estimation of Object-Oriented Systems." IEEE Transactions on
Software Engineering, May, 1990.

Jeffrey A. Lasky, Alan R. Kaminsky, and Wade Boaz. "Software Quality Measurement Methodology
Enhancements Study Results." RADC-TR-89-317, Rome Air Development Center, Griffiss Air Force
Base, NY.

L. Lauterbach and B. Randall. "Experimental Evaluation of Six Test Techniques." COMPASS '89, June,
1989.

Nancy G. Leveson and Peter R. Harvey. "Analyzing Software Safety." IEEE Transactions on Software
Engineering, pages 569-579, September, 1983.

Nancy G. Leveson and Janice L. Stolzy. "Safety Analysis of Ada Programs using Fault Trees." IEEE
Transactions on Reliability, December, 1 983.

Nancy G. Leveson, Janice L. Stolzy, and B. A. Burton. "Using Fault Trees to Find Design Errors in Real
Time Software." In Proceedings of the AIAA 21st Aerospace Sciences Meeting. AIAA, January, 1983.

Nancy G. Leveson and Janice L. Stolzy. "Analyzing Safety and Fautt Tolerance Using Time Petri Nets."
Technical Report 220, University of California, Irvine, California, 1984.

Nancy G. Leveson. "Software Safety in Computer-controlled Systems." Computer, pages 48-65, 1984.

Nancy G. Leveson. "Software Safety: Why, What, and How." Computing Surveys, pages 125-1 63, 1986.

Nancy G. Leveson. "Building Safe Software." In Proceedings of COMPASS '86. IEEE, 1986.

Nancy G. Leveson. "Software Safety - SEI curriculum module SEI-CM-6-1 .In. (preliminary), Carnegie
Mellon University Software Engineering Institute. July, 1987.

Nancy G. Leveson. "The Challenge of Building Process-Control Software." IEEE Software, November,
1990.

R. C. Linger, H. D. Mills, and B. I. Witt. Structured Programming: Theory and Practice. Addison-Wesley ,
1979.

Thomas J. McCabe. Tutorial: Structured Testing. IEEE Computer Society Press, Silver Spring, MD,
1982.

F. McGarry and G. Page. "Performance Evaluation of an Independent Software Verification and
Integration Process." NASA Goddard, Greenbelt, MD, SEL 81 -1 10, September, 1982.

E. Miller and W. E. Howden, Editors. Tutorial: Software Testing and Validation Techniques. IEEE
Computer Society Press, Los Alamitos, CA, 1978.

Harlan D. Mills, Michael Dyer, and Richard Linger. "Clean room Software Engineering." IEEE Software,
September, 1987.

Larry J. Morell. "A Theory of Fault-Based Testing." IEEE Transactions on Software Engineering, August,
1990.

John D. Musa, Anthony lannino, and Kazuhira Okumoto. Software Reliability: Measurement, Prediction,
and Application. McGraw-Hill Book Company, 1987.

John D. Musa and William W. Everett. "Software-Reliabilly Engineering: Technology for the 1990s."
IEEE Software, November, 1990.

Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, 1979.

Victor F. Nicola and Ambuj Goyal. "Modeling of Correlated Failures and Community Error Recovery in
Multiversion Software." IEEE Transactions on Software Engineering, March, 1 990".

David L. Parnas, A. John van Schouwen, and Shu Po Kwan. "Evaluation of Safety-Critical Software."
Communications of the ACM, Vol. 33, No. 6, 636-648, June 1990.

William Perry. A Structured Approach to Systems Testing. Second Edition. QED Information Sciences,
Inc., Wellesley, MA, 1988.

William E. Perry. How to Test Software Packages: A Step-by-step Guide to Assuring They Do What
You Want. John Wiley and Sons, New York, NY, 1986.

E. Presson. "Software Test Handbook: Software Test Guidebook." RADC-TR-84-53, Vol. II, Rome Air
Development Center, Griffiss AFB, NY, March, 1984.

W. J. Quirk. Verification and Validation of Real-Time Software. Springer-Verlag, 1985.

J. W. Radalz. "Analysis of IV&V Data." RADC-TR-81-145, Rome Air Devebpment Center, Griffiss AFB,
New York, June, 1981.

S. Rapps and E. J. Weyuker. "Selecting Software Test Data Using Data Flow Information." IEEE
Transactions on Software Engineering, April, 1985.

"Risk Management Concepts and Guidance." Defense Systems Management College, Ft. Belvoir, VA.

H. Dieter Rombach and Victor R. Basili. "Quantitative Assessment of Maintenance: An Industrial Case
Study." In Proceedings of Conference on Software Maintenance, Austin, TX, September, 1987.

John Rushby. "Quality Meaures and Assurance for Al Software." Prepared by SRI International, Menb
Park, CA for NASA Contract NAS1-17067, Contractor Report # 4187, October, 1988.

C. 0. Scheper, R. L. Baker. G. A. Frank, S. Yalamanchili, and F. G. Gray. "Integration of Tools for the
Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS)."
Interim Report RADC-TR-90-81, May, 1990.

G. Gordon Schulmeyer, CDP, and J. I. McManus. Handbook of Software Quality Assurance. Van
Nostrand Reinhold Company, New York, 1987.

Anita M. Shagnea and Kelly J. Hayhurst. "Managing the Devebpment and Verification of Avionics
Software." In Proceedings of the Seventh International Conference on Testing Computer Software,
1990.

David J. Smith and Kenneth B. Wood. Engineering Quality Software: A Review of Current Practices,
Standards and Guidelines including New Methods and Development Tools. Elsevier Applied Science
Publishers, New York, NY, 1987.

"Software Risk Management." AFSC Pamphlet 800-45, Air Force Systems Command, Department of
the Air Force, Andrews Air Force Base, DC, June, 1987.

Jeffrey C. Thomas and Nancy G. Leveson. "Applying Existing Safety Design Techniques to Software
Safety." Technical Report 180, University of California, Irvine, California, 1981.

Paul A. Tobias and David Trindade. Applied Reliability. Van Nostrand Reinhold, New York, NY, 1986.

C. R. Vick and C. V. Ramamoorthy, editors. Handbook of Software Engineering. Van Nostrand Reinhold,
New York, NY, 1984.

Dolores R. Wallace and Roger U. Fiji. "Software Verification and Validation: Its Role In Computer
Assurance and Its Relationship Wih Software Project Management Standards." Computer Systems
Technobgy, U. S. Department of Commerce, National Institute of Standards and Technology (NIST),
Special Publication 500-1 65, September, 1989.

Elaine J. Weyuker. "The Cost of Data Flow Testing: An Empirical Study." IEEE Transactions on
Software Engineering, February, 1 990.

Jeannette M. Wing. "A Specifier's Introduction to Formal Methods." Computer, Vol. 23, No. 9,
September, 1990.

Edward Yourdon. Structured WalMhroughs. Prentice-Hall, Englewood Cliffs, NJ, 1989.

