
Modern Empirical Cost and
Schedule Estimation Tools

A DACS State-of-the-Art Report

Contract Number F30602-89-C-0082
(Data & Analysis Center for Software)

Prepared for:
Air Force Research Laboratory -

Information Directorate (AFRL/IF)
525 Brooks Road

Rome, NY 13441-4505

Prepared by:
Thomas McGibbon

DoD Data & Analysis Center for Software (DACS)
ITT Industries - Systems Division

Griffiss Business & Technology Park
775 Daedalian Drive

Rome, NY 13441-4909

The Data & Analysis Center for Software (DACS) is a Department of Defense (DoD) Information
Analysis Center (IAC), administratively managed by the Defense Technical Information Center (DTIC)
under the DoD IAC Program. The DACS is technically managed by Air Force Research Laboratory
Information Directorate (AFRL/IF) Rome Research Site. ITT Industries - Systems Division manages
and operates the DACS, serving as a source for current, readily available data and information
concerning software engineering and software technology.

DoD Data & Analysis Center for Software (DACS)
P.O. Box 1400

Rome, NY 13442-1400
(315) 334-4905, (315) 334-4964 - Fax

cust-laisn@dacs.dtic.mil
http://www.dacs.dtic.mil

Lon R. Dean
Unclassified and Unlimited Distribution

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection is estimated to average 1 hour per response including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project, (0704-0188). Washington, DC 20503.

 1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

 6. AUTHORS

 7. PERFORMING ORGANIZATIONS NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

NSN 7540-901-280-5500 Standard Form 298 (Rev 2-89)

20 August 1997 N/A

A State-of-the-Art-Report F30602-89-C-0082
Modern Empirical Cost and Schedule Estimation Tools

Thomas McGibbon - DACS

ITT Industries, Systems Division, 775 Daedalian Drive DACS-SOAR-97-1
Rome, NY 13441-4909

Defense Technical Information Center (DTIC)/ AI
8725 John J. Kingman Rd., STE 0944, Ft. Belvoir, VA 22060
and Air Force Research Lab/IFTD N/A
525 Brooks Rd., Rome, NY 13440

Available from: DoD Data & Analysis Center for Software (DACS)
775 Daedalian Drive, Rome, NY 13441-4909

Approved for public release, distribution unlimited UL

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Cost models were derived from the collection and analysis of large collections of project data. Modelers
would fit a curve to the data and analyze those parameters that affected the curve. Early models applied to
custom-developed software systems. New software development philosophies and technologies have
emerged in the 1980s and 1990s to reduce development costs and improve quality of software products.
These new approaches frequently involve the use of Commercial-Off-The-Shelf (COTS) software,
software reuse, application generators, and fourth generation languages. The purpose of this paper is to
identify, discuss, compare and contrast software cost estimating models and tools that address these
modern philosophies

Empirical Data, Datasets, Cost Estimation, Software Tools,
Metrics Software Measurement

21

N/A

Modern Empirical Cost and Schedule Estimation Tools

Modern Empirical Cost andModern Empirical Cost andModern Empirical Cost andModern Empirical Cost andModern Empirical Cost and
Schedule Estimation ToolsSchedule Estimation ToolsSchedule Estimation ToolsSchedule Estimation ToolsSchedule Estimation Tools

Table of Contents

Abstract & Ordering Information____________________________________1

1. Executive Summary ____________________________________ 2

2. World Wide Web Resources _____________________________ 3

• Cocomo.. 3

• Function Points .. 3

• Software Cost Estimating Tools 4

3. Comparison of Products ________________________________ 5

a. Cocomo 1.1 .. 9

b. Cocomo 2.0 .. 10

c. Putnam Software Equation .. 13

d. PRICE-S .. 15

e. Function Point Cost Estimation 16

f. Other Models .. 16

Appendix A: Bibliography __ 17

Tables Referenced in Document

Table 1: Effort Equations .. 6

Table 2: Schedule Equations... 9

Table 3: UFP to SLOC Conversion Table .. 11

Table 4: Putnam Productivity Parameter .. 14

Table 5: Putnam Special Skills Factor .. 15

Figures Referenced in Document

Figure 1: Comparison of COCOMO Effort Equations ... 7

Figure 2: Comparison of Effort Equations ... 8

A DACS State-of-the Art-Report

 Acknowledgements:

 The author would like to gratefully acknowledge comments on an earlier draft by Mr. Robert Vienneau
and the help of Mr. Lon R. Dean in producing this report.

