

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices2

Early Verification with a Type-Safe
Technical Architecture

This section describes how programs already familiar
with the Unified Modeling Language can represent type
safety in a technical architecture.

It is claimed that type safety stops programs from
going wrong. So how do we stop programs from going
wrong in a technical architecture? We include a feature
called templates in our UML artifacts to represent the
rules enforced by the type checker. UML Superstructure,
Auxiliary Constructs (17) describes templates as “A
parameterable element is an element that can be exposed as
a formal template parameter for a template, or specified as
an actual parameter in a binding of a template.” Templates
allow for parametric polymorphism in UML artifacts.
Parametric polymorphism is a feature of type systems that
enforce type safety. Templates are known alternatively as
generics in mainstream programming languages like C++,
Java, C# and Scala. By including templates in the artifacts
of our architecture, we represent the rules verified by the
type checker.

We continue with four examples of how to represent
type safety with UML templates. Examples 1 & 2 provide
a static view of type safe structure. Example 1 describes
the type safe construction of natural numbers. Example

Increasing Assurance Levels Through Early
Verification with Type Safety
By Rick Murphy

Today defense, intelligence and civilian agencies are focused on cyber security
challenges. An informal analysis of emerging capabilities in the DARPA Open Catalog
indicates that type safety is a common requirement for increased assurance levels in

these agencies. Common requirements associated with emerging capabilities are especially
relevant to planning and architecture. This article is an abridged version of a longer article
that describes how to increase assurance levels with a type safe technical architecture.

2 provides an overview of key functional programming
abstractions. Examples 3 & 4 provide a dynamic view
of type safe operations. Example 3 explains type safe
operations required to lift a function into the Maybe
Monad. Example 4 explains the safe application of the
lifted function to a value. Recall that our purpose is to
demonstrate how to represent type safety.

Example 1 - Type Safe Construction of Natural
Numbers Using Templates

Figure 1 is a UML Class diagram with Templates. Nat,
representing the natural numbers, is an abstract UML
class. Because Class extends Classifier, Nat, like Class, is a
templateable, or parametrized, element. The additional box
outlined in dashed in the top-right corner of Nat class is the
template. Nat is parametrized by A, a type parameter. TA is
its formal parameter bound to the class A representing the
type variable A. The right arrow (>) represents the binding.
The sub classes Zero and Suc are data type constructors as
indicated by their stereotypes. The data type constructors
are also parametrized. Notice that Zero has a private, no-
arg constructor restricting access so its parameter will
never be used as required by the progress and preservation
rules. Zero is also static and final further restricting its use.
Suc takes values of type Nat as a parameter in its single arg
constructor allowing recursive construction of countably
infinite values. Suc too is static and final.

Cyber Security and Information Systems Information Analysis Center (CSIAC) 3

Figure 1 - Type Safe Construction of Natural Numbers Using
Templates

This simple class diagram visually represents that the
type checker enforces type safety in the construction of
natural numbers at compile time. Enforcing type safety at
compile time stops the program from going wrong. A UML
architect would be expected to provide the verification
rules used in a verifiable architecture milestone. The code
snippets at the bottom of the diagram illustrate the syntax
of two type safe languages: Haskell and Java. The section
below on type safety and software verification explains
compile-time constraints in source code.

Example 2 - Overview of Functional
Programming Abstractions

Figure 2 expands on our first example of type safety
with an overview of functional programming abstractions.
Type safety is a recurring theme in functional languages.
Representing functional abstractions in UML introduces
type safety to a broader audience in support technology
transition. More defense, intelligence and civilian
programs will be familiar with UML than the commutative
diagrams of category theory. Reading Figure 2 from top

left to bottom right we again
see the natural numbers. Nat,
Zero and Suc are elided to
save space. To the right we see
that Nat implements Functor.
Functor is an abstraction
through which it operates on
its own elements using fmap,
its only operation. Functor
has two parameters A and
B. Fmap takes a function,
operates on values of its type
and returns a function that
lifts the values into the type
of the Functor. Lifting a
value into the type of Functor
encapsulates the value in
the type. Operations on the
lifted value must now satisfy
the progress and preservation
properties of the Functor.
Notice that the function type
of fmap is also parametrized
with similar binding syntax.

The UML syntax of the annotation “[]” to the Function
return type is incomplete because the UML modeling tool
did not provide adequate type checking or type inference.

Also notice that Functor is a functional interface as
reflected in its stereotype. Stereotypes can be combined into
UML Profiles that are useful in extending the semantics of
UML. We do not discuss profiles further in this article.

Below Functor is Function. Representing Function
as a UML interface is consistent with the evolution of
mainstream programming languages like Java. What were

once object oriented languages now incorporate functional
capabilities to strengthen type safety in the language. It
too is a functional interface with two parameters A and
B. Classes that implement Function must implement its
only operation, apply, which takes a single argument that
is a type parameter A and returns a single argument type
parameter B. PlusOne and PureJust implement Function.
They are also parametrized. PlusOne implements a new
operation, add, which takes arguments of type Nat and
returns results of type Suc. Apply is elided on PlusOne in
the diagram to save space.

INCREASING ASSURANCE LEVELS THROUGH EARLY
VERIFICATION WITH TYPE SAFETY

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices4

To the right of Function both above and below appear
the classes Applicative and Monad. Applicative and Monad
are parametrized, but the attributes and operations of
Applicative and Monad are elided in Figure 2, we elaborate
each in detail below. Applicative encapsulates a value and
allows the sequencing of computations to combine their
results. Monad allows for control in sequencing the effect
of a computation.

Figure 3 illustrates the Applicative class with Templates.
Applicative has two: A and B bound to TA and TB
respectively. Applicative and Monad are equipped with

functions that operate on values of the parametrized type.
The intuition behind Applicative and Monad are that their
operations happen inside the type and that the type system
protects the values inside the box. Applicative comes
equipped with get, unit and apply. Unit puts a value inside
the box. Apply takes an applicative and returns a function
that takes an Applicative into Applicative. A function that
takes a function into a function is called higher order. It
is this function that allows the sequencing of operations.
Example 4 below describes the sequencing of operations
with Applicative.

INCREASING ASSURANCE LEVELS THROUGH EARLY VERIFICATION WITH TYPE SAFETY (CONT.)

Figure 2 - Overview of Functional Programming Abstractions

Figure 3 - Applicative Elaboration

Cyber Security and Information Systems Information Analysis Center (CSIAC) 5

Figure 4 elaborates the Monad class. Like Applicative,
Monad has two parameters A and B bound to TA and TB
respectively. Monad comes equipped with the following
operations: return, bind, yield, join, fail, fmap and map.
Return takes a value and encapsulates it in the monad.
Bind takes an encapsulated value and a function that
operates on the encapsulated value and returns the result
of the function on the value. Join takes an encapsulated
value and reduces the encawpsulation by one level. Yield
returns an encapsulated value. Fail takes string explaining
the error into the monad. Monad also includes operations
inherited from Functor and Applicative.

Figure 4 - Monad and Maybe Type Elaboration

Figure 4 also elaborates the Maybe class. In its elided
state in Figure 3 Maybe had little resemblance to Nat. In
Figure 4 we see that it is an abstract parametrized class with
two final subclasses. We also see that Maybe is a Monad. It
provides an abstract parametrized method, instance, that
returns Maybe. The instance method is inherited by its sub
classes, Nothing and Just. Nothing is static and final and
an inner class. It is a singleton with an instance method
inherited from Maybe. Just is final, but not static, nor
is it an inner class. It has single, private constructor. Just
overrides instance with the single input parameter that is a
type variable and it returns Just [].

Now that we have a static view of the functional
abstractions with attributes and operations of each class
and interface we provide a dynamic view of their type safe
operations using sequence diagrams.

