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Abstract	
With the evolution of modern technology, many organizations are now embracing big data solutions to 
drive decision-making by uncovering patterns, trends, and correlations in massive amount of raw data.  
Subsequently, the adoption of big data analytic technologies presents multi-faceted challenges to 
manage voluminous data while mitigating data security risks.    

Computer scientists and engineers across DoD laboratories are finding different means to collect, 
synthesize, process, and compare data in order to make the most of scientific observations.  The 
capabilities of grid computing to connect large-scale computers to share resources is generating a 
surplus of unstructured data to analyze.  Big data and high-performance computing (HPC) are hot button 
subjects amongst academic, industrial, and government organizations.  Scientists and engineers believe 
that high performance computing resources can significantly advance scientific research and discovery.  

In 2015, the White House published Executive Order 13702 to create a National Strategic Computing 
Initiative (NSCI).  The NSCI was established to promote U.S. leadership in High Performance Computing 
(HPC) to maximize benefits of high-performance computing (HPC) research, advancement of economic 
competitiveness, development, and scientific discovery.  Most recently, U.S. computing leaders, 
including Department of Energy Laboratories, have partnered with government, universities, and private 
sector to launch the COVID-19 High Performance Computing Consortium. The consortium will allow 
researchers worldwide to access to the world’s most powerful HPC resources in support of COVID-19 
research.   

The primary objective of HPC systems is to ensure the most resourceful execution of large-scale data 
analytics, which dictates lightweight security measures with the intention of reducing the overhead 
coupled with security requirements.  Cybersecurity for HPC is a critical mission aspect that presents 
unique challenges in providing non-repudiation, thus providing a high level of data protection and 
confidentiality for scientific observations.  In this special report, we delineate methods for closing HPC 
Security Gaps by using Berkeley Packet Filter (BPF) as part of a network load balancer.  Berkeley Packet 
Filter (BFP) was designed in the 1990s as a virtual machine for efficient packet filters. This report will 
discuss how BFP is used for monitoring, debugging, and collecting statistics from the kernel. This special 
report is geared toward developers and users who want to understand HPC and BPF broader 
functionality as part of the Kernel Runtime Security to assist with improving detection of security 
threats.   
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1. Introduction	
Today, research organizations are the principal operators of high-performance computing (HPC) 
systems.  Researchers utilize HPC to fast-track scientific discovery while adhering to security control 
standards to protect data files which could degrade the undertaking of the high-volume calculations.  
One standard solution is to secure a set of login nodes that mediate access to an enclave of lightly 
monitored compute nodes, referred to as “the soft underbelly of a supercomputer” by one DoD 
representative (National, 2016). Recent advances in the BPF subsystem, a Linux tracing technology, have 
provided a new means to monitor compute nodes with minimal performance degradation. Well-crafted 
BPF traces can detect malicious activity on an HPC cluster without slowing down systems or the 
researchers that depend on them. In this paper, a series of low-profile attacks are conducted against a 
compute cluster under heavy computational load, and BPF probes are attached to detect the attacks. 
The probes successfully log all attacks, and performance loss is less than one percent for all benchmarks 
save for one inconclusive set. 

2. High-Performance	Computing	(HPC)	Ecosystem	
In high-performance computing (HPC), many organizations that facilitate research provide a remote 
shell for writing, compiling, and executing arbitrary code. The code runs on a networked cluster of 
servers with hundreds of thousands of processor cores and has access to petabytes of storage. 
Information security practitioners must secure these environments for government research contracts, 
but the solutions they architect cannot reduce bare-metal cluster performance by more than a defined 
percentage, possibly as low as 1%. These limitations impact the security of HPC sites in government 
agencies, academia, and the private sector. 

Colloquially known as “supercomputers,” HPC clusters utilize numerous machines to deliver a more 
powerful computing environment to deal with computational problems that are too massive for 
conventional computers.  Cluster sizes range from dozens to tens of thousands of “nodes” (HPC parlance 
for servers). Today, the Summit supercomputer at the Department of Energy’s Oak Ridge National 
Laboratory ranks number one on the Top500 Supercomputing list, touting over 2,400,000 processor 
cores and peaking at 200 petaflops (i.e., two hundred quadrillion floating-point operations per second) 
(TOP500, 2019). 

In practice, large clusters share their resources among many users, including those not employed by the 
host institution. For example, the XSEDE Federation is a cyberinfrastructure ecosystem composed of 36 
different institutions across the United States, providing HPC resources to the science and engineering 
community as a single coordinated effort (XSEDE, n.d.). This author administers an HPC cluster at an 
academic institution, which serves not only the campus community but also collaborators from other 
organizations across the world. 

A current approach to HPC security is to lock down a few login nodes with required security controls and 
only lightly monitor the army of isolated compute nodes behind them. At a NIST Workshop on HPC 
Security in 2016, a DoD representative described these compute nodes as the “soft underbelly” of 
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supercomputing (National, 2016). Detecting malicious activity on the compute nodes themselves while 
maintaining performance requirements was considered an unsolved problem. 

Three years ago, Brendan Gregg announced that “superpowers have finally come to Linux” in the form 
of Berkeley Packet Filter (BPF) tracing tools (Gregg, 2017). Although systems administrators and analysts 
had used BPF to filter network packets for decades, Linux kernel developers had both improved its 
performance and opened it up to general usage through a new bpf() syscall. Thus, BPF was no longer a 
network tracing tool but a system-wide tracing tool. Gregg has since demonstrated the value of BPF 
tracing to security practitioners at subsequent conferences (Gregg & Maestretti, 2017). 

This paper has two primary purposes. The first is to introduce BPF as a general tracing tool for detecting 
malicious activity on Linux systems. A summary of recent developments in BPF and an explanation of its 
usage is provided. Example scripts are also included that demonstrate tracing open TTYs, network 
activity, filesystem activity, and Bash commands. 

The second purpose is to evaluate BPF as a security tool for production HPC clusters, both from a 
performance perspective and a detection perspective. A security monitoring agent that affects 
performance by even one or two percent has a low chance of adoption on HPC clusters that prioritize 
fast research results. Should it be adopted, there must be an assurance that the agent will not slow 
down compute nodes and will detect the attacks it purports to defend against. 

To validate BPF, a series of low-profile attacks are conducted against eight compute nodes running a 
series of benchmarks, both without and with BPF probes attached. Benchmarks without BPF probes are 
compared to benchmarks with BPF probes to determine the performance loss. The logs of the BPF trace 
scripts are compared with attack script logs to determine the attack detection rate. 

3. HPC	Cluster	Architecture	
System monitoring of a large-scale High-Performance Community (HPC) cluster architecture is a difficult 
task which could easily become further challenging as the scale and complexity of the platforms 
increase.   

The complexity of an HPC cluster can range from elementary to mind-boggling. At one end of the 
spectrum, students can interconnect a stack of Raspberry Pis to make a Beowulf cluster for educational 
purposes (Kiepert, 2013). At the other end is the NASA Advanced Supercomputing Division, whose 
Pleiades cluster interconnects eleven thousand compute nodes in an 11-dimensional hypercube 
topology for performance purposes (Chang, Jin & Bauer, 2016). 

An HPC node provides a multi-compiler and multi-version environment intended to support scientific 
software from many different disciplines. For example, the author administers nodes that have eight 
versions of gcc, two versions of Intel compilers, five versions of CUDA libraries, and three versions of 
Boost C++ libraries, not including additional variations when compiled with MPI support. 
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Researchers initially authenticate to a “login” node session. From here, they can write, compile, and 
debug arbitrary code. Once a researcher is ready to launch their software on the compute nodes, they 
submit a “job” to the scheduler. The job specifies the resources needed, the time required, and the 
commands to run. The scheduler maintains a queue of all jobs, dispatching them to the compute nodes 
as time, resources, and fair share permit. 