Modern Empirical Cost andModern Empirical Cost andModern Empirical Cost andModern Empirical Cost andModern Empirical Cost and
Schedule Estimation ToolsSchedule Estimation ToolsSchedule Estimation ToolsSchedule Estimation ToolsSchedule Estimation Tools

Abstract and Ordering Information

Abstract

Cost models were derived from the collection and analysis of large collections of project data. Modelers
would fit a curve to the data and analyze those parameters that affected the curve. Early models applied to
custom-developed software systems. New software development philosophies and technologies have
emerged in the 1980s and 1990s to reduce development costs and improve quality of software products.
These new approaches frequently involve the use of Commercial-Off-The-Shelf (COTS) software,
software reuse, application generators, and fourth generation languages. The purpose of this paper is to
identify, discuss, compare and contrast software cost estimating models and tools that address these
modern philosophies.

Ordering Information:

A bound version of this report, is avaliable for $30 from the DACS Product Orderform or you may order
it by contacting:

DACS Customer Liaison

775 Dadaelian Drive

Griffiss Business Park

Rome, NY 13441-4909

(315) 334-4905; Fax: (315) 334-4964;

cust-liasn@dacs.dtic.mil

1

Modern Empirical Cost and Schedule Estimation Tools

1. Executive Summary
Project managers and project planners are often expected to provide to their management estimates of
schedule length and costs for upcoming projects or products. Anyone that has tried to construct and justify
such an estimate for a software development project of any size knows that it can be an art to achieve
reasonable levels of accuracy and consistency. Empirically-based cost estimation models supporting
management needs began to appear in the literature during the 1970s and 1980s. Support services for
some of these models also became commercially available.

Cost models were derived from the collection and analysis of large collections of project data. Modelers
would fit a curve to the data and analyze those parameters that affected the curve. Early models applied to
custom-developed software systems. New software development philosophies and technologies have
emerged in the 1980s and 1990s to reduce development costs and improve quality of software products.
These new approaches frequently involve the use of Commercial-Off-The-Shelf (COTS) software,
software reuse, application generators, and fourth generation languages. The purpose of this paper is to
identify, discuss, compare and contrast software cost estimating models and tools that address these
modern philosophies.

In evaluating and selecting an estimation tool, or estimation tool provider, one should evaluate:

• The openness of the underlying model in the tool
• The platform requirements of the tool
• The data required as input to the tool
• The output of the tool
• The accuracy of the estimates provided by the model

The openness of the tool developer in providing details of the underlying model and parameters is one
attribute distinguishing some models from others. Volumes of information have been published about the
models underlying some tools. The vendors of other tools keep information about their model as
proprietary and require the user to purchase consulting services to exercise the model. This may not be a
practical problem since beginners will most likely hire consulting services anyways, especially if they are
not a statistician or modeler. But, since many of the models can be implemented with a simple
spreadsheet, being able to understand the “guts” of the model may be important so as to allow one to
enhance the model to meet specific needs.

Several cost models have been implemented in commercial toolsets. Those considering purchasing these
products need to consider the platform on which the product is implemented. Most commercial cost
modeling tools are only available on Windows-based platforms. You will have to determine if your
hardware meets minimal requirements for the toolset.

Major factors in selecting a model include assessing the number and complexity of required input
parameters, whether default values can be easily and understandably assigned to these parameters, and
whether sufficient historical and project data exists within one’s organization and project to feed the
model. Many of the models are very flexible in modeling specific situations. To achieve this flexibility,
model providers provide numerous parameters to handle multiple situations. A substantial amount of time
may be required to initially set-up a model - one must either answer a number of questions or collect
significant amounts of historical data on similar projects. If an established measurement program exists
within an organization, assembling the required data may not be too difficult. Most models provide ways

2

A DACS State-of-the Art-Report

to refine estimates as one gains experience with the model. One beneficial side-effect of cost models is
that they identify measures to collect and manage in an organization.

Evaluate the outputs and reports from the model. All software cost models estimate project costs, effort,
and nominal schedule for a project. Determine whether other data not estimated by the model (such as
travel expenses, overhead costs, etc.) can be easily integrated into the reports being generated. Some
models provide additional management guidance in their reporting structure. For example, some models
provide staffing profile guidance and determine optimum staff size for a project.