Example 3 - A Dynamic View of Type Safe
Operations - Lift PlusOne

We have seen that Functor, Applicative and Monad
encapsulate values. The type checker ensures that operations
on those values execute according to progress and preservation
rules to stop the program from going wrong. Both
arguments and results must satisfy progress and preservation
rules. Figure 5 uses a sequence diagram to illustrate how to
lift the function PlusOne into Just using fmap. Lifting the
function into Just means the rules applicable to Maybe and
Just are now applicable to PlusOne. Following the hierarchy
in Figure 2, Just is a data constructor of Maybe. Maybe is a

Monad and Monad
is a Functor.

E v a l u a t i o n
begins in step 1
by constructing
the encapsulated
value Zero in the
Just monad. In
the next step 2
evaluation proceeds
by constructing
an instance of the
function PlusOne.
Step 3 proceeds

with the evaluation of fmap which takes the function
PlusOne as an argument. Notice the result type of fmap is
a function which takes a Functor into a Functor. Step 4 lifts
the function justPlusOne into Just. It does not apply justOne
to Just Zero. The type checker now enforces progress and
preservation rules on the encapsulated PlusOne. Also notice
the syntax in the yellow comment box below step 4. On the
left side of the equality the type checker has determined the
returned function has an input type of a Nat encapsulated
in Just and a result type of a successor encapsulated in Just.
It makes sense because PlusOne increments Zero to its
successor Suc Zero. We know that value as the number One
! Nothing else is allowed by the type checker.

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices6

Example 4 - A Dynamic View of Type Safe
Operations - Safe Apply with Applicative

We have encapsulated Zero in Just and lifted the function
PlusOne into the Just monad. The result is a function
called justPlusOne. The type checker requires it to take
only a Nat encapsulated in Just and return its successor.
Our goal is to safely apply justPlusOne to the encapsulated
value Just Zero.

Figure 6 illustrates the type safe application of justPlusOne
using Applicative. Evaluation proceeds in step 1 with a call
to apply on justPlusOne, the function returned in Figure 5.
In step 2 the call to yield with argument PlusOne constructs
an instance of Just. Notice that the type checker enforces
the result type to Monad in steps 1 & 2. The call to unit in
step 3 encapsulates its argument PlusOne in Just. Recall that
Applicative is the superclass of Monad. In step 4, as required
from the inheritance hierarchy, the compiler invokes the
Applicative constructor when it constructs an instance
of Just. Step 4 returns an instance of Applicative with
two parameters: a function of two parameters and a type

variable. Evaluation proceeds in step 5 with a call to apply in
Applicative. Its argument is the encapsulated PlusOne from
step 3. Its result type is a parametrized function that takes
an Applicative into an Applicative. Step 6 evaluates apply in
Just with argument Just Zero. Notice that step 6 contains
two calls to the function get in Applicative. It is in step 7
that applicative accesses the lifted function PlusOne and in
step 8 the encapsulated value Zero. Step 9 is a call to unit
in Applicative. Its argument is the function PlusOne with
argument Zero. In step 10 evaluation continues on apply
with argument Zero in PlusOne. Step 11 is a call to the class
PlusOne’s add function and in step 12 the call to add creates
an instance of the Suc constructor with argument Zero. In
step 13 the stack unwinds with the result Just (Suc Zero).
Notice that execution returns within Monad and with the
reference justOne. Notice the syntax in the yellow comment
just above step 13. To the left of the equals sign we see the
type checker identifies justOne as a reference to the Maybe
Monad with successors as input and successors as a result.

This section provided four examples of type safety
in a technical architecture with UML Templates. The

INCREASING ASSURANCE LEVELS THROUGH EARLY VERIFICATION WITH TYPE SAFETY (CONT.)

Figure 5 - A Dynamic View of Type Safe Operations - Lift PlusOne

Cyber Security and Information Systems Information Analysis Center (CSIAC) 7

unabridged version of this article elaborates on the
information in this section.

We have come a long way on our journey to increasing
assurance levels through early verification with type
safety. The next section provides code samples that stop
programs from going wrong at compile time rather than
defer exceptions to run-time. Increasing assurance levels
in a type safe architecture is most relevant when the
architecture represents a run-time implementation.

Type Safety and Software Verification

Well typed programs don’t go wrong, but how do we
stop them from going wrong? UML templates are artifacts
in a technical architecture that represent computation.
What about the computation itself?

This section illustrates how type checking at compile-
time stops programs from going wrong. Programs don’t
go wrong because the type checker stops the compiler. The

type checker enforces verification early at compile-time
rather than allow exceptions at run-time.

We proceed with an example that illustrates compile-
time type checking. The unabridged version of this
article provides an additional example in the Agda logical
framework using stronger type checking with dependent
types.

Example 1 builds on the UML approach above and
illustrates type checking with Java Generics. Recall that
Generics in Java is a synonym for Templates in UML.
We expect more agency programs are familiar with Java,
so it serves our needs for technology transition. For
more on UML Templates and Java Generics see Generic
Architecture for Government : A Modest Proposal for
Better Safety and Sharing [GAGM 2014].

Java 1.5 introduced generic types to enable future
versions of the language to provide type checking. Type
checking evolved in subsequent releases and support for

Figure 6 - Safe Apply with Applicative

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices8

INCREASING ASSURANCE LEVELS THROUGH EARLY VERIFICATION WITH TYPE SAFETY (CONT.)

Figure 7. Raw Types

Figure 8. Compiler and Run-time Output

Cyber Security and Information Systems Information Analysis Center (CSIAC) 9

type safety strengthened recently with type inference.
Example 1 describes how Java generics eliminate run-time
exceptions resulting from incorrect casts. We begin with a
review of the Linked List example from the Generic Java
Tutorial [BOSW 1998].

Example 1 - Linked List

Figure 7 uses the Linked List raw type from the Java
Collections framework. Raw types allow the developer to
add objects of any type to the collection and return types
of Object from the collection. This implies that when a
developer retrieves an object from the collection they must
both discern and cast to the correct type to avoid a run-time
exception. The code below illustrates the case of an incorrect
cast where the developer attempts to cast an object of type
String to Byte. The exception occurs at run-time, possibly
after the code has already been pushed to production.

With the addition of generics in Java 1.5, the compiler
emits the warning that “Note: src/M.java uses unchecked or
unsafe operations. Note: Recompile with -Xlint:unchecked
for details.” The warning allows compilation to complete,
producing byte code targeted to the legacy JVM. The
appearance of the words “unsafe” and “unchecked” should
alarm any reasonable person. They are ignored and the
warning often circumvented by most developers. A recompile

Figure 9. Generic Types

with -Xlint: unchecked produces the output in Figure 7. In
Java an unsafe operation is the evaluation of an expression
whose type cannot be verified by the compiler. An unchecked
exception is an exception which the language does not require
the developer to catch, or handle. Run-time exceptions are
unchecked exceptions. The Java Language Specification [JLS
2013] advises the developer that the operation is unsafe and
imputes blame to the developer for safety of the system.

Figure 8 lists the compiler and run-time output when we
adhere to the warning and implement -Xlint : unchecked.
The compiler emits a warning for each call where an
unchecked exception occurs. At run-time the the systems
reports the ClassCastException that String cannot be cast
to Byte. Again, the ClassCastException occurs at run-time,
possibly after the code has been pushed to production.

Figure 9 lists the type-safe approach. Each instance of
Linked List is parametrized by the type of its element:
Byte, String and LinkedList respectively. In each case when
an object is added to a collection, it is added according
to its type. As expected, the cast from Object to String is
no longer required because the elements in LinkedList are
LinkedLists of String elements and we extract an element
with the known type: String, not Object.

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices10

In Figure 10 we have the expected result. The type
checker stops the compiler with a compile-time error.
The compiler emits the error “incompatible types : String
cannot be converted to Byte.” The code never makes it
to production. We have eliminated a class of exceptions
early that may not have been discovered until run-time.
And run-time is just too late when your systems are under
attack.

Generics were added to Java after an installed base
of the Java Virtual Machine (JVM) had already been
established. To support backwards compatibility,
generics were implemented with type erasure [IPW
2002]. Erasure rewrites source code from the format
that enforces constraints at compile time to a format
that is compatible with the JVM. As the name
implies parametrized type information is removed
to maintain backwards compatibility. Generic types
subject to erasure are called non-reifiable types [N
2007] at run-time. Non-reifiable means only the raw
type, not the generic type, can be reconstructed from
its representation in the JVM. Heap pollution is an
informal term that describes an undesirable coding
practice when a developer assigns a variable of a generic
type to a variable of a raw type.