 
Figure 1. Job Submission Process (Source: Author, Billy Wilson) 

Compute node operating systems are installed using scalable provisioning technologies such as PXE 
booting, Kickstart for thick provisioning, and read-only root NFS for thin provisioning, among others. The 
nodes are also configured to mount central storage to make data available for processing across a large 
set of nodes, with performance tiers ranging from archival tape storage to high-performance parallel 
filesystems. 

 
Figure 2. HPC Provisioning and Storage (Source: Author, Billy Wilson) 
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Firewalls and network monitors are typically not deployed for compute nodes. Generally, it is due to the 
thought that the head node would have the overall ability to interact with the compute nodes so 
keeping the security controls at that gateway could be sufficient if that is the only entry/exit point for 
media and traffic. With network speeds reaching tens of gigabits per second per node, or terabytes per 
second in aggregate, host-based and network-based products can degrade performance and cause job 
failures. Also, the network traffic itself is highly variable. Software may use traditional Ethernet or high-
bandwidth, low-latency fabrics such as InfiniBand and Omni-Path. The characteristics of network traffic 
differ from software to software and even across the lifetime of a single piece of software as it is 
developed on HPC systems. 

These details highlight the following difficulties for the security practitioner: 

! Compute nodes run arbitrary code;  
! Compute nodes can access centralized research storage; 
! Compute nodes produce highly variable network traffic; 
! Compute nodes have fewer security controls for performance reasons; and 
! Compute nodes produce terabytes of network traffic per second in aggregate. 

4. BPF	Introduction	
Many security practitioners identify the filter expression of tcpdump as BPF, but this is somewhat 
inaccurate. Tcpdump transparently compiles the expression into BPF code. The actual BPF bytecode can 
be dumped using the –d option. This bytecode is fed into a register-based virtual machine that runs in 
the Linux kernel. 

[root@m7-10-16 tools]# tcpdump -d 'host 192.168.10.1' 
(000) ldh      [14] 
(001) jeq      #0x800           jt 2    jf 6 
(002) ld       [28] 
(003) jeq      #0xc0a80a01      jt 12    jf 4 
(004) ld       [32] 
(005) jeq      #0xc0a80a01      jt 12    jf 13 
(006) jeq      #0x806           jt 8    jf 7 
(007) jeq      #0x8035          jt 8    jf 13 
(008) ld       [30] 
(009) jeq      #0xc0a80a01      jt 12    jf 10 
(010) ld       [40] 
(011) jeq      #0xc0a80a01      jt 12    jf 13 
(012) ret      #262144 
(013) ret      #0 

Figure 3. Dump of BPF bytecode from tcpdump (Source: Author, Billy Wilson) 

Originally implemented in 1992, the two-register virtual machine approach of “BSD Packet Filter” was 
twenty to one hundred times faster than its competing packet filters, partly because the 
implementation matched how the underlying RISC CPU operated, and partly because of its improved 
buffer model (McCanne, 1992). 
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Support for BPF in Linux was added in the 2.5 development kernel and stayed largely untouched for 
roughly a decade. In the last eight years, however, BPF has changed dramatically, burgeoning into its 
own Linux subsystem. Many new terms have evolved over the years, the following section provides a 
brief review of these developments. 

In 2012, Will Drewry struggled to have code accepted into the Linux kernel. He wrote a patch to allow 
seccomp to filter arbitrary syscalls, but his work was in limbo between a prctl() maintainer who 
suggested using the perf subsystem for filtering, and a perf maintainer who suggested using prctl() for 
filtering, with neither gatekeeper budging (Edge, 2011). In a stroke of brilliance, Will found the BPF 
virtual machine and used it to filter allowed syscalls instead of network traffic (Corbet, 2012). 

Two years later, Alexei Starovoitov posted a patch set that greatly improved BPF performance. He 
increased the number of registers from two to ten, added to its instruction set to better resemble 
modern processors, and upgraded its registers to 64 bits (Corbet, 2014 May). His work yielded a four-
fold increase in speed (Starovoitov, 2014 March), and importantly, he also posted a patch that 
demonstrated using BPF for tracing filters (Starovoitov, 2014 May). 

A month later, Alexei extended BPF further. He moved BPF out of the network subsystem into its own 
directory, signaling the intention for its general use. He also implemented a new bpf() syscall. This 
allowed users with CAP_SYS_ADMIN privileges (i.e., root) to load BPF programs into the kernel to 
respond to specific events that they defined. An in-kernel verifier ensured the safety of the program 
before loading it (Corbet, 2014 July). 

This improved BPF implementation went through many names. It was first known as “internal BPF” (as 
opposed to “classic BPF”) but was later called extended BPF, or eBPF. Today, system maintainers have 
chosen to simply call the execution engine BPF, without any reference to what the acronym originally 
represented (Gregg, 2020 January). 

4.1. BPF	Compiler	Collection	
While valuable to kernel developers, the bpf() syscall was impractical to those who didn’t keep a copy of 
the kernel source code lying around. The BPF Compiler Collection (BCC) was created in April of 2015 to 
address this issue. It greatly simplified the process of writing tracing tools that could leverage BPF 
(Fleming, 2017).  

Over the course of a few years, this collection grew into a mature suite of tools that were easy for 
systems administrators to use. There are currently over 100 BCC tools readily available for monitoring 
system calls, language function calls (including php, perl, ruby, and python), network events, filesystem 
performance, database performance, and more. Four basic examples of these tools are included below. 
These examples are not intended to detect sophisticated attackers, but rather to demonstrate the 
potential of the tools. 

The opensnoop tool traces open() and openat() syscalls. In this example, the tool detected a user’s failed 
attempts to list the /root directory and view /etc/shadow: 
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# /usr/share/bcc/tools/opensnoop -u 1000 -x 
PID    COMM               FD ERR PATH 
41892  cat                -1   2 /etc/shadow 
41905  ls                 -1   2 /root 

Figure 4. Example of “opensnoop” (Source: Author, Billy Wilson) 

The execsnoop tool traces new processes via exec() syscalls. This example shows a user attempting to 
run nc, download ncat, and create and run a suspicious Python script. 

# /usr/share/bcc/tools/execsnoop 
PCOMM            PID    PPID   RET ARGS 
nc               27530  16339    0 /usr/bin/nc evil.org 4444 
wget             27540  16339    0 /usr/bin/wget https://github.com/andrew-
d/static-binaries/raw/master/binaries/linux/x86_64/ncat 
vim              27642  16339    0 /usr/bin/vim tunnel.py 
chmod            27646  16339    0 /usr/bin/chmod u+x tunnel.py 
tunnel.py        27648  16339    0 ./tunnel.py 

Figure 5. Example of “execsnoop” (Source: Author, Billy Wilson) 

The ttysnoop tool displays the output of a TTY as if the administrator is sitting at the same terminal. The 
following example shows an administrator snooping /dev/pts/1 and observing a user named “billy” 
exploring the system: 

# /usr/share/bcc/tools/ttysnoop 1 
which nmap 
/usr/bin/which: no nmap in 
(/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin) 
billy@testnode /tmp$ which nc 
/usr/bin/nc 
billy@testnode /tmp$ which ncat 
/usr/bin/ncat 
billy@testnode /tmp$ route -n 
Kernel IP routing table 
Destination     Gateway         Genmask         Flags Metric Ref    Use 
Iface 
0.0.0.0         192.168.10.1   0.0.0.0         UG    100    0        0 em1 
billy@testnode /tmp$ for i in 192.168.10.{1..3}; do ping -c1 -w1 $i && echo 
$i is up; sleep 5; done 
ping: socket: Operation not permitted 
ping: socket: Operation not permitted 
ping: socket: Operation not permitted 
billy@testnode /tmp$ 