Perhaps the most important feature of any model is the accuracy of the estimate provided. One should try to
collect as much data as possible from completed software projects. One can determine with this data whether
a model would have accurately estimated those projects and how to fine-tune the model for a given
environment. If a model gives wildly inacurate or inconsistent results, one should consider other models.

2. World Wide Web Resources
* The Constructive Cost Model (COCOMO) is a well-known model used in software cost and schedule
estimation. It is a non-proprietary model introduced by Barry W. Boehm in 1981.

COCOMO Project Homepage <http://sunset.usc.edu/COCOMOII/Cocomo.html>

The COCOMO 2.0 model is an update of COCOMO 1981 to address software development practices
in the 1990s and 2000s. It is being developed by USC-CSE, UC Irvine, and 29 affiliate organizations.

REVIC Software Estimation Model <http://sepo.nosc.mil/REVIC.html>

Includes a downloadable version of Revised Intermediate COCOMO (REVIC) and pointers to more
information about software cost modeling.

Softstar Systems <http://www.SoftstarSystems.com/>

Developers of Costar, an automated implementation of COCOMO.

* Function Points provide a unit of measure for software size using logical functional terms readily
understood by business owners and users.

International Function Point Users Group <http://www.bannister.com/ifpug/home/docs/ifpughome.html>

IFPUG is a membership-governed, non-profit organization committed to increasing the effectiveness
of its members’ information technology environments through the application of Function Point
Analysis (FPA) and other software measurement techniques.

Function Point FAQ <http://ourworld.compuserve.com/homepages/softcomp/fpfaq.htm>

A comprehensive Function Points FAQ, edited by Ray Boehm of Software Composition Technologies

Metre v2.3 <http://www.lysator.liu.se/c/metre-v2-3.html>

Metre is a freely distributable ANSI/ISO Standard C parser. Reports Halstead metrics, various line and
statement counts, backfired Function Points, control depth, identifier count, number of functions and
modules, and a call graph.

3

Modern Empirical Cost and Schedule Estimation Tools

Programs for C Source Code Metrics <http://www.qucis.queensu.ca/Software-Engineering/
Cmetrics.html>

Some free programs to count lines of code, cyclomatic complexity, Halstead metrics, backfired
Function Points, etc. for C code. The tools can be compiled on SunOS.

* Software Cost Estimating Tools

Cost.Xpert <http://www.marotz.com/CXCopy.html>

Cost.Xpert, produced by Martoz, Incorporated, provides a step-by-step approach to defining a project’s
cost and schedule. It is backed by years of research and comprehensive historical databases. Cost.Xpert
is an easy-to-use software costing tool with the features and sophistication typical of more expensive
programs. It supports all popular forms of cost estimating including COCOMO and Function Points.

PRICE Systems <http://www.pricesystems.com>

PRICE-S is a well-known software cost estimating model. Quantitative Software Management <http://
www.qsm.com/> Lawrence Putnam is the president of QSM. They distribute SLIM and related
software cost modeling tools.

Resource Calculations, Inc. <http://www.rcinc.com/>

RCI distributes sizing and cost models, including ASSET-R, SSM, and

SOFTCOST-R. Software Productivity Research Information Center <http://www.spr.com/>

A leading provider of software measurement, assessment, and estimation products and services. Capers
Jones is SPR’s chairman and founder.

* Other Web Resources

NASA Johnson Space Center (JSC) Cost Estimating Group <http://www.jsc.nasa.gov/bu2/>

Includes a reference manual for parametric cost estimation. This group supports JSC directorates and
program offices with parametric cost estimates, trade studies, schedule analyses, cost-risk analyses,
and cost phasing. This includes economic analyses of alternative investments, if applicable. They
prepare and document cost estimates. They present and defend cost estimates to senior management
and review panels.

Project Management and Cost Estimation Training <http://www.stsc.hill.af.mil/pns/pnsindex.html#cost>

STSC Project Management workshops designed to teach the concepts, principles, and practices of
effective project management to those who are responsible for the management of software
development or maintenance activities.

The International Society of Parametric Analysts <http://mijuno.larc.nasa.gov/dfc/societies/Ispa.html>

The foundation of ISPA is parametric estimating: a cost-effective approach to consistent, credible,
traceable, and timely assessment of resource requirements for development, production, construction, and
operation of hardware and software projects.