Java, like most other programming languages, has
been the subject of exploits. Early versions of its type
system were the subject of type confusion or type
spoofing exploits [MF 1999, S 1997]. It appears that
type confusion exploits were disclosed and resolved

consistent with industry best practices. Papers [OW
1997, ORW 1997] that describe development of the
Pizza compiler, a precursor to Java Generics and Scala,
included commentary on security related to the use of
generic types. [GAS 2005] restates this commentary.
The Java Generics specification and tutorial [GOSW
1998, GOSW2 1998] are silent on this issue and there
is no evidence that recent exploits have been reported.
Variable argument methods with non-reifiable formal
parameters present a special case where improved
compiler warnings and errors were introduced to
account for blame in claims made that a method is
safe [O 2013]. A secure system implies both memory
and type safety as well as segmentation of unsafe
operations. This is not a general paper on security, but
a discussion of type safety implies some discussion of
memory safety and security. Safety and trust are widely
advertised in Java’s security architecture with references
to the Java sandbox and platform security models. The
current Java platform security model is comprised of
permissions; protection domains and security policies;
and security managers and access controllers. The
platform security model is considered “code-centric”
in that it restricts access to operations that a class can
perform in the run-time environment. The inclusion
of the sun.misc.unsafe library is not widely advertised,
but easy to identify through an Internet search and
readily accessible to all Java developers. This library
allows unsafe operations. Use of this unsafe library is
often motivated by performance gains at the risk of
memory safety. Oracle conducted an informal survey

Figure 10. Compile-time Failure. Well typed programs don’t go wrong.

INCREASING ASSURANCE LEVELS THROUGH EARLY VERIFICATION WITH TYPE SAFETY (CONT.)

Cyber Security and Information Systems Information Analysis Center (CSIAC) 11

of unsafe library usage and the hostile reaction to
including the term “unsafe” in its name was startling
[VG 2014]. There is clearly a commitment to
performance over safety in the developer community.
The agencies should consider sun.misc.unsafe as a
candidate for static analysis. This paper does not
further discuss memory safety or its relation to type
safety or security. No inferences should be made that
type safety provides memory safety from this or other
sections of this article.

Conclusion - Type Safety and Technical
Architecture

The goal of this article was to describe how to
represent type safety in a technical architecture. Type
safety is a common requirement for increasing assurance
levels as observed in the DARPA Open Catalog. The
article provides four examples from a type safe technical
architecture in UML and one example of compile-
time type checking. The unabridged version of this
article, available on-line, explains what it means to
increase assurance levels early in a life cycle. It does so
by describing an early evolutionary life cycle including
its iterations and associated disciplines. The unabridged
version also provides an additional example using
stronger compile-time type checking with dependent
types.

References

[GAS 2005] Ahmed Ghoneim, Sven Apel, Gunter Saake,
Evolutionary Software Life Cycle for Self Adapting Software
Systems. 2005.

[BOSW 1998] Gilad Bracha, Martin Odesrsky, David
Stoutamire, Phillip Wadler, Making the Future Safe for
the Past : Adding Genericity to the Java Programming
Language. October, 1998.

[JLS 2013] James Gosling, Bill Joy, Gilad Bracha, Alex Buckley,
The Java Language Specification. February, 2013.

[IPW 2002] Atushi Igarishi, Benjamin Pierce, Philip Wadler.
Featherweight Java : A Minimal Core Calculus for Java and
GJ. January 2002.

[N 2007] Jamie Nino. The Cost of Erasure in Java Generics
Type Systems. March 2007.

[MF 1999] Gary McGraw, Edward Felten. Securing Java.
January, 1999.

[S 1997] Vijay Saraswat, Java is Not Type Safe. August, 1997.
[OW 1997] Martin Odersky, Philip Wadler. Pizza into Java:

Translating Theory into Practice. January, 1997.
[ORW 1997] Martin Odersky, Enno Runne, Philip Wadler.

Two Ways to Bake Your Pizza - Translating Parameterised
Types into Java. November, 1997.

[GOSW 1998] Gilad Bracha, Martin Odersky, David
Stoutamire, and Philip Wadler. GJ Specification. May 1998.

[GOSW2 1998] Gilad Bracha, Martin Odersky, David
Stoutamire, and Philip Wadler. GJ: Extending the Java
Programming Language with Type Parameters. August,
1998.

[O 2013] Oracle technical staff. Improved Compiler Warnings
and Errors When Using Non-Reifiable Formal Parameters
with Varargs Methods. 2013.

[VG 2014] Victor Grazi, Unsafe at any Speed; Oracle Surveys
community about promoting sun.misc.Unsafe. February,
2014

[TSM 2014] Type Safe Method Plug-in. rickmurphy.org/epf-
method-plugin.zip. 2014.

[GAGM 2014] Generic Architecture for Government : A
Modest Proposal for Better Safety and Sharing. rickmurphy.
org/gag-modest.zip, OMG 2014.

For the unabridged version of this article please visit
http://www.rickmurphy.org/early.html

About the Author

Rick Murphy has over 25 years in software architecture
and engineering in the private sector, public sector
and academia. Rick currently works in higher order
functional programming languages and logics and has
a particular interest in category theory, type theory and
proof theory.

You can reach Rick by email at rick@rickmurphy.org
and by phone at (703) 201-9129.

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices12

In many instances, fundamental differences between
DOD and the private sector prevent us from emulating their
successes. For example, we sweat through the brow trying to
devise persistent Live/Virtual/Constructive environments.
Meanwhile, for many years, recreational gamers have had
access to the PlayStation Network, the Xbox Live environment,
and any number of other persistent online capabilities for PC
games, tablet games, phone games, and so forth.

There are reasons why our technology sometimes seems
quaint when compared to the entertainment industry’s
technology. Addressing these reasons probably isn’t realistic,
even for four-stars or undersecretaries. We in DOD must
follow detailed acquisition rules. We must follow security
procedures that can have life-or-death ramifications. We
must coordinate across organizations, across commands,
across services, and even across government. There are, in
short, plenty of cases where our slow bureaucratic speed
prevents fast technological progress. For all of us worker
bees, these are constraints we simply have to live with.

But sometimes we can look at the commercial gaming
world, see a good idea, and copy it. Education is one such
example.

When the topic of M&S education arises in DOD, an
obsession with checklists, processes, and credentials frequently
emerges. In fact, we often don’t sound like we’re discussing
education at all. We sound like we’re discussing training.

In the commercial gaming world, discussions of education
are far less rigid. In other words, their discussions about
education sound more intellectual and less like Soviet-style
central planning.

According to Gamasutra.com, a gaming industry
website, new hires at gaming companies typically have
broader majors, such as art, finance, or computer science.
They tend not to have tailored majors, i.e., majors with the
word “game” in the description.

DOD, on the other hand, has inclinations that go in the
opposite direction. We aren’t just infatuated with tailored
majors and tailored curricula. We are sometimes tempted
to devise courses of study in which M&S students have
almost no latitude. We imagine that our M&S folks can
be precisely codified, like a rifleman who shot marksman,
sharpshooter, or expert. Of course, proficiency with a rifle
in 2015 isn’t far removed from proficiency with a rifle in
1965 or even 1915. On the other hand, M&S is a vast, rich,
constantly changing realm. Even if you could pigeonhole
your M&S people in 2015 (and I say you can’t), your
entire notion of how to pigeonhole them would have to
change in a matter of months.

M&S is a dynamic area. Education should fuel it, not
constrain it. The game development world is NOT madly
in love with academic game development credentials.
Similarly, we in DOD should NOT be madly in love with
academic M&S credentials.

Over in the entertainment realm, even some of those
who run game development programs at four-year
institutions acknowledge that a curriculum can become
dated six months after a school signs off on it. They also
note that hiring top teaching talent is a challenge, because
top talent usually lacks the academic credentials to land a
professorship.