Figure 6. Example of “ttysnoop” (Source: Author, Billy Wilson) 

Last is the tcpstates tool, used here for tracing any TCP state changes involving remote ports 22, 80, or 
443. While the trace was running, a user connected over SSH to a neighboring compute node for 10 
seconds and then closed the connection. Next, the user attempted to access a website with wget and 
then sent a keyboard-interrupt after three failed connection attempts. 
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# /usr/share/bcc/tools/tcpstates -D 22,80,443 
SKADDR           C-PID C-COMM     LADDR           LPORT RADDR           
RPORT OLDSTATE    -> NEWSTATE    MS 
ffff9ac37e622f80 42979 ssh        192.168.10.179 0     192.168.10.178 22    
CLOSE       -> SYN_SENT    0.000 
ffff9ac37e622f80 0     swapper/12 192.168.10.179 0     192.168.10.178 22    
SYN_SENT    -> ESTABLISHED 0.218 
ffff9ac37e622f80 42979 ssh        192.168.10.179 0     192.168.10.178 22    
ESTABLISHED -> FIN_WAIT1   10899.358 
ffff9ac37e622f80 42979 ssh        192.168.10.179 0     192.168.10.178 22    
FIN_WAIT1   -> FIN_WAIT2   0.066 
ffff9ac37e622f80 42979 ssh        192.168.10.179 0     192.168.10.178 22    
FIN_WAIT2   -> CLOSE       0.003 
ffff9ac3874c8000 42988 wget       192.168.10.179 0     52.2.61.110     80    
CLOSE       -> SYN_SENT    0.000 
ffff9ac3874c8000 0     swapper/12 192.168.10.179 0     52.2.61.110     80    
SYN_SENT    -> CLOSE       131001.368 
ffff9ac3874c8000 42988 wget       192.168.10.179 0     52.2.61.110     80    
CLOSE       -> SYN_SENT    1000.312 
ffff9ac3874c8000 0     swapper/12 192.168.10.179 0     52.2.61.110     80    
SYN_SENT    -> CLOSE       130071.675 
ffff9ac3874c8000 42988 wget       192.168.10.179 0     52.2.61.110     80    
CLOSE       -> SYN_SENT    2000.533 
ffff9ac3874c8000 0     swapper/12 192.168.10.179 0     52.2.61.110     80    
SYN_SENT    -> CLOSE       129071.439 
ffff9ac3874c8000 42988 wget       192.168.10.179 0     52.2.61.110     80    
CLOSE       -> SYN_SENT    3001.378 
ffff9ac3874c8000 42988 wget       192.168.10.179 0     52.2.61.110     80    
SYN_SENT    -> CLOSE       8582.302 

Figure 7. Example of “tcpstates” (Source: Author, Billy Wilson) 

While easy to use, BCC tools are not necessarily easy to write or maintain. They are python scripts with 
embedded BPF programs written in C. Tools may break when the traced code changes, requiring 
continual maintenance from version to version of the traced software. 

4.2. bpftrace	
In December 2016, an even more intuitive tool came to fruition as a result of Alastair Robertson’s spare-
time hobby.  Robertson started a project built on BCC and BPF called bpftrace, and it offered an AWK-
like syntax that was already familiar to many systems administrators and security practitioners. The 
project attracted prominent BCC contributors and completed its first set of major features in 2018 
(Gregg, 2020 January). Today, bpftrace is a full-fledged tracing utility that can use a stupendous variety 
of sources and trigger many types of actions. 

The main downside of the tool is that it requires a minimum Linux kernel version of 4.1 and 
recommends version 4.9 to take full advantage of its features. This means that the tool is only available 
on later versions of Linux distributions such as Red Hat Enterprise Linux 8, Debian 9, and Ubuntu 19.04. 
Even then, the version of bpftrace on these distributions does not have all the features available in the 
latest version. 
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For those exploring bpftrace for the first time, two helpful starting points are running `bpftrace –l` for a 
list of static and dynamic probes available for use and `bpftrace –lv [tracepoint_name]` for the 
arguments available to retrieve values from when a probe fires. 

The basic syntax of bpftrace and a few instructive examples are provided. A full walkthrough of writing 
bpftrace scripts is outside the scope of this paper, but readers who wish to familiarize themselves with 
using the tool can review Brendan Gregg’s bpftrace tutorial1.  

bpftrace scripts follow a basic syntax familiar to AWK users: 

#!/usr/bin/bpftrace 
 
probe1 /filter/ { action } 
probe2, probe3 /filter/ { action } 

Figure 8. Basic syntax of bpftrace (Source: Author, Billy Wilson) 

The following example traces openat() calls by UID 1000: 

#!/usr/bin/bpftrace 
  
BEGIN 
{ 
  printf ("%s\t%s\t%s\n", "COMM", "FILE", "RETVAL"); 
} 
  
tracepoint:syscalls:sys_enter_openat 
/uid == 1000/ 
{ 
  @filename[tid] = str(args->filename); 
} 
  
tracepoint:syscalls:sys_exit_openat 
/uid == 1000 && args->ret < 0/ 
{ 
  printf("%s\t%s\t%d\n", comm, @filename[tid], args->ret); 
  delete(@filename[tid]); 
} 

Figure 9. Example Script of Tracing openat() Syscall (Source: Author, Billy Wilson) 

The script prints a header; saves the target filename when UID 1000 enters openat(); and prints the 
command, file, and errno when openat() returns an error. It produced the following output when UID 
1000 attempted to open /etc/shadow. 

# ./detect_failed_openat.bt  
Attaching 3 probes... 
COMM    FILE    RETVAL 
cat    /etc/shadow    -13 

Figure 10. Example Output of Tracing openat() Syscall (Source: Author, Billy Wilson) 

 
1 https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.md 
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Userspace functions can also be traced. The following example script from Brendan Gregg (2020 
January) traces the readline() function in /bin/bash. Once started, it will trace readline() for all current 
and future invocations of /bin/bash. 

#!/usr/bin/bpftrace 
 
BEGIN 
{ 
  printf("Tracing bash commands... Hit Ctrl-C to end.\n"); 
  printf("%-9s %-6s %s\n", "TIME", "PID", "COMMAND"); 
} 
 
uretprobe:/bin/bash:readline 
{ 
  time("%H:%M:%S  "); 
  printf("%-6d %s\n", pid, str(retval)); 
} 

Figure 11. Example Script of Tracing Bash readline() (Source: Author, Billy Wilson) 

The script produced the following output, revealing an attempt by a bash session with PID 28853 to 
invoke a cryptocurrency miner: 

# /usr/share/bpftrace/tools/bashreadline.bt  
Attaching 2 probes... 
Tracing bash commands... Hit Ctrl-C to end. 
TIME      PID    COMMAND 
10:08:30  16339  chmod u+x trace_bash_readline.bt  
10:08:31  16339  ./trace_bash_readline.bt  
10:08:54  16339  id 
10:08:59  16339  cd ~ 
10:15:25  28853  ./cgminer -o stratum+tcp://mmpool.org:3333 -u jexotic –p 
tigercoins4LYFE 
10:15:38  16339  vim job.sbatch 

Figure 12. Example Output of Tracing Bash readline() (Source: Author, Billy Wilson) 

Shared libraries can also be traced. This is especially valuable because it allows an administrator to place 
probes that are difficult for an attacker to avoid. The following example script places probes in the 
gethost*() and getaddrinfo() functions of the GNU C library to trace DNS queries. It is modified from 
Brendan Gregg’s gethostlatency.bt script (Gregg, 2018). 
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#!/usr/bin/bpftrace 
  