4

A DACS State-of-the Art-Report 5

Modern Empirical Cost andModern Empirical Cost andModern Empirical Cost andModern Empirical Cost andModern Empirical Cost and
Schedule Estimation ToolsSchedule Estimation ToolsSchedule Estimation ToolsSchedule Estimation ToolsSchedule Estimation Tools

3. Comparison of Products
Software cost models are used to estimate the amount of effort and calendar time required to develop a
software product or system. Effort can be converted into cost by calculating the product of an average
labor rate and the effort estimate. Detailed evaluation of the underlying mathematics is one way of
comparing various models. Table 1 provides equations for estimating effort (in staff months) with several
models, as well as a brief explanation of model parameters. Figures 1 and 2 graph these effort equations,
thereby illustrating the variation between models in effort estimates. Figure 1 shows the equations for the
different development modes for the Basic and Intermediate COCOMO models. The effort multipliers
were set to nominal values in graphing Intermediate COCOMO estimates. Variations between Basic and
Intermediate COCOMO would result from the average software project differing from nominal
COCOMO cost drivers. The COCOMO 2 effort equation is graphed in Figure 2 with nominal effort
multipliers and scale factors, no code discarded due to requirements volatility, and no adapted code.
Putnam’s simplified SLIM model is graphed with an intermediate productivity parameter, suitable for
systems and scientific software. Notice that the Walston-Felix model is the only one that shows software
development exhibiting increasing returns to scale in which the cost of a larger system is increased less
than proportionately. Table 2 shows the schedule estimates (in calendar months) for each model. Each
model is described in turn after Table 2.

Table shown on next page.

Modern Empirical Cost and Schedule Estimation Tools 6

Table 1: Effort Equations

A DACS State-of-the Art-Report 7

Figure 1: Comparison of COCOMO Effort Equations

Modern Empirical Cost and Schedule Estimation Tools

Figure 2: Comparison of Effort Equations

8

A DACS State-of-the Art-Report 9

Cocomo 1.1

The Constructive Cost Model (COCOMO) is the best known and most popular cost estimation model.
COCOMO was developed in the late 1970s and early 1980s by Barry Boehm (1981). This early model
consists of a hierarchy of three increasingly detailed models named Basic Cocomo, Intermediate Cocomo
and Advanced Cocomo. These models were developed to estimate custom, specification-built software
projects. Equations for the Basic and Intermediate models are shown in the first two rows of Tables 1
and 2.

The Basic model expresses development effort strictly as a function of the size (in thousands of source
lines of code) and class of software being developed. Organic software projects are fairly small projects
made up of teams of people familiar with the application. Semi-detached software projects are systems of
medium size and complexity developed by a group of developers of mixed experience levels. Embedded
software projects are development projects working under tight hardware, software and operational
constraints. The schedule equation, as shown in Table 2, expresses development time (in months) as a
function of the effort estimate and the three classes used in estimating effort.

The Intermediate model enhances the effort estimation equation of the Basic model by including 15 cost
drivers, known as effort adjustment factors. These 15 factors fall into four categories: product attributes,
such as product complexity and required reliability; computer attributes or constraints, such as main
storage constraints and execution time constraints; personnel attributes, such as experience with
applications and analyst capability; and project attributes that describe whether modern programming
practices and software tools are being used.

The Advanced model (not shown in the tables) expands on the Intermediate model by placing cost drivers
at each phase of the development life cycle.

Table 2: Schedule Equations

Modern Empirical Cost and Schedule Estimation Tools

Cocomo 2.0

Cocomo 2.0 has recently emerged because of the inability of the original Cocomo (Cocomo 1.1) to
accurately estimate object oriented software, software created via spiral or evolutionary models, and
software developed from commercial-off-the-shelf software. Several fundamental differences exist
between Cocomo 1.1 and 2.0:

• Whereas Cocomo 1.1 requires software size in KSLOC as an input, Cocomo 2.0 provides different
effort estimating models based on the stage of development of the project. An objective of 2.0 is to
require as inputs to the model only the level of information that is available to the user at that time.
As a result, during the earliest conceptual stages of a project, called Application Composition, the
model uses Object Point estimates to compute effort. Object Points are a measure of software
system size, similar to Function Points. During the Early Design stages, when little is known
about project size or project staff, Unadjusted Function Points are used as an input to the model.
Once an architecture has been selected, design and development are ready to begin. This is called
the Post Architecture stage. At this point, Source Lines Of Code are inputs to the model.