Looking at M&S Education Through the Prism of
the Video Game Industry
By John Lawson III

Let’s discuss what DOD Modeling & Simulation (M&S) can learn about education from
the commercial gaming world. There are occasions when we in DOD look at the
commercial gaming industry as if we’re kids with our faces pressed against a candy

store’s window.

Cyber Security and Information Systems Information Analysis Center (CSIAC) 13

The Internet is full of blogs discussing whether a video
gaming degree is worth the time and money, and while
there is no consensus, the criticisms have a lot of intellectual
traction, and the very existence of so much criticism is
a warning against enshrining highly specific academic
credentials. Particularly unsettling is the charge that
academia moves more slowly than industry and therefore
struggles to keep up with technology and related trends.

If the fast-moving commercial gaming world is hesitant
to get hung up on ultra-specialized credentials, we in
DOD should have even greater reservations.

Whether you’re talking about measures that extend
across DOD, pertain to a particular service, or confine
themselves to some portion of a service (e.g., the training
community), you have to recognize a basic, bureaucratic
danger. It’s pretty easy to imagine ourselves getting married
to credentials that would be out of date by the time students
left the schoolhouse for the Real World.

We all have a pretty good idea what our bureaucratic
behavior looks like...

•• Year 1: A study compiles information on credentials
•• Year 2: Committees and working groups wrangle

over credentials
•• Year 3: A schoolhouse prepares to implement the

courses
•• Year 4: The first batch of students goes through the

program
•• Year 5: Graduates take what they learned into the

workforce

Any process resembling that is destined to be slow, and
slow is bad when you’re talking technology. If you know your
organization is going to be slow, allow for flexibility. Don’t
enshrine too many courses. Don’t enshrine too many skillsets.
Don’t enshrine too many credentials. Emphasize education
and don’t slide too far into professional certification.

According to an article by David Owen for ign.com, a
website dedicated to commercial games, those who hire
new employees for game developers are more interested
in a prospect’s portfolio of tangible work, rather than a
transcript or a resume.

We should resist our bureaucratic habit of checking into
the comfort zone that’s laden with checklists and credentials.
We should take a page out of the commercial gaming world’s

book and examine the portfolios, i.e., the productivity, of our
M&S folks. People who have been educated in a meaningful
way should be able to harness their intellectual horsepower
and produce something. Let’s think a little less specifically
about what happens inside the black box of educational
institutions, and let’s think a little bit more about outputs.

Education ought to be synonymous with an open mind.
If we’re thinking there are only a few, narrowly defined ways
to educate our M&S personnel, we’re probably pursuing
our goals in the wrong way. Or, at a minimum, we’re
probably talking about training rather than education.

Our quasi-colleagues in the commercial gaming industry
have a variety of academic backgrounds. Computer science
is common, but there are plenty with backgrounds in
math, physics, English, graphic design, etc.

And even when the commercial gaming industry does
hire students who went to school with an eye toward
specialization, the industry is open to a wide array of
specialized students. There are at least several dozen
colleges and universities with impressive curricula for
game developers. However, a look at the diversity of these
schools and the diversity of their academic approaches
ought to deter DOD from following a cookbook mentality
about M&S education. If we fixate on a few credentialing
recipes, we’ll struggle to keep up technologically.

Nobody ever accused the gaming industry of struggling
to keep up technologically.

About the Author

John Lawson III is a contractor who supports the
Marine Corps M&S Management Office. Before that,
he was a contractor serving several Air Force entities as
an analyst. He has spent more than a decade monitoring
commercial game technology and its potential utility for
military analysis and military M&S. In the 1990s, he was
a newspaper reporter, mainly for The Tampa Tribune; he is
also the author of Tom Landry and Bill Walsh: How two
coaching legends took championship football from the
Packer Sweep to Brady vs. Manning. Lawson served in the
Marine Corps Reserve for nine years and reached the rank
of staff sergeant. He has a B.S. in mechanical engineering
from the University of Maryland; a B.A. from Washington
& Lee University for a double major in history and
English; and an M.A. from the University of Florida in
mass communications.

LOOKING AT M&S EDUCATION THROUGH THE
PRISM OF THE VIDEO GAME INDUSTRY

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices14

Over the past year the Software
Engineering Institute
(SEI), in coordination with

the Assistant Secretary of Defense
for Research and Engineering for
Acquisition, Technology, and Logistics
(ASD(R&E) AT&L), together with
CSIAC produced five software best/
recommended practices:

Agile at Scale. Agile practices have
been used for well over a decade and
have enjoyed much success and broad
adoption in the commercial sector.
But business and mission goals are
larger than a single development
team, and applying agile at scale is
challenging along several dimensions.
These recommended practices,
orchestrated together, will help enable
agility at scale.

Managing Operational Resilience.
Organizations have invested a
tremendous amount of resources
in cybersecurity, yet cyber attackers
continue to penetrate systems. An

organization should pursue a strategic
approach that balances actions that
protect assets with actions that sustain
services and operations. Managing
operational resilience includes all the
practices of planning, integrating,
executing, and governing these
activities.

Managing Intellectual Property in
the Acquisition of Software-Intensive
Systems. Department of Defense
regulations now require that programs
develop an intellectual property (IP)
strategy as part of the acquisition
strategy. These recommended
practices focus on managing IP
for acquisitions, with emphasis
on noncommercial software. They
include planning and consideration
of data rights and licenses throughout
the life cycle of the acquisition.

Monitoring Software Intensive
System Acquisition. Effective program
management requires maintaining an
accurate understanding of a program’s

status, quickly identifying issues that
threaten program objectives, and
dealing with them efficiently. These
recommended practices implement
an approach called the “program
dashboard” that helps the program
manager and contractor come to a
mutual understanding of a program’s
progress and the significance of
deviations from expectations.

Safety-Critical (SC) Systems. For
safety-critical systems, failure may
cause serious injury to people, damage
to equipment, or environmental
harm. As the needs for real-time
and fail-safe performance become
more stringent, it becomes harder
to develop and evolve such systems.
These recommended practices help an
organization successfully develop and
sustain safety-critical systems.

The CSIAC Journal is pleased to
present these Best Practices over
the next several issues, beginning
with Agile at Scale and Managing
Operational Resilience in this issue.

Copyright 2014 Carnegie Mellon University
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the United States Department of Defense.
References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.
This material has been approved for public release and unlimited distribution except as restricted below*.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the
copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should be directed to
the Software Engineering Institute at permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
Architecture Tradeoff Analysis Method® and ATAM® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM-0001619

Best Practices

Cyber Security and Information Systems Information Analysis Center (CSIAC) 15

Every organization is different; judgment is required to
implement these practices in a way that provides benefit
to your organization. In particular, be mindful of your
mission, goals, existing processes, and culture. All practices
have limitations—there is no “one size fits all.” To gain
the most benefit, you need to evaluate each practice for
its appropriateness and decide how to adapt it, striving for
an implementation in which the practices reinforce each
other. Also, consider additional best practice collections
(such as the one from the GAO that is referenced at the
end of this article). Monitor your adoption and use of
these practices and adjust as appropriate.

These practices are certainly not complete—they are
a work in progress. For example, as future additions we
plan to include webpages addressing management and
acquisition best practices for AAS.

Why is AAS Challenging?

Agile practices, derived from a set of foundational
principles, have been used for well over a decade and
have enjoyed much success and broad adoption in the
commercial sector with the net result that development
teams have gotten better at building software. Reasons
include: increased visibility into a project and the emerging
product, increased empowerment of development teams,
the ability for customers and end users to interact early
with executable code, and the direct engagement of the
customer or product owner in the project to provide a
greater sense of shared responsibility.

But business and mission goals are larger than a single
development team and thus applying AAS is challenging
along these dimensions:

1.	 Team size. What happens when Agile practices are
used in a 100-person (or larger) development team?
What happens when the development team needs to
interact with the rest of the business such as quality
assurance, system integration, project management,
and marketing to get input into product development
and collaborate on the end-to-end delivery of the
product? Scrum and Agile methods such as extreme
programming (XP) are typically used by small
teams of at most 7-10 people. Larger teams require
orchestration of both multiple (sub)teams and cross-
functional roles beyond development.