BEGIN 
{ 
  printf("%-8s %-6s %-6s %-16s %s\n", "TIME", "UID", "PID", "COMM", "HOST"); 
} 
  
uprobe:/lib64/libc.so.6:getaddrinfo, 
uprobe:/lib64/libc.so.6:gethostbyname, 
uprobe:/lib64/libc.so.6:gethostbyname2 
{ 
  time("%H:%M:%S "); 
  printf("%-6d %-6d %-16s %s\n", uid, pid, comm, str(arg0)); 
} 

Figure 13. Example Script of Tracing GNU C Library (Source: Author, Billy Wilson) 

The output shows DNS queries from a user invoking curl and wget on questionable websites: 

# ./dnsqueries.bt  
Attaching 4 probes... 
TIME     UID    PID    COMM             HOST 
11:15:59 1000  31854  curl             questionablewebsite.cn 
11:16:00 1000  31857  wget             a2ng98eh2k0c94782hdo.com 

Figure 14. Example Output of Tracing GNU C Library (Source: Author, Billy Wilson) 

These examples demonstrated the ability of bpftrace to monitor filesystems, processes, user sessions, 
and network activity. Once installed, the software includes over thirty high-quality scripts that cover 
dozens of system activities. As Brendan Gregg put it, gaining this depth and breadth of visibility on a 
Linux system “can feel like having X-ray vision” (Gregg, 2020 January). This level of vision is available to 
any Linux systems administrator who becomes adept at using the tools. 

5. Performance	Analysis	of	BPF	in	HPC	
The remainder of this paper is dedicated to measuring the performance impact of BPF when monitoring 
compute nodes under heavy load. As crucial as it is to demonstrate the effectiveness of a security 
solution, HPC administrators likewise need assurance that security tools will not degrade performance 
beyond a defined threshold. 

Brendan Gregg targeted a performance loss of less than 1% when using BPF tools and scripts in 
production at Netflix (Gregg & Maestretti, 2017). The expectations in this paper’s performance analysis 
were as follows: 

! Performance loss <1%: BPF probes are widely recommended in HPC 
! Performance loss 1%-3%: BPF probes are recommended in qualified circumstances 
! Performance loss >3%: BPF probes should be revised until performance is acceptable 
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5.1. Test	Environment	
Eight compute nodes with identical hardware were reserved for testing. They were connected to an 
InfiniBand fabric composed of FDR and EDR switches in a CLOS network topology (i.e., a fat-tree 
topology with multiple roots). The nodes’ hardware characteristics were as follows: 

Node 
Model Dell PowerEdge C6320 
Sockets 2 
Processor 
Model Intel Xeon E5-2680 v4 
Codename Broadwell 
Cores 14 
Base Frequency 2.4 GHz 
Turbo Frequency 3.3 GHz 
L2 Cache 14 x 256 KiB 
L3 Cache 35 MiB 
Memory 
Size 128 GB (8 x 16 GB DIMMs) 
Type DDR4 
Speed 2400 MT/s 
Local Disk 
Disk count 1 
Disk Size 1 TB 
Disk Type SATA 
Disk Speed 7200 RPM 
Ethernet 
NIC Model Intel 82599ES Dual-port SFI/SFP+ 
Speed 10GbE 
InfiniBand 
NIC Model Mellanox ConnectX-3 
Speed 56 Gb/sec (4X FDR) 

Figure 15. Hardware Specifications for Compute Nodes (Source: Author, Billy Wilson) 

A new operating system image was built that supported BPF tools, benchmarking software, HPC 
scheduling, centralized storage, and the InfiniBand fabric. A provisioning server presented this image to 
the compute nodes, which mounted the image as a read-only root to ensure it was identical and 
unchangeable across all compute nodes. The provisioning server also provided writable partitions that 
were bind-mounted onto key locations using /etc/rwtab and /etc/statetab. 
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The operating system included the following software of interest: 

Software Description Version 

bcc-tools BPF Compiler Collection and Tools 0.8.0-4.el8 

bpftrace BPF Tracer 0.9-3.el8 

gcc GNU Compiler Collection 8.3.1-4.5.el8 

kernel Linux Kernel 4.18.0-147.5.1.el8_1 

libibverbs Libraries for InfiniBand verbs support 22.3 

openblas Linear algebra library 0.3.3-2.el8 

openmpi Message passing library 4.0.1-3.el8 

rdma-core Drivers for InfiniBand support 22.3 

slurmd HPC scheduling client 19.05.0 

HPL High-Performance Linpack Benchmark 2.3 (netlib) 

Figure 16. List of Key Software and Versions on Compute Nodes (Source: Author, Billy Wilson) 

The Intel cores in these compute nodes were of the Broadwell generation. These were touted to have 
up to 16 floating-point operations per clock cycle because of the new fuse-multiply-add (FMA) 
instruction, but real-world runs have shown lower results because the instruction wasn’t as generally 
applicable as other instructions like AVX2. For this analysis, the cores were estimated to provide 12 
floating-point operations per cycle. 

Each compute node’s theoretical max “flops,” or floating-point operations per second, is the product of 
its total processor cores, clock speed (GHz), and floating-point operations per cycle. When estimating 12 
operations per cycle, the compute nodes for this analysis had an estimated theoretical max of 806 
gigaflops per node. 

5.2. Benchmarking	Software	
A series of High-Performance LINPACK (HPL) Benchmarks were executed on a set of compute nodes; 
these comparative studies were accomplished with and without Berkeley Packet Filter (BPF) probes, 
measuring to what degree the BPF probes affected performance.  

This HPL Benchmark is used as a reference benchmark to calculate the top-performing supercomputers 
in the world. In essence, HPL Benchmark is performing numerical linear algebra techniques to solve a 
series of polynomial equations. It is inherent for the administrator to scale the extent of the problem 
and to optimize the software in order to attain best outcomes. A HPL Linpack’s compiler and parameters 
are configurated to set the problem size, block size, and process geometry. A broad examination of 
optimization performances is beyond the scope of this paper; however, a reasonable HPL baseline 
should obtain 75% to 85% of the theoretical max flops of a compute node. 
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The HPL parameters and characteristics for each grouping of nodes were as follows: 

Count Prob. Size Blocks P Q Cores Memory Used Theoretical Max GFlops 

1 node 98000 248 4 7 28 76 GB 806.4 

2 nodes 140000 248 7 8 56 156 GB 1612.8 

4 nodes 200000 248 8 14 112 320 GB 3225.6 

8 nodes 280000 248 14 16 224 627 GB 6451.2 

Figure 17. HPL Parameters and Characteristics Per Node Grouping (Source: Author, Billy Wilson) 

Using the eight compute nodes, the author ran a total of 32 HPL benchmark tests. First, each individual 
compute node ran the benchmark. Next, the nodes were grouped into pairs to run the benchmark 
together. Then, they were grouped into fours. Finally, all eight nodes ran the benchmark as a single 
cluster, twofold. These tests were all repeated using the BPF probes. For the repetitive tests, a script 
was executed to simulate low-profile attacks that the BPF probes were projected to detect. 

5.3. BPF	probes	
The BPF execution engine is fast, but it cannot make up for BPF probes that are frequently fired or 
inherently slow. If a probe is attached to an event that fires millions of times per second, the overhead 
will add up. In some cases, tracing malloc() or free() will slow the target application tenfold or more 
(Gregg, 2020 January). In contrast, an ideal BPF probe will fire infrequently and provide high-value data. 

Before writing a BPF probe, it is important to determine the question that needs to be answered. These 
are the questions that the probes of this performance analysis were written to answer: 

! Are compute nodes attempting to send beacons to external systems? 
! Are compute nodes running cryptocurrency miners? 
! Are compute nodes the source of any suspicious lateral movements? 
! Are compute node processes attempting to escalate privileges? 
! Are compute nodes using an SSH proxy to connect to external systems? 