• Whereas Cocomo 1.1 provided point estimates of effort and schedule, Cocomo 2.0 provides likely
ranges of estimates that represent one standard deviation around the most likely estimate. (Only the
most likely estimates are shown in Tables 1 and 2.)

• Cocomo 2.0 adjusts for software reuse and reengineering where automated tools are used for
translation of existing software. Cocomo 1.1 made little accommodation for these factors

• Cocomo 2.0 also accounts for requirements volatility in its estimates.

• The exponent on size in the effort equations in Cocomo 1.1 varies with the development mode.
Cocomo 2.0 uses five scale factors to generalize and replace the effects of the development mode.

The Cocomo 2.0 Application Composition model (as shown on the third row of Table 1) uses Object
Points to perform estimates. The model assumes the use of Integrated CASE tools for rapid prototyping.
Objects include screens, reports and modules in third generation programming languages. Object Points
are not necessarily related to objects in Object Oriented Programming. The number of raw objects are
estimated, the complexity of each object is estimated, and the weighted total (Object-Point count) is
computed. The percentage of reuse and anticipated productivity are also estimated. With this information,
the effort estimate shown in Table 1 can be computed.

Function Points are a very popular method of estimating the size of a system, especially early in the life
cycle of a product. Function Points are arguably easier to estimate than KSLOC early in the life cycle.
Function Points form the size input for the Cocomo 2.0 Early Design model, shown in the fourth row of
Table 1. Function Points measure the amount of functionality in a software product based on five
characteristics of the product: the number of external inputs, the number of external outputs, the number
of internal logical files, the number of external interface files, and the number of external inquiries into
the product. Each instance is then weighted by a complexity factor of low, average or high to compute an
Unadjusted Function Point (UFP) of:

where Z
ij
 is the count for component i at complexity j and W

ij
 is the fixed weight assigned. Unadjusted

Function Points are converted to equivalent source lines of code (SLOC) by using Table 3 on the next page.

10

UFP = Σ Σ W
ij
 Z

iji =1 j =1

5 3

A DACS State-of-the Art-Report 11

TABLE 3: UFP to SLOC Conversion

Language SLOC/UFP
Ada 71
AI Shell 49
APL 32
Assembly 320
Assembly (Macro) 213
ANSI/Quick/Turbo Basic 64
Basic-Compiled 91
Basic-Interpreted 128
C 128
C++ 29
ANSI COBOL 85 91
Fortran 77 105
Forth 64
Jovial 105
Lisp 64
Modula 2 80
Pascal 91

Cocomo 2.0 adjusts for the effects of reengineering in its effort estimate. When a project includes
automatic translation, one needs to estimate:

• Automatic translation productivity (ATPROD), estimated from previous development efforts

• The size, in thousands of Source Lines of Code, of untranslated code (KSLOC) and of code to
be translated (KASLOC) under this project.

• The percentage of components being developed from reengineered software (ADAPT)

• The percentage of components that are being automatically translated (AT).

Whereas in Cocomo 1.1, the effort equation is adjusted by 15 cost driver attributes, Cocomo 2.0 defines
seven cost drivers (EM) for the Early Design estimate:

 * Personnel capability

 * Product reliability and complexity

 * Required reuse

 * Platform difficulty

 * Personnel experience

 * Facilities

 * Schedule constraints.

Some of these effort multipliers are disaggregated into several multipliers in the Post-Architecture
Cocomo 2.0 model.

Modern Empirical Cost and Schedule Estimation Tools

Cocomo 1.1 models software projects as exhibiting decreasing returns to scale. Decreasing returns are
reflected in the effort equation by an exponent for SLOC greater than unity. This exponent varies among
the three Cocomo 1.1 development modes (organic, semidetached, and embedded). Cocomo 2.0 does not
explicitly partition projects by development modes. Instead the power to which the size estimate is raised
is determined by five scale factors:

 * Precedentedness (how novel the project is for the organization)

 * Development flexibility

 * Architecture/risk resolution

 * Team cohesion

 * Organization process maturity.