2.	 Complexity. Large-scale systems are often large in
scope in terms of the number of features, the amount
of new technology being introduced, the number of
independent systems being integrated, the number
and types of users to be accommodated, and the
number of external systems with which the system
communicates. Does the system have stringent
quality-of-service requirements (e.g., strict real-time,
high-reliability, and security requirements)? Are
there multiple external stakeholders and interfaces?
Typically, such systems must go through rigorous
verification and validation (V&V), which makes
the frequent-deployment practices used in Agile
development challenging.

Agile at Scale (AAS)
By Robert L. Nord, Ipek Ozkaya - Software Engineering Institute

There are four parts to our discussion of Agile at scale. First, we set the context by
providing an answer to the question, “Why is AAS challenging?” The ten AAS primary
technical best practices follow. We then briefly address how an organization can

prepare for and achieve effective results from these best practices. We conclude with a listing
of selected resources to help you learn more. Also, we’ve added links to various sources to
help amplify a point—be mindful that such sources may occasionally include material that

might differ from some of the recommendations below.

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices16

3.	 Duration. How long will the system be in development?
How long in operations and sustainment? Larger
systems need to be in development and operation for
a longer period of time than products to which agile
development is typically applied, requiring attention
to future changes, possible redesigns as well as
maintaining several delivered versions. This is a focus
that some Agile teams would consider antithetical to
the Agile principles. Answers to these questions affect
the choice of quality attributes supporting system
maintenance and evolution goals that are key to
system success over the long term.

AAS Best Practices:

1.	 Use Scrum of Scrums carefully when coordinating
multiple teams. Scrum is the most often used Agile
method in today’s environment, and primarily
involves team management practices. In its simplest
instantiation, a Scrum development environment
consist of a single Scrum team with the skills, authority
and knowledge required to specify requirements,
architect, design, code, and test the system. As
systems grow in size and complexity, the single team
mode may no longer meet development demands.
If a project has already decided to use a Scrum-like
project-management technique, the Scrum approach
can be extended to managing multiple teams with a
“Scrum of Scrums,” a special coordination team whose
role is to (1) define what information will flow between
and among development teams (addressing inter-team
dependencies and communication) and (2) identify,
analyze, and resolve coordination issues and risks
that have potentially broader consequences (e.g., for
the project as a whole). A Scrum of Scrums typically
consists of members from each team chosen to address
end-to-end functionality or cross-cutting concerns
such as user interface design, architecture, integration
testing, and deployment. Creating a special team
responsible for inter-team coordination helps ensure
that the right information, including measurements,
issues, and risks, is communicated between and among
teams. But care needs to be taken when the Scrum
of Scrums team itself gets large to not overwhelm
the team. This can be accomplished by organizing
teams—and the Scrum of Scrums team itself—along
feature and service affinities. We further discuss this
approach to organizing teams in our Feature-Based

Development and System Decomposition practice.
Such orchestration is essential to managing larger
teams to success, including Agile teams.

2.	 Use an architectural runway to manage technical
complexity. Stringent safety or mission-critical
requirements increase technical complexity and risk.
Technical complexity arises when the work takes
longer than a single iteration or release cycle and
cannot be easily partitioned and allocated to different
technical competencies (or teams) to independently
and concurrently develop their part of a solution.
Successful approaches to managing technical
complexity include having the most-urgent system
or software architecture features well defined early (or
even pre-defined at the organizational level, e.g., as
infrastructure platforms or software product lines).

The Agile term for such pre-staging of architectural
features that can be leveraged by development teams is
“architectural runway.” The architectural runway has
the goal of providing the degree of stability required to
support future iterations of development. This stability
is particularly important to the successful operation of
multiple teams. A system or software architect decides
which architectural features must be developed first by
identifying the architecturally significant requirements
for the system. By initially defining (and continuously
extending) the architectural runway, development
teams are able to iteratively develop customer-desired
features that leverage that runway and benefit from
the quality attributes they confer (e.g., security).

Having a defined architectural runway enables
technical risks to be uncovered earlier, thereby helping
to manage system complexity (no late surprises). The
consequence of uncovering underlying architectural
concerns such as security, performance, or availability
late—that is, after several iterations have passed—
often is a significant rework rate and schedule delay.
Delivering functionality is more predictable when
the infrastructure for the new features is in place so
it is important to maintain a continual focus on the
architecturally significant requirements and estimation
of when the development teams will depend on having
code that implements an architectural solution.

AGILE AT SCALE (AAS) (CONT.)

Cyber Security and Information Systems Information Analysis Center (CSIAC) 17

3.	 Align Feature-Based Development and System
Decomposition. A common approach in Agile teams
is to implement a feature (or user story) in all the
components of the system. This gives the team the
ability to focus on something that has stakeholder
value. The team controls every piece of implementation
for that feature and therefore they do not have to wait
until someone else outside the team has finished some
required work. We call this vertical alignment because
every component of the system required for realizing
the feature is implemented only to the degree required
by the team.

However, system decomposition could also be
horizontal, based on the architectural needs of the
system, focusing on common services and variability
mechanisms promoting reuse.

The goal of creating a feature-based development
and system decomposition approach is to provide
flexibility in aligning teams horizontally, vertically, or
in combination, while minimizing coupling to ensure
progress. Although organizations create products in
very different domains (embedded systems to enterprise
systems) similar architecture patterns and strategies
emerge when a need to balance rapid progress and
agile stability is desired. The teams create a platform
containing commonly used services and development
environments either as frameworks or platform plug-
ins to enable fast feature-based development.

4.	 Use quality-attribute scenarios to clarify
architecturally significant requirements. Scrum
emphasizes customer-facing requirements—features
that end users dwell on—and indeed these are
important to success. But when the focus on end-
user functionality becomes exclusive, the underlying
architecturally significant requirements can go
unnoticed.

Superior practice is to elicit, document, communicate,
and validate underlying quality-attribute scenarios
during development of the architectural runway. This
becomes even more important at scale when projects
often have significant longevity and sustainability
needs. Early in the project, evaluate the quality-
attribute scenarios to determine which architecturally
significant requirements need to be addressed in early

development increments (see architectural runway
practice above) or whether strategic shortcuts can be
taken to deliver end-user capability more quickly.

For example, will the system really have to scale up to
a million users immediately, or is this actually a trial
product? There are different considerations depending
on the domain; for example, IT systems use existing
frameworks, so understanding the quality-attribute
scenarios can help developers understand which
architecturally significant requirements might already
be addressed adequately within existing frameworks
(including open-source systems) or existing legacy
systems that can be leveraged during software
development. Similarly, such systems have to deal with
changing requirements in security and deployment
environments that necessitates architecturally
significant requirements to be top priority when
dealing with scale.

5.	 Use test-driven development for early and
continuous focus on verification. This practice can
be summarized as “write your test before you write the
system.” When there is an exclusive focus on “sunny-
day” scenarios (a typical developer’s mindset), the
project becomes overly reliant on extensive testing at
the end of the project to identify overlooked scenarios
and interactions. Therefore, be sure to focus on rainy-
day scenarios (e.g., consider different system failure
modes) as well as sunny-day scenarios. The practice
of writing tests first, especially at the business or
system level (which is known as acceptance test-driven
development) reinforces the other practices that
identify the more challenging aspects and properties
of the system, especially quality attributes and
architectural concerns (see architectural runway and
quality-attribute scenarios practices above).

6.	 Use end-to-end testing for early insight into
emerging system properties. To successfully derive
the full benefit from test-driven development at scale,
consider early and continuous end-to-end testing of
system scenarios. When teams test only the features for
which they are responsible, they lose insight into overall
system behavior (and how their efforts contribute to
achieving it). Each small team could be successful
against its own backlog, but someone needs to be
looking after broader or emergent system properties

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices18

and implications. For example, who is responsible for
the fault tolerance of the system as a whole? Answering
such questions requires careful orchestration of
development with verification activities early and
throughout development. When testing end to end,
take into account different operational contexts,
environments, and system modes.