To this end, four bpftrace scripts were written: dnssnoop.bt, pamsnoop.bt, sshtunnel.bt, and 
tcpconnect_filter.sh. These scripts produced logs in a key-value format for easy parsing. All scripts 
output the timestamp, script type (dns, pam, sshproxy, tcp) and the PID, UID, and command of the 
process that caused the probe to fire. Each script also output additional data for its unique type. 

The first script, dnssnoop.bt, logged DNS queries by tracing the relevant function calls in the GNU C 
library. It took a UID as its first argument on the command line to log only the DNS queries of a given 
user. 
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dnssnoop.bt 
#!/usr/bin/bpftrace -Bline 
 
// Trace glibc for any dns queries by the user 
 
uprobe:/lib64/libc.so.6:getaddrinfo, 
uprobe:/lib64/libc.so.6:gethostbyname, 
uprobe:/lib64/libc.so.6:gethostbyname2 
/uid == $1 / 
{ 
  time("%Y-%m-%d %H:%M:%S "); 
  printf("type=dns pid=%d uid=%d comm=%s query=%s\n", pid, uid, comm, 
str(arg0)); 
} 

Figure 18. Content of dnssnoop.bt Script (Source: Author, Billy Wilson) 

The second script, pamsnoop.bt, detected processes changing from one user to another by tracing Linux 
PAM, the library responsible for handling authentication tasks. Its first argument on the command line 
specified the UID to monitor. It logged both the original user and the new user (target) associated with 
the process. It also logged the return value of the traced function. 

pamsnoop.bt 
#!/usr/bin/bpftrace -Bline 
 
// Trace PAM library to detect when a user changes to another user 
 
uprobe:/lib64/libpam.so.0:pam_modutil_getpwnam 
/uid == $1/ 
{ 
  @seen[tid] = 1; 
  @uid[tid] = uid; 
  @user[tid] = str(arg1); 
} 
 
uprobe:/lib64/libpam.so.0:pam_modutil_getpwnam 
/@seen[tid] && uid != @uid[tid]/ 
{ 
  time("%Y-%m-%d %H:%M:%S "); 
  printf("type=pam pid=%d uid=%d comm=%s ", pid, uid, comm); 
  printf("user=%s target=%s retval=%d\n", @user[tid], str(arg1), retval); 
} 
 
 
END 
{ 
  clear(@seen); 
  clear(@uid); 
  clear(@user); 
}  

Figure 19. Content of pamsnoop.bt Script (Source: Author, Billy Wilson) 

The third script, sshtunnel.bt, detected when SSH was used to forward TCP ports. TCP port forwarding is 
a built-in SSH feature that allows someone to use an SSH server as a proxy to reach external resources. 



Securing the Soft Underbelly of a Supercomputer with BPF Probes 

Cyber Security and Information Systems Information Analysis Center | https://www.csiac.org | 17 March 2021  Page 18 of 33 

This feature can be disabled on SSH servers with the AllowTCPForwarding family of SSH options, but it is 
on by default and is often left that way. 

The script detected port forwarding by tracing the inet_sock_set_state() syscall and logging whenever 
an SSH client changed a socket to a LISTEN state. Note that while SSH servers regularly open listening 
ports, a client opening a listening port is a tell-tale sign of port forwarding. 

Specifically, the script detected local, or dynamic, port forwarding. Local port forwarding specifies an 
SSH server, a remote host and port to connect to, and a local port to open. Any network connections to 
the local port will be forwarded through the SSH server to the remote host and port. Dynamic port 
forwarding turns the SSH client into a SOCKS proxy, allowing software to connect to the local port and 
forward all traffic through an SSH server. 

sshtunnel.bt 
#!/usr/bin/bpftrace -Bline 
 
// Trace inet_sock_set_state() to detect SSH clients attempting local and 
dynamic port forwarding 
 
tracepoint:sock:inet_sock_set_state 
/comm == "ssh"/ 
{ 
  if (args->newstate == 10 && args->protocol == 6) 
  { 
    time("%Y-%m-%d %H:%M:%S "); 
    printf("type=sshproxy pid=%d uid=%d comm=%s listening_port=%d \n", pid, 
uid, comm, args->sport); 
  } 
} 

Figure 20. Content of sshtunnel.bt Script (Source: Author, Billy Wilson) 

The final script, tcpconnect_filter.sh, was the most complex of the four. This was because the version of 
bpftrace available on RHEL 8.1 was still missing key functionality for network tracing. It lacked features 
such as integer casting, strncmp(), and an array[] operator, making it impossible to retrieve data from 
some of the most valuable networking data structures. 

Dale Hamel wrote the original tcpconnect.bt, which traced the tcp_connect() kernel function to detect 
all TCP connects (Hamel, 2018). The script was modified for this research, which included wrapping it in 
a Bash script to enable the whitelisting of a subnet. This allowed the compute cluster’s subnet to be 
whitelisted so that only TCP connections to external resources would cause probes to fire. 

Also note that this script only traced TCP traffic which is protocol; unlike the more traditional traceroute 
which sends UDP connectionless Internet protocol. Since UDP is a stateless protocol, it will cause the 
probe to fire on every sent message. 

 

 



Securing the Soft Underbelly of a Supercomputer with BPF Probes 

Cyber Security and Information Systems Information Analysis Center | https://www.csiac.org | 17 March 2021  Page 19 of 33 

tcpconnect_filter.sh 
#!/usr/bin/bash 
 
if [ "$#" -ne 2 ]; then 
  echo "Usage: $0 [whitelist-network-address] [whitelist-subnet-mask]" 
  exit 1 
fi 
 
IFS=. read -s n1 n2 n3 n4 <<< $(echo $1) 
IFS=. read -s s1 s2 s3 s4 <<< $(echo $2) 
 
/usr/bin/bpftrace -Bline -e' 
 
#include <net/sock.h> 
 
kprobe:tcp_connect 
{ 
  $sk = ((struct sock *) arg0); 
  $inet_family = $sk->__sk_common.skc_family; 
  $af_inet = 2; 
 
  if ($inet_family == $af_inet) { 
    $daddr = $sk->__sk_common.skc_daddr; 
    $saddr = $sk->__sk_common.skc_rcv_saddr; 
    $sport = $sk->__sk_common.skc_num; 
    $dport = $sk->__sk_common.skc_dport; 
 
    // Destination port is big endian, it must be flipped 
    $dport = ($dport >> 8) | (($dport << 8) & 0x00FF00); 
 
    // Filter Network Address 
    $filter_addr = ($1) + ($2 << 8) + ($3 << 16) + ($4 << 24); 
 
    // Filter Netmask 
    $filter_netmask = ($5) + ($6 << 8) + ($7 << 16) + ($8 << 24); 
 
    if (($daddr & $filter_netmask) != ($filter_addr & $filter_netmask)) { 
 
      time("%Y-%m-%d %H:%M:%S "); 
      printf("type=tcp_connect pid=%d uid=%d comm=%s ", pid, uid, comm); 
      printf("saddr=%s sport=%d daddr=%s dport=%d\n", ntop($af_inet, 
$saddr), $sport, ntop($af_inet, $daddr), $dport); 
    } 
  } 
}' $n1 $n2 $n3 $n4 $s1 $s2 $s3 $s4 

Figure 21. Content of tcpconnect_filter.sh Script (Source: Author, Billy Wilson) 

These scripts were copied to each compute node and executed at the beginning of benchmarks that 
measured BPF performance impact. Their logs were redirected to files on a shared storage system. 
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5.4. Simulating	Low-Profile	Attacks	
For tests with BPF probes attached, a Bash script was launched on participating nodes that simulated 
low-profile attacks. The script produced a timestamped log for each action. Every 1 to 15 seconds, it 
performed one of the following actions as an unprivileged user: 

! Triggered a DNS query of an external domain 
! Escalated to a privileged user 
! Opened an SSH tunnel 
! Attempted a TCP connection to a random private IP 

For DNS queries, the script randomly chose a domain from a list, many of them representing common 
bitcoin mining sites. It then chose from one of five command-line tools to trigger the query: curl, wget, 
python, dig, or host. 