Once an architecture has been established, the Cocomo 2.0 Post-Architecture model can be applied. Use
of reengineered and automatically translated software is accounted for as in the Early Design equation
(ASLOC, AT, ATPROD, and AAM). Breakage (BRAK), or the percentage of code thrown away due to
requirements change is accounted for in 2.0. Reused software (RUF) is accounted for in the effort
equation by adjusting the size by the adaptation adjustment multiplier (AAM). This multiplier is
calculated from estimates of the percent of the design modified (DM), percent of the code modified (CM),
integration effort modification (IM), software understanding (SU), and assessment and assimilation (AA).
Seventeen effort multipliers are defined for the Post-Architecture model grouped into four categories:

 * Product factors

 * Platform factors

 * Personnel factors

 * Project factors.

These four categories parallel the four categories of Cocomo 1.1 - product attributes, computer attributes,
personnel attributes and project attributes, respectively. Many of the seventeen factors of 2.0 are similar to
the fifteen factors of 1.1. The new factors introduced in 2.0 include required reusability, platform
experience, language and tool experience, personnel continuity and turnover, and a factor for multi-site
development. Computer turnaround time, the use of modern programming practices, virtual machine
experience, and programming language experience, which were effort multipliers in Cocomo 1.1, are
removed in Cocomo 2.0.

A single development schedule estimate is defined for all three Cocomo 2.0 models, as shown in the
second row of Table 2.

12

A DACS State-of-the Art-Report

Putnam Software Equation

The Software Lifecycle Model (SLIM), available from Quantitative Software Management, is another
popular empirically-based estimation model. An equation relating product size, effort, schedule, and
productivity, known as the Software Equation, is a major part of SLIM. The fifth row of Table 1 and third
row of 2 provide the effort and schedule equations, respectively, of the model. One interesting difference
of the Software Equation over the other models is that the schedule equation needs to be solved before an
effort estimate can be generated.

The Software Equation in Table 1 is written in two forms. The first equation is the complete equation as
derived from the data collected by Larry Putnam and his associates at QSM. However a simpler form is
also shown. This computational form of the effort equation can be used for medium and large projects
where the effort is greater than or equal to 20 staff-months. It is derived for projects that achieve their
minimum schedule. The minimum schedule length is constrained by an empirical relationship limiting
how fast project staff can be built up.

The schedule equation in 2 for the minimum time can be applied if the computed minimum development
time is greater than 6 calendar months. The computational form of the Software Equation is built on the
premise that there is a minimum development time below which one cannot feasibly develop a given
system. The general form of the Software Equation shows that the trade-off between effort and schedule is
given by a fourth-power relationship. Hence an increase in the planned schedule can dramatically lower
the resulting effort.

Application of the Software Equation requires prior determination of a productivity parameter, P. One
should estimate the productivity parameter from historical data on similar systems within an organization
using SLIM. If no historical data exists for the type of system one needs to develop, developing an
accurate productivity parameter will be difficult. However, Putnam (1992) provides representative
productivity parameters for systems of various types (e.g., real time systems, telecommunications
systems, business systems). Putnam’s data on the productivity parameter in Table 2.3 is reproduced on the
next page as Table 4.

13

Modern Empirical Cost and Schedule Estimation Tools

 Productivity Index Productivity Parameter Application Type
1 754
2 987 Microcode
3 1,220
4 1,597 Firmware (ROM)
5 1,974 Real-time embedded, Avionics
6 2,584
7 3,194 Radar systems
8 4,181 Command and control
9 5,186 Process control

10 6,765
11 8,362 Telecommuncations
12 10,946
13 21,892
14 13,530 Systems software, Scientific systems
15 17,711
16 28,657 Business systems
17 35,422
18 46,368
19 57,314
20 75,025
21 92,736
22 121,393
23 150,050
24 196,418
25 242,786 Highest value found so far
26 317,811
27 392,836
28 514,229
29 635,622
30 832,040
31 1,028,458
32 1,346,269
33 1,664,080
34 2,178,309
35 2,692,538
36 3,524,578

14

Table 4: Putnam Productivity Parameter

A DACS State-of-the Art-Report

The Software Equation also requires an estimate of a special skills factor, B, which is a function of system
size. Table 5 provides values of B.