At scale, understanding end-to-end functionality
requires its elicitation and documentation. This
can be achieved through use of agile requirements
management techniques such as stories as well as use
of architecturally significant requirements. However,
if there is a need to orchestrate multiple systems, a
more deliberate elicitation of end-to-end functionality
as mission/business threads should provide a better
result.

7.	 Use continuous integration for consistent attention
to integration issues. This basic Agile practice
becomes even more important at scale, given the
increased number of subsystems that must work
together and whose development must be orchestrated.
One implication is that the underlying infrastructure
that developers will use day to day must be able to
support continuous integration. Another is that
developers focus on integration earlier, identifying the
subsystems and existing frameworks that will need
to integrate. This identification has implications for
the architectural runway, quality-attribute scenarios,
and orchestration of development and verification
activities. Useful measures for managing continuous
integration include rework rate and scrap rate. It is also
important to start early in the project to identify issues
that can arise during integration. What this means
more broadly is that both integration and the ability to
integrate must be managed in the Agile environment.

8.	 Consider technical debt management as an
approach to strategically manage system
development. The concept of technical debt arose
naturally from use of Agile methods, where the
emphasis on getting features out quickly often creates
a need for rework later. At scale, there may be multiple
opportunities for shortcuts, and understanding
technical debt and its implications becomes a means
for strategically managing the development of the
system. For example, there might be cases, where to

accelerate delivery, certain architectural selections
are made that have long-term consequences. Such
tradeoffs must be understood and managed based on
both qualitative and quantitative measurements of the
system. Qualitatively, architecture evaluations can be
used as part of the product demos or retrospectives
that Agile advocates. Quantitative measures are harder
but can arise from understanding productivity, system
uncertainty, and measures of rework (e.g., when
uncertainty is greater, you might be more willing to
take on more rework later). Several larger organizations
have started to look into technical-debt management
practices organizationally.

9.	 Use prototyping to rapidly evaluate and resolve
significant technical risks. To address significant
technical issues, teams employing Agile methods will
sometimes perform what in Scrum is referred to as a
technical spike, in which a team branches out from the
rest of the project to investigate the specific technical
issue, develop one or more prototypes to evaluate
possible solutions, and bring back what was learned
to the project so that it can proceed with greater
likelihood of success. A technical spike may extend
over multiple sprints, depending on the seriousness of
the issue and how much time it takes to investigate
the issue and bring back information that the project
can use.

At scale, technical risks having severe consequences
are typically more numerous, and so prototyping (and
other approaches to evaluating candidate solutions
such as simulation and demonstration) can be an
essential early planning but also recurring activity. A
goal of Agile methods is increased early visibility. From
that perspective, prototyping is a valuable means of
achieving visibility more quickly for technical risks
and their mitigations. The Scrum of Scrums practice
mentioned earlier has a role here, too, for helping
to orchestrate bringing back what was learned from
prototyping to the overall system.

10.	Use architectural evaluations to ensure that
architecturally significant requirements are being
addressed. While not considered part of mainstream
Agile practice, architecture evaluations have much
in common with Agile methods in seeking to bring
a project’s stakeholders together to increase their

AGILE AT SCALE (AAS) (CONT.)

Cyber Security and Information Systems Information Analysis Center (CSIAC) 19

visibility into and commitment to the project, and
to identify overlooked risks. At scale, architectural
issues become even more important, and architecture
evaluations thus have a critical role on the project.
Architecture evaluation can be formal, as in the
Software Engineering Institute’s Architecture Tradeoff
Analysis Method, which can be performed, for example,
early in the Agile project lifecycle before the project’s
development teams are launched, or recurrently. There
is also an important role for lighter weight evaluations
in project retrospectives to evaluate progress against
architecturally significant requirements.

Under what conditions will organizations
derive the most benefit from the AAS best
practices?

None of these practices in isolation will enable agility at
scale. They are meant to be orchestrated together. Improving
visibility and understanding into high priority concerns
for the system under development and understanding the
technical challenges hindering their development early
on and continuously is what enabled agile development
practices to succeed in its initial context. Carrying that
to scale means making sure the technical barriers and
enablers are clearly communicated through not only
team practices but through the working system as well.
When an organization neglects the following factors, the
effectiveness of AAS practices, and of Agile more generally,
may be severely limited:

1.	 A technical infrastructure that empowers the teams
to collaborate. An infrastructure that supports such
things as configuration management; issue and defect
tracking; and team measurement and analysis are
extremely important for Agile and AAS practices. For
example, a large Agile project with distributed teams
may lack something as simple as a standard virtual-
meeting capability to support daily standup meetings.

2.	 A management culture that empowers and trusts
team decisions. Agile practices assume empowerment
of development teams. Technical decisions made at the
development level should be trusted and propagated to
other teams and management that might be affected.
More generally, communication barriers must be
removed, and management must create a culture that
removes silos, particularly around interdependent work.

One key is ensuring that team members have the
training and mentoring they need to make sound
technical judgments. Teams must be empowered and
encouraged to define their own work processes, define
the measurements they will collect and analyze, and
regularly evaluate the quality of their work and gauge
the progress made.

Strongly hierarchical decision-making organizations
may experience significant challenges as they try to
transition to such a culture: development teams may
be used to being told what to do and may experience
unease taking the initiative, and their management
may remain uneasy in granting teams that initiative.

3.	 Visibility. Agile is all about achieving visibility early
and continuously and recognizing and addressing risks
in a timely way. The challenge with knowledge work
is that though work processes may be “proven” across
a range of circumstances, they nevertheless represent
theories of how the work should proceed (theories that
can improve with time); thus, team processes should
be measured, monitored, and adjusted as needed.

One key to greater visibility and understanding is
to make all team artifacts that contribute to the
development of the system broadly accessible to
everyone in the project. Many open-source efforts
now employ social coding environments—such as
GitHub—that provide full transparency into each
developer’s work. More generally, it is not possible
to fully anticipate who needs to know about team
progress and issues, now or in the future, and thus
the environment should make working code, team
and project backlogs, and quality-attribute priorities
visible to all.

Learn More

For more information about Agile at scale, please
see:

Leffingwell, Dean. Scaling Software Agility: Best Practices for
Large Enterprises. Addison-Wesley, 2007.

Government Accountability Office. Software Development:
Effective Practices and Federal Challenges in Applying Agile
Methods. Report GAO-12-681. July 2012. http://www.gao.
gov/products/GAO-12-681

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices20

Larman, Craig and Vodde, Bas, Practices for Scaling Lean &
Agile Development: Large, Multisite, and Offshore Product
Development with Large-Scale Scrum

Stephany Bellomo, Robert L. Nord, Ipek Ozkaya: A Study of
Enabling Factors for Rapid Fielding: Combined Practices to
Balance Speed and Stability. ICSE 2013: 982-991

For more information about architectural tactics
and Agile, please see:

Royce, W. Measuring Agility and Architectural Integrity, Int’l J.
Software and Informatics, vol. 5, no. 3, 2011, pp 415-433.

For more information on Agile for the enterprise
and teams, please see

Leffingwell, Dean. Agile Software Requirements: Lean
Requirements Practices for Teams, Programs, and the
Enterprise. Addison-Wesley, 2011.

To learn more about the interplay of Agile at scale
best practices, see:

Integrate End to End Early and Often, IEEE Software July/.
August 2013 issue, Felix Bachmann et al

Government Accountability Office. Software Development:
Effective Practices and Federal Challenges in Applying Agile
Methods. Report GAO-12-681. July 2012.

For more information about quality attribute
scenarios, please see:

Ipek Ozkaya, Len Bass, Raghvinder Sangwan and Robert
Nord. Making Practical Use of Quality Attribute Information,
in IEEE Software Volume 25 Issue 2 March-April 2008,
Page(s): 25-33.