For privilege escalation, the unprivileged user was temporarily given privileges to use sudo to escalate to 
the root user on the compute nodes. The script ran a basic command as root after escalation. This 
simulated an adversary who had obtained control over an account with sudo privileges and 
subsequently escalated to root via regular administrative techniques. It did not represent privilege 
escalation via software flaw exploitations.  

For SSH tunneling, the script randomly chose between local port forwarding and dynamic port 
forwarding. Local port forwards connected to an SSH server in the DMZ and opened a tunnel to 
https://ubuntu.com using a random local port. Dynamic port forwards connected to that same server 
and opened a random local port for SOCKS proxy use. 

For TCP connection attempts, the script used Bash’s built-in /dev/tcp feature. This is not an actual device 
on the filesystem, but a device emulated by Bash for easy interaction with TCP sockets. Any I/O to 
/dev/tcp/[host]/[port] triggers a TCP connection attempt to that host and port. The script chose a 
random host in the 192.168.0.0/16 subnet and a random port, attempting to connect to it over TCP. 

The full body of the low-profile attack script can be found in Appendix A. 

6. Results	
The results of the benchmarks were analyzed both from a performance perspective and a detection 
perspective to show whether BPF tracing scripts can sufficiently detect attacks on compute nodes 
without degrading performance for researchers. 

6.1. Performance	Results	
HPL results indicated that the BPF probes had less than 1% impact on compute node performance. In 
many cases, HPL benchmarks with BPF enabled recorded higher gigaflops than the non-BPF benchmarks. 
The author did not interpret these gains to mean that BPF probes improve performance, as such a claim 
for a tracing tool cannot be concluded. At best, these discrepancies suggested that BPF had nearly zero 
performance impact on compute nodes. Perhaps more realistically, the gains may have suggested that 
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other factors besides BPF also influenced compute node performance. Possibilities include thermal 
fluctuations that impact Intel Turbo Mode, congestion on the InfiniBand fabric, and normal jitter from 
system processes. 

Each chart below was scaled based on the theoretical max gigaflops for a node count. Thus, the vertical 
axis for the single-node chart has a maximum of 806.4 gigaflops, while the vertical axis for the eight-
node chart has a maximum of 6451.2 gigaflops, which is eight times greater. Performance percentages 
are calculated against these maximums. 

For single-node runs, Node 1 suffered a performance loss of 0.41%, the greatest loss of all tests apart 
from a discrepancy with eight-node runs. Node 8 was the only node with no performance loss, instead 
recording a gain of 0.02%. 

 

Figure 22. Chart of Single Node HPL Gigaflops (Source: Author, Billy Wilson) 

For two-node runs, there were no instances of BPF causing performance loss. Node pairs [1-2] and [7-8] 
tied for the smallest gain of 0.12%, while node pair [3-4] had the largest gain of 0.65%. 
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Figure 23. Chart of Two-Node HPL Gigaflops (Source: Author, Billy Wilson) 

The four-node runs likewise recorded small gains for BPF-enabled runs, with nodes [1-4] gaining 0.09% 
and nodes [5-8] gaining 0.13%. 

 

Figure 24. Chart of Four-Node HPL Gigaflops (Source: Author, Billy Wilson) 

The eight-node HPL results were unusual enough to warrant discussion. These benchmarks were run 
twice, meaning that there were two non-BPF results and two BPF results. Depending on how they were 
paired, the benchmarks either supported that BPF had low performance impact or painted a picture of 
unexplainable performance differences from run to run. 

The four eight-node benchmarks can be paired in two ways. The chart on the left below in Figure 25 
shows the results when the low-performing non-BPF and BPF runs are paired together and the high-
performing non-BPF and BPF runs are paired together. The chart on the right show the results when the 
non-BPF and BPF runs that ran first are paired together and the non-BPF and BPF runs that ran second 
are paired together. Depending on how the results are paired, very different outcomes are seen. 
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Figure 25. Eight-Node HPL Gigaflops, Paired by Performance and Execution Order (Source: Author, Billy Wilson) 

When paired by lows and highs, enabling BPF caused a performance loss of 0.21% in the “low” 
benchmarks and a gain of 0.05% in the “high” benchmarks. However, when paired chronologically, 
enabling BPF caused a 1.62% loss in the first benchmarks and a 1.46% gain in the second benchmarks.  

Put differently, the results of the two non-BPF runs that used identical hardware and software had a 
delta of 100 gigaflops, and likewise for the two runs with BPF enabled. Such a delta would only make 
sense if outside factors such as equipment temperatures or network congestion influenced the results. 

Because of these discrepancies, the author found the eight-node results to be inconclusive. Perhaps the 
larger conclusion to be drawn is that BPF traces caused a performance change somewhere between a 
1.62% loss or 1.46% gain for eight-node runs. Taking the averages of the non-BPF and BPF benchmarks, 
performance loss was only 0.08%. Ultimately, the discrepancies are best resolved with further 
benchmark testing.  

A table of all performance results can be found in Appendix B. 

6.2. Detection	Results	
The logs of the four bpftrace scripts were cross-checked against logs from the low-profile attack script to 
determine whether the BPF probes were adequate in detecting unwanted behavior. 

Overall, the author found that while the performance of the bpftrace scripts was exemplary, the fidelity 
of the scripts was hampered by excess noise. Scripts often produced multiple logs for a single action of 
the attack script. They also produced logs that were triggered by the benchmark software itself. 

The dnssnoop.bt script created logs not only for domain-based host lookups but also for IP-based host 
lookups, including those handled by the /etc/hosts file. This was especially apparent as HPL began IPC 
communications with itself and other cluster members. Logged queries included all participating nodes, 
as well as domains and IPs that pointed to localhost. 
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dnssnoop.bt Log Excerpt 
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-1 
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-2 
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-2 
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-3 
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-3 
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-4 
2020-04-27 13:55:13 type=dns pid=24567 uid=12345 comm=mpirun query=node-4 
… 
2020-04-27 13:55:13 type=dns pid=24685 uid=12345 comm=xhpl query=node-1 
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl query=localhost 
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl 
query=192.168.10.11 
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl 
query=fe80::dead:beef:dead:beef 
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl 
query=192.168.10.11 
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl 
query=fe80::dead:beef:dead:beef 
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl query=127.0.0.1 
2020-04-27 13:55:13 type=dns pid=24584 uid=12345 comm=xhpl query=::1 

Figure 26. Log Excerpt of dnssnoop.bt (Source: Author, Billy Wilson) 

When DNS queries involved dig or host commands, the query was obfuscated. It could be concluded 
that this was due to the query being routed through systemd-resolved but this was unconfirmed.  

Low Profile Attack Log Excerpt 
2020-04-27 15:47:28 type=dns comm=dig url=reuters.com 

dnssnoop.bt Log Excerpt 
2020-04-27 15:47:29 type=dns pid=5997 uid=12345 comm=isc-worker0000 
query=127.0.0.1 
2020-04-27 15:47:29 type=dns pid=5997 uid=12345 comm=isc-worker0000 
query=::1 

Figure 27. Correlation of dig Execution with dnssnoop.bt Log (Source: Author, Billy Wilson) 

However, all queries using wget, curl, and python produced one accurate log per action. 