Size (SLOC) B

5-15K 0.16

20K 0.18

30K 0.28

40K 0.34

50K 0.37

>70K 0.39

An advantage of SLIM over Intermediate Cocomo 1.1 or Cocomo 2.0 is that there are far fewer
parameters needed to generate an estimate. Also, as long as the type of system you want to estimate is
similar in nature to systems developed before by your software organization, the historical data is
probably readily available to compute a productivity parameter.

Putnam (1992) provides many useful and helpful guidelines in project management, often based on the
distribution of labor over the lifecycle assumed in SLIM. For example, guidance is given on the time at
which peak manpower should occur in the schedule, the number of people that should be working at the
peak time, and average staffing over the schedule.

PRICE-S

Lockheed Martin Life Cycle Cost Estimating Systems’ PRICE-S is a proprietary, empirically-based cost
model. Since it is a proprietary model, complete information about the internals of the model are
unavailable. Some details, however, are available about the model. Unlike other models, PRICE-S uses
machine instructions, not source lines of code, as its main cost driver. You can hire consulting services
from Lockheed Martin to exercise PRICE-S. However, if you need to use a consultant anyway to perform
your estimates, the fact that PRICE-S is proprietary and requires a consultant to utilize may not be a
problem to your organization. PRICE-S is one of the earliest and most successful models that have been
developed.

15

Table 5: Putnam Special Skills Factor

Modern Empirical Cost and Schedule Estimation Tools

Function Point Cost Estimation

All cost models that use source lines of code as their major cost driver can also use Function Points as
their major cost driver. One can use Function Point estimation in a source lines of code-based model by
using a lookup table to convert Function Point estimates to source lines of code. Recently there has been a
great deal of interest in function points because, from an estimators viewpoint, function points can be
easily assessed early in the products life cycle before any lines of code can be estimated and specific
languages can be selected. Being able to estimate project costs and schedules directly from function points
thus provides advantages to the estimator in being able to accurately estimate sooner. Several products
and models are available to support function point estimation.

Capers Jones and his company, Software Productivity Research (SPR) provide two Microsoft Windows-
based products, Checkpoint and Function Point Workbench, to aid in estimating and managing software
projects. The product takes an artificial intelligence approach based on data collected by SPR on 5,200
projects. Details of the internals of the model and the estimating equations are proprietary, and thus no
data is available for analysis here.

Other Function Point-based models have been identified by Matson (1994), but no commercial products
based on these models are known. Table 1 shows equations for estimating effort for three Function Point-
based models, the Albrecht and Gaffney Model, the Kemerer Model, and the Matson, Barnett, and
Mellichamp Model. Any of these models can be easily implemented in a spread sheet.

Other Models

Matson (1994) lists other source lines of code-based effort estimation models, but no products
implementing these models are commercially available. Table 1 shows effort equations for the Walston-
Felix Model, the Bailey-Basili Model, and the Doty Model. Any of these models, too, can be easily
implemented in a spread sheet.

16

A DACS State-of-the Art-Report

Modern Empirical Cost andModern Empirical Cost andModern Empirical Cost andModern Empirical Cost andModern Empirical Cost and
Schedule Estimation ToolsSchedule Estimation ToolsSchedule Estimation ToolsSchedule Estimation ToolsSchedule Estimation Tools

Appendix AAppendix AAppendix AAppendix AAppendix A

Bibliography

Boehm, B., Software Engineering Economics Prentice-Hall, Inc., 1981.

Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R., Cost Models for Future
Software Life Cycle Processes, http://sunset.usc.edu/COCOMOII/Cocomo.html,1995.

Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R., Cocomo 2.0 Model User’s
Guide, http://sunset.usc.edu/COCOMOII/Cocomo.html, 1995.

Iuorno, R., Vienneau, R., Software Measurement Models, A DACS State of the Art Report, August 1987.

Martin, R., “Evaluation of Current Software Costing Tools,” ACM Sigsoft Notes, vol. 13, no. 3, July 1988,
pp. 49-51.

Matson, J., Barrett, B., Mellichamp, J., “Software Development Cost Estimation Using Function Points”,
IEEE Transactions: Software Engineering, vol. 20, no. 4, April 1994, pp. 275-287.

Putnam, L., Myers, W., Measures for Excellence, Yourdon Press, 1992.

Pressman, R., Software Engineering: A Practitioner’s Approach, Fourth Edition, McGraw-Hill, 1997.

17