Leffingwell, Dean. Agile Software Requirements: Lean
Requirements Practices for Teams, Programs, and the
Enterprise. Addison-Wesley, 2011.

To learn more about test-driven development, see:

Whittaker, James A., Jason Arbon and Jeff Carollo: How Google
Tests Software (Apr 2, 2012)

Beck, Kent: Test Driven Development by Example

Learn more about continuous integration by
seeing:

Continuous Integration: Improving Software Quality and
Reducing Risk. Paul M. Duvall; Steve Matyas; Andrew
Glover; Addison-Wesley Professional, 2007

To view information about technical debt, please
visit

Philippe Kruchten, Robert L. Nord, Ipek Ozkaya. Technical
debt: from metaphor to theory and practice. IEEE Software
Special Issue on Technical Debt (Nov/Dec 2012).

To learn more about prototyping, see:

Stephany Bellomo, Robert L. Nord, Ipek Ozkaya. Elaboration
on an Integrated Architecture and Requirement Practice:
Prototyping with Quality Attribute Focus. Second
International Workshop on the Twin Peaks of Requirements
and Architecture. International Conference on Software
Engineering (ICSE) 2013, May 18-26, 2013 in San
Francisco, CA, USA.

About the Author(s)

Robert L. Nord is a senior member
of the technical staff at the Carnegie
Mellon Software Engineering
Institute (SEI). He is engaged in
activities focusing on agile
architecting, architectural technical
debt, and effective methods and

practices for software architecture. He is coauthor of the
practitioner-oriented books Applied Software Architecture
and Documenting Software Architectures: Views and Beyond
and lectures on architecture-centric approaches.

Ipek Ozkaya works to develop,
apply, and communicate effective
methods for software architecture
and agile and iteratire development
to improve software development
efficiency. At the SEI she is the
deputy lead for the Architecture

Practices (AP) initiative and the technical lead for the the
Value-driven Incremental Development research project.

AGILE AT SCALE (AAS) (CONT.)

Cyber Security and Information Systems Information Analysis Center (CSIAC) 21

A recommended approach to address both protection and
sustainment is the application of resilience management
practices. Operational resilience is the ability of an entity
to prevent disruptions to its mission from occurring,
continue to meet its mission if a disruption or incident
does occur, and return to normalcy when the disruption
is eliminated. The concept of operational resilience applies
to entities such as organizations, systems, networks, supply
chains, critical infrastructure, cyberspace, Armed Forces,
and even nations.

Operational resilience management includes all the
practices of planning, integrating, executing, and governing
activities to ensure that an entity can

•	 identify and mitigate operational risks that could
lead to service disruptions before they occur

•	 prepare for and respond to disruptive events (realized
risks) in a manner that demonstrates command and
control of incident response and service continuity

•	 recover and restore mission-critical services and
operations following an incident within acceptable
time frames

Operational resilience management draws from
several complex and evolving disciplines, including risk
management, business continuity, disaster recovery,
information security, incident and emergency management,
information technology (IT), service delivery, workforce
management, and supply-chain management, each

with its own terminology, principles, and solutions. The
practices described here reflect the convergence of these
distinct, often siloed disciplines. As resilience management
becomes an increasingly relevant and critical attribute of
their missions, organizations should strive for a deeper
coordination and integration of its constituent activities.

Our discussion of operational resilience management
has four parts. First, we set the context by providing an
answer to the question “Why is operational resilience
management challenging?” A set of recommended
practices for operational resilience management follows.
We then briefly address how an organization can achieve
effective results by following these practices. We conclude
with a list of selected resources to help you learn more
about operational resilience management. Also, we’ve
added links to various sources to help amplify some points.

Every organization is different; judgment is required
to implement these practices in a way that benefits your
organization. In particular, be mindful of your mission,
goals, existing processes, and culture. All practices have
limitations. Some of these practices will be more relevant
to your situation than others, and their applicability will
depend on the context in which you apply them. To gain
the most benefit, you need to evaluate each practice for
its appropriateness and decide how to adapt it, striving
for an implementation in which the practices meet your
business objectives. Monitor your adoption and use of
these practices, and adjust as appropriate.

Managing Operational Resilience
By Julia H. Allen, Pamela Curtis, Nader Mehravari - Software Engineering Institute

A search at your favorite news aggregator for keywords such as “malware,” “computer
virus,” or “data breach” will return results in the tens of thousands. For most
organizations it’s not a question of if a cyber attack will occur, but when. And when

an attack happens, the tempo of response must be fast, so an organization must already
have practices in place covering how to respond. These practices should reflect a strategic
approach that balances actions that protect assets such as customer data and intellectual

property with actions that sustain services and operations.

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices22

Why is managing operational resilience
challenging?

Over the past 10 years, organizations have invested
a tremendous amount of resources in cybersecurity.
Nevertheless, regardless of how much has been spent on
protection, cyber attackers continue to penetrate systems.
We have reached a point in the battle for information and
cybersecurity where we should change the focus of security
investment from a narrow focus on planning how to avoid
cyber attacks to a more balanced focus on avoidance and
planning how to recover from cyber attacks.

Operational resilience management has two sides—
protect and sustain—and both are equally important. An
organization must learn about the threat environment,
maintain situational awareness of the context in which
it operates, and create a risk-management plan that is as
thorough and reliable as possible. But when an attack
occurs, can the organization sustain its critical services
and operations? Can it adequately recover its systems and
get them back online as quickly as possible? Can it restore
and recover service within a prescribed recovery time and
according to its recovery-point objectives? An organization
must ask, where can we not afford to have something bad
happen, and where can we afford to have something bad
happen and bounce back as quickly as we can? The need
for organizations to achieve a balance between protect and
sustain is why operational resilience management is so
important.

Operational resilience management is challenging for
several reasons:

1.	 Making a long-term commitment: Operational
resilience is an emergent property. An emergent
property is not something an organization can buy
and put in place or assemble by buying its parts. For
a property to emerge within an organization, the
organization must execute a certain set of activities
in a coordinated manner and do so with consistent
discipline. Our own health makes a good analogy: we
would all like to have good health, but we cannot buy
it at any store. To become healthy, we must do certain
good things, such as eat well, exercise, sleep enough,
and get checkups. And we must do these things in
a disciplined manner for a long time. Achieving

operational resilience requires an organization to make
a similar long-term commitment to perform certain
activities with consistency. The activities involved in
operational resilience management must become part
of the organization’s daily habits across the enterprise.

2.	 Understanding the big picture: To be operationally
resilient, organizations must address operational
risk on many dimensions simultaneously, including
people, technology, information, facilities, supply-
chain, management, cyber, and physical dimensions.
This requires careful planning, coordination, and
training across many interdependent domains, as well
as understanding how the organization’s capabilities
along these dimensions contribute to mission success.

3.	 Overcoming organizational hurdles: An organization
may encounter these barriers to operational resilience
management:

•	 the vague and abstract nature of operational risk
management

•	 compartmentalization of operational risk-
management activities, such as segmenting
responsibilities for information security and
business continuity/disaster recovery

•	 focusing on technology instead of on all the
dimensions listed in Challenge 2

•	 the proliferation of practices for operational
resilience management

•	 insufficient funding and staff
•	 insufficient success stories and measurements
•	 (over)reliance on people
•	 regulatory climate
•	 existing policies
•	 the tendency to ignore current information to

avoid a painful reality and the need to act
•	 competitive pressures or short-term goals

Recommended Practices for Managing
Operational Resilience in Organizations
1.	 Governance and program management.

Organizations must oversee and manage the execution
of resilience activities. Resilient organizations ensure
that all such activities derive their purpose and focus
from strategic objectives and critical success factors for
operational resilience. The governance and program-

MANAGING OPERATIONAL RESILIENCE (CONT.)

Cyber Security and Information Systems Information Analysis Center (CSIAC) 23

management practice ensures that the investment in
operational resilience, cybersecurity, service continuity,
and other domains is consistent with the organization’s
business objectives. This practice entails regular
planning, definition of roles and responsibilities,
adequate funding, appropriate resource allocations,
oversight in executing the plan, and corrections as
necessary. In addition, governance and program
management involves measuring, analyzing, and
reporting the effectiveness of resilience-management
practices and implementing improvements. These are
all standard business practices for successful, mature
organizations, but they are often overlooked when
managing operational resilience.