Low Profile Attack Log Excerpt 
2020-04-27 14:33:11 type=dns comm=wget url=btc.top 
2020-04-27 14:34:28 type=dns comm=python url=nanopool.org 
2020-04-27 14:36:17 type=dns comm=curl url=nanopool.org 

dnssnoop.bt Log Excerpt 
2020-04-27 14:33:13 type=dns pid=1401 uid=12345 comm=wget query=btc.top 
2020-04-27 14:34:30 type=dns pid=1491 uid=12345 comm=python 
query=nanopool.org 
2020-04-27 14:36:19 type=dns pid=1752 uid=12345 comm=curl query=nanopool.org 

Figure 28. Correlation of wget, python, and curl with dnssnoop.bt Log (Source: Author, Billy Wilson) 

The pamsnoop.bt script successfully detected sudo attempts, with the caveat that three logs were 
produced per sudo attempt. For every set of triplets, one log had a non-zero return value, so it should 
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be possible to reduce log output to one line per successful sudo attempt when filtered by the return 
value. 

Low Profile Attack Log Excerpt 
2020-04-27 16:23:16 type=sudo comm=sudo user=billy 

pamsnoop.bt Log Excerpt 
2020-04-27 16:23:18 type=pam pid=8928 uid=0 comm=sudo user=billy target=root 
retval=0 
2020-04-27 16:23:18 type=pam pid=8928 uid=0 comm=sudo user=billy target=root 
retval=0 
2020-04-27 16:23:18 type=pam pid=8928 uid=0 comm=sudo user=billy target=root 
retval=-810366576 

Figure 29. Correlation of sudo Attempt with pamsnoop.bt Log (Source: Author, Billy Wilson) 

The sshtunnel.bt successfully detected all SSH port forwarding connections, but it produced two logs per 
connection. 

Low Profile Attack Log Excerpt 
2020-04-27 14:02:47 type=ssh_proxy comm=ssh port_fwd_options=-D 43323 
2020-04-27 14:02:59 type=ssh_proxy comm=ssh port_fwd_options=-L 
32337:ubuntu.com:443 

sshtunnel.bt Log Excerpt 
2020-04-27 14:02:49 type=sshproxy pid=31319 uid=12345 comm=ssh 
listening_port=43323 
2020-04-27 14:02:49 type=sshproxy pid=31319 uid=12345 comm=ssh 
listening_port=43323 
2020-04-27 14:03:01 type=sshproxy pid=31340 uid=12345 comm=ssh 
listening_port=32337 
2020-04-27 14:03:01 type=sshproxy pid=31340 uid=12345 comm=ssh 
listening_port=32337 

Figure 30. Correlation of SSH Port Forwarding Attempt with sshtunnel.bt Log (Source: Author, Billy Wilson) 

Finally, the tcpconnect_filter.sh script successfully detected all TCP connection attempts to resources 
outside of the compute subnet. The fact that no compute nodes were included in the logs suggested 
that the subnet whitelist worked properly. One oversight was that the script did not exclude localhost 
TCP connections. 

tcpconnect_filter.sh Log Excerpt 
2020-04-27 13:55:12 type=tcp_connect pid=30335 uid=12345 comm=xhpl 
saddr=127.0.0.1 sport=40400 daddr=127.0.0.1 dport=46757 
2020-04-27 13:55:26 type=tcp_connect pid=30712 uid=12345 comm=wget 
saddr=192.168.10.11 sport=48552 daddr=47.254.4.118 dport=80 
2020-04-27 13:55:42 type=tcp_connect pid=30726 uid=12345 comm=curl 
saddr=192.168.10.11 sport=47822 daddr=47.52.122.155 dport=80 
2020-04-27 13:55:57 type=tcp_connect pid=30740 uid=12345 comm=bash 
saddr=192.168.10.11 sport=39408 daddr=192.168.144.84 dport=18044 
2020-04-27 13:56:31 type=tcp_connect pid=30782 uid=12345 comm=bash 
saddr=192.168.10.11 sport=38216 daddr=192.168.228.27 dport=31399 
2020-04-27 13:57:29 type=tcp_connect pid=30894 uid=12345 comm=ssh 
saddr=192.168.10.11 sport=42908 daddr=10.10.10.15 dport=22 

Figure 31. Log Excerpt of tcpconnect_filter.sh (Source: Author, Billy Wilson) 
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The table below provides an aggregated count of the logs across all runs. Each row pairs an attack log 
type with its associated bpftrace script log type. 

The dnssnoop.bt script proved the noisiest. It produced logs for /etc/hosts lookups, domain lookups, 
and IP lookups, as well as DNS queries performed by the attack script. The pamsnoop.bt script produced 
exactly three times as many logs as sudo attempts. The sshtunnel.bt script produced twice as many logs 
as SSH proxy attempts, minus one. There was a single time when an ssh_proxy attack log produced only 
one bpftrace log. The tcpconnect_filter.sh script detected all TCP connections outside the subnet, 
including connections to the SSH server in the DMZ, but the script also errantly included the many 
localhost communications by HPL. 

Attack Script Type Attack Log Count bpftrace Script Bpftrace Log Count 
dns 1703 dnssnoop.bt 19627 
sudo 1720 pamsnoop.bt 5160 
ssh_proxy 1713 sshtunnel.bt 3425 
tcpconnect 1766 tcpconnect_filter.sh 4902 

Figure 32. Count Comparisons of Low-Profile Attack Logs and bpftrace Logs (Source: Author, Billy Wilson) 

7. Conclusions	and	Future	Work	
BPF probes, more specifically the bpftrace tool are recommended on HPC compute nodes for detecting 
malicious behavior. This recommendation is based on performance comparisons of single-node, two-
node, and four-node HPL runs, both without and with BPF probes attached. 

In future performance analyses, researchers could control additional factors that cause variation in HPL 
results. One example is disabling Turbo Mode on Intel processors. Researchers could also perform HPL 
runs above four nodes, as the results of the eight-node HPL runs in this study were inconclusive.  

Moreover, future work should focus on the improvement of bpftrace scripts, especially as new features 
become available in future Linux distributions. Upcoming features include integer casting, the strncmp() 
function, and the array[] operator2 (Gregg, 2020 April). Best case for an auditor is to have a single (or 
just a few logs to review). Would recommend noting that an audit reduction script could be done to 
further filter the numerous logs that are generated between needed audit review cycles.  

This will be especially true for using the inet_sock_set_state() syscall. Although this syscall was traced 
for the sshtunnel.bt script, some of its most valuable data in its arguments remained unusable due to 
the lack of an array[] operator. Once the operator is available, for example, the tcpconnect_filter.bt 
script can be entirely rewritten to use this syscall instead of a less stable dynamic kernel probe. The 
sshtunnel.bt will also be able to log remote port forwarding in addition to local and dynamic port 
forwarding. 

 
2 Array operator functionality was merged into the master branch of bpftrace on 21 April 2019 and will hopefully be available in 
RHEL 8.2. 
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The bpftrace scripts in the analysis were limited to TCP. It would be valuable to write tracing scripts for 
other protocols such as ICMP, UDP, and InfiniBand if it can be done without producing excessive noise. 

Security practitioners familiar with kernel code can use their knowledge to produce new bpftrace scripts 
catered to detect attack scenarios they see in the wild. As an example, Brendan Gregg used bpftrace to 
detect attempts to exploit a zero-day Docker vulnerability by tracing the uncommonly used renameat2() 
syscall (Gregg, 2020 January). Using the signal() function of bpftrace, an administrator today could write 
tracing scripts that proactively kill processes entering syscalls or functions known to be associated with 
bad behavior. 

The latest bpftrace versions also support cgroups, making it easier to integrate tracing tools with HPC 
scheduler jobs. Using cgroups, a script can potentially filter processes associated with specific jobs 
dispatched by users. 

Intuitively, with the accelerating digital transformation coupled with the growing complexity of 
ecosystems, it has become increasingly problematic for organizations to manage their collective digital 
footprint (i.e. attack surface). It’s important to leverage and examine other emerging technologies for 
real-time traffic monitoring and the latest event-based analytic tools to detect and manage anomalies.  
One promising patch set is the Kernel Runtime Security Instrumentation (KRSI), which was developed by 
Google.  This Linux Security Module (LSM) framework provides a mechanism for various security checks 
with much greater configuration auditing tools compared to Linux Auditing System (AuditD) (Corbet, 
2019). 

Within this analysis support, the BPF tracing tools’ performance and detection results are accessible for 
classifying cyber threat actors within the HPC environments.  The implementation of the BFP trace 
scripts successfully recorded the simulation attack activities without degrading the performance beyond 
1% of compute nodes, exclusive of the discrepancies of the eight-node processors. With a few 
supplementary enhancements to the trace scripts, it could eliminate duplication and innocuous 
classification, while freeing up newly authorized trace scripts to exploit broader categories of attacks. 
These newly imposed developments will contribute to a high-fidelity detection and response solution 
built into the Linux kernel to protect against Linux kernel to protect both the security and performance 
of supercomputers. 
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Appendix	A:	Low-Profile	Attack	Script	
low_profile.sh	
#!/usr/bin/bash 
 
MIN_SLEEP=1 
MAX_SLEEP=15 
NONROOT_USER=someuser 
DMZ_IP=10.1.2.3 
URLPOOL_BGN=$(awk '$1 == "###URLPOOL_BGN###" { print NR + 1}' $0) 
URLPOOL_END=$(awk '$1 == "###URLPOOL_END###" { print NR - 1}' $0) 
 
 
dns_request() { 
 
  local urlpool_line=$(shuf -i $URLPOOL_BGN-$URLPOOL_END -n 1) 
  local dns_query=$(awk "NR == $urlpool_line" $0) 
  local choice=$(shuf -i 0-4 -n 1) 
 
  case $choice in 
    0) 
      date +"%Y-%m-%d %H:%M:%S type=dns comm=wget url=$dns_query" 
      sudo -u $NONROOT_USER wget -T1 --tries 1 -O /dev/null $dns_query 
>/dev/null 2>&1 
      ;; 
    1) 
      date +"%Y-%m-%d %H:%M:%S type=dns comm=curl url=$dns_query" 
      sudo -u $NONROOT_USER curl -m1 $dns_query >/dev/null 2>&1 
      ;; 
    2) 
      date +"%Y-%m-%d %H:%M:%S type=dns comm=dig url=$dns_query" 
      sudo -u $NONROOT_USER dig +tries=1 +time=1 $dns_query >/dev/null 2>&1 
      ;; 
    3) 
      date +"%Y-%m-%d %H:%M:%S type=dns comm=host url=$dns_query" 
      sudo -u $NONROOT_USER host -W1 $dns_query >/dev/null 2>&1 
      ;; 
    4) 
      date +"%Y-%m-%d %H:%M:%S type=dns comm=python url=$dns_query" 
      sudo -u $NONROOT_USER python -c "import socket; 
socket.setdefaulttimeout(1); socket.gethostbyname('$dns_query')" >/dev/null 
2>&1 
      ;; 
  esac 
} 
 
 
run_sudo() { 
  # This test depends on the $NONROOT_USER being 
  # able to sudo without a password 
 
  date +"%Y-%m-%d %H:%M:%S type=sudo comm=sudo user=$NONROOT_USER" 
  sudo -u $NONROOT_USER sudo id >/dev/null 2>&1 
 
} 
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tcp_connect_attempt() { 
 
  local o1=192 
  local o2=168 
  local o3=$(shuf -i 0-255 -n 1) 
  local o4=$(shuf -i 0-255 -n 1) 
  local port=$(shuf -i 1-61000 -n 1) 
 
  date +"%Y-%m-%d %H:%M:%S type=tcp_connect comm=bash ip=$o1.$o2.$o3.$o4 
port=$port" 
  timeout 1 sudo -u $NONROOT_USER bash -c "echo 
>/dev/tcp/$o1.$o2.$o3.$o4/$port" 
 
} 
 
 
ssh_proxy() { 
 
  local choice=$(shuf -i 0-1 -n 1) 
  local port=$(shuf -i 10000-60000 -n 1) 
 
  case $choice in 
    0) 
      local port_fwd_opt="-L $port:ubuntu.com:443" 
      ;; 
    1) 
      local port_fwd_opt="-D $port" 
      ;; 
  esac 
 
  date +"%Y-%m-%d %H:%M:%S type=ssh_proxy comm=ssh 
port_fwd_options=$port_fwd_opt" 
  sudo -u $NONROOT_USER ssh -n -o ConnectTimeout=5 -o ConnectionAttempts=1 
$port_fwd_opt $DMZ_IP 'id' >/dev/null 2>&1 
 
} 
 
 
while : 
do 
 
  interval=$(shuf -i $MIN_SLEEP-$MAX_SLEEP -n 1) 
  sleep $interval || exit 1 
 
  choice=$(shuf -i 0-3 -n 1) 
  case $choice in 
  0) 
    dns_request 
    ;; 
  1) 
    run_sudo 
    ;; 
  2) 
    tcp_connect_attempt 
    ;; 
  3) 
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    ssh_proxy 
    ;; 
  esac 
 
done 
 
exit 0 
 
# This script selects a url from the list below. 
# You can add urls, but don't change the tags 
 
###URLPOOL_BGN### 
poolin.com 
f2pool.com 
btc.com 
antpool.com 
viabtc.com 
1thash.top 
slushpool.com 
btc.top 
bitfury.com 
minexmr.com 
nanopool.org 
prohashing.com 
reuters.com 
baidu.com 
google.com 
reddit.com 
###URLPOOL_END### 
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Appendix	B:	HPL	Results	
Nodes Non-BPF Run BPF Run Comparison of Non-BPF 

and BPF Run 
Performance 

Seconds GFlops Pct Max Seconds GFlops Pct Max 

1 924.45 678.75 84.17% 928.95 675.47 83.76% -0.41% 

2 927.19 676.75 83.92% 928.91 675.49 83.77% -0.16% 

3 921.79 680.71 84.41% 922.81 679.96 84.32% -0.09% 

4 956.43 656.06 81.36% 960.79 653.09 80.99% -0.37% 

5 889.83 705.16 87.45% 890.34 704.76 87.40% -0.05% 

6 911.6 688.32 85.36% 911.69 688.26 85.35% -0.01% 

7 901.95 695.69 86.27% 904.9 693.42 85.99% -0.28% 

8 897.25 699.33 86.72% 897.05 699.49 86.74% 0.02% 

[1-2] 1357.69 1347.40 83.54% 1355.80 1349.30 83.66% 0.12% 

[3-4] 1366.23 1339.00 83.02% 1355.58 1349.50 83.67% 0.65% 

[5-6] 1335.42 1369.90 84.94% 1330.99 1374.00 85.19% 0.25% 

[7-8] 1317.00 1389.00 86.12% 1315.13 1391.00 86.25% 0.12% 

[1-4] 2006.03 2658.70 82.42% 2003.93 2661.50 82.51% 0.09% 

[5-8] 1902.89 2802.80 86.89% 1900.05 2807.00 87.02% 0.13% 

[1-8] 2735.62 5349.70 82.93% NA NA NA NA 

[1-8] 2791.96 5241.80 81.25% NA NA NA NA 

[1-8] NA NA NA 2790.09 5336.10 82.71% NA 

[1-8] NA NA NA 2742.62 5245.30 81.31% NA 

	