2.	 Staff preparation and deployment. Organizations
must be prepared when a disruptive event occurs.
That means making sure that staff at all levels of the
organization are trained in how to perform their
assigned roles when disruptions occur. Everyone must
know his or her role, receive training, and rehearse
plans and contingencies. Skill gaps and deficiencies
should be identified and training provided to address
them.

Training can be designed to help meet the goals of
resilience management as well as other goals of the
organization that depend on interdisciplinary team
performance. For example, teams with members
drawn from different disciplines and departments
can train together in a scenario that encourages
interaction, mutual understanding, and building trust
among team members. Such training breaks down
barriers that otherwise naturally arise when work must
be done across disciplines and departments.

This practice also encompasses establishing staff
backup and redundancy at all levels of the organization.
For key personnel, not only it is important to have
backups who can step in; organizations should also
have identified qualified successors to staff members
in key positions if those positions are vacated.

Training is not a one-time event. The organization
should provide periodic refreshment training for all
key functions so that responsibilities and skills are not
forgotten in the stress of disruptive events.

3.	 Communication and awareness. Resilient
organizations make establishing and maintaining
communications with stakeholders a key objective
in all operational resilience-management practices—
both during normal operations and during periods
of stress. Communication is always important, but
it is particularly essential during times of disruption.
The organization should plan in advance exactly
who will contact whom during and following
disruptive events. Plan who will communicate
with stakeholders, including both customers and
suppliers, to share information and make stakeholders
aware of the status of the situation. In addition,
develop communication methods (newsletters, email
notifications, community meetings, etc.), channels
(public relations activities, peer and professional
organizations, etc.), infrastructure, and systems (such
as emergency alerting via mobile devices).

This practice includes both internal and external
communication. An organization should report
ongoing measurement of operational performance
and resilience-management activities and disseminate
that information across the enterprise to ensure
that all organizational units are operating with an
up-to-date picture of the organization’s operations.
External communication tasks may require providing
information to news media about its resilience
efforts or efforts to contain an incident or event. As
appropriate, establish responsibility for planning for
and executing crisis communications among first
responders, other emergency and public service staff,
and law enforcement.

4.	 Risk management. Organizations must identify,
analyze, and mitigate risks to assets that could
adversely affect the operation and delivery of high-
value services. Because an organization cannot protect
against every possible threat, risk management involves
identifying critical services and operations, identifying
the assets that enable their delivery, and prioritizing
them. Based on the strategic objectives established
in Practice 1, an organization identifies, analyzes,
and prioritizes the set of risks that it will monitor
and mitigate. This means that some risks will not be
addressed, whether intentionally or accidentally. The
goal of risk management is to limit exposure to the
latter, but an organization can simply accept some

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices24

risks and monitor them as residual risks (e.g., a price
increase for a critical purchased component). In this
way, the organization knows that it has an exposure
but has attempted to intelligently limit that exposure.

Risk management is a continuous process involving
identifying new risks, updating the status and
disposition of identified risks, determining how to
handle the risks (e.g., prevent, mitigate, monitor, or
accept), and implementing the selected risk-handling
option. For most organizations, this includes cyber
risks—and, more specifically, software vulnerabilities
and malware. A large body of work by the Software
Engineering Institute and the MITRE Corporation
describes specific vulnerabilities and software
weaknesses. In particular, MITRE has established
a large resource in its Common Vulnerability and
Enumeration (CVE) repository, where it makes classes
of vulnerabilities and solutions available.

5.	 Incident management. Incident management is one
of the disciplines that most naturally comes to mind
when one considers operational resilience management.
It is the end-to-end handling of a disruptive event
from the time that something happens to when it
is detected, triaged, and resolved. Disruptive events
include deliberate or inadvertent harmful actions of
people, failed internal processes, technology failures,
and external events such as natural disasters and power
outages.

Implementing this practice begins before an incident
occurs, when an organization plans for and assigns
roles and responsibilities, including those for key
stakeholders and decision makers (for escalation).
Operational staff should be trained not only in
delivering the services and conducting the operations
for which they have responsibility but also in the
results and effects to expect from performing these
services and operations. Operational staff are often
the first staff capable of detecting an incident; thus
such training should make them more sensitive to
unexpected deviations from “normal” results and
effects.

Once an incident is detected, the first step is to carefully
note the circumstances of the incident, declare the
incident, and preserve evidence. The organization

may have prepared an immediate workaround for
just such an incident. If so, that workaround is
often implemented by the same staff who detect the
incident. Otherwise, the organization analyzes the
incident to develop an appropriate response, including
recovery actions that minimize the disruption. When
analyzing the incident, the incident-handling team
looks for patterns or similarities to other incidents
that they may have seen in the past. The organization
may perform a root-cause analysis and identify and
evaluate multiple candidate solutions.

The next steps are to implement the solution—respond
and recover. The incident-handling team should also
ensure that the organization communicates with
key stakeholders, who can provide needed resources
and expertise immediately or later in the incident
resolution.

Once the incident is closed, the organization should
conduct a postmortem analysis to determine if the
organization should make any improvements to its
overall incident management, risk management,
and service delivery (operations) processes. The
organization should define measures to help evaluate
the effectiveness of its responses to disruptive incidents.
It will analyze those measures of effectiveness to
determine where to improve its practices.

6.	 Service continuity. This practice entails ensuring the
continuity of essential operations and services during
and following a disruptive event. Service continuity
may include business continuity, disaster recovery,
crisis management, and pandemic planning.

Activities encompassed by this practice include
developing service-continuity plans, assigning roles
and responsibilities, and then testing plans and
running exercises to ensure that the plans are robust.
For example, the organization should establish
plans about what to do with its workforce if it must
evacuate its facility and stand up an alternative facility
to continue operations. Tests and exercises can cover
a wide range of activities and may include computer
simulations.

Organizations should ensure the continuity of the
services they provide through careful preparation and

MANAGING OPERATIONAL RESILIENCE (CONT.)

Cyber Security and Information Systems Information Analysis Center (CSIAC) 25

planning. The resilient organization tracks the location
of key personnel and backup personnel, so that in the
event of an incident, they can put recovery plans into
action. Through exercises and drills, the organization
assures that everyone knows his or her roles. When a
Hurricane Sandy happens, the resilient organization
does what it has rehearsed.

7.	 Critical asset protection. Critical assets (e.g.,
information, technology, facilities) that support
high-value services must be identified, protected,
and maintained. In particular, an organization must
ensure that it applies adequate controls to protect the
confidentiality, integrity (i.e., information security),
and availability of information essential or entrusted
to the business. Such controls can include maintaining
an up-to-date inventory of the information that the
organization must protect, on what devices that
information resides, and over what networks it may be
transmitted. In addition, an organization should have
practices for configuring, tracking, protecting, and
maintaining its IT assets (e.g., workstations, laptops,
mobile devices, and network components).

Protecting critical assets requires continually
identifying and mitigating threats to the asset (e.g.,
as part of a comprehensive risk-management practice,
discussed in Practice 4); improving, retiring, and
adding new controls to the asset to maintain its
integrity; and establishing appropriate identity and
access management to limit access to the asset. Critical
asset protection also includes facility protection, such
as for an organization’s IT assets, and includes facilities
for backup and recovery.

8.	 External-dependencies management. An
organization must identify and manage dependencies
on external entities, such as its supply chain. Key
elements of this practice include prioritizing external
dependencies, managing risks arising from external
dependencies, and formalizing relationships with
external entities. Organizations should make sure
that formal and contractual agreements are in place
with external entities and that everyone understands
what is expected from each party, in particular
with respect to disruptions in delivery of critical
components or services. To ensure preparedness, an
organization should proactively monitor and manage

the performance of external entities to make sure they
meet expectations.

9.	 Secure software development and integration.
Organizations must ensure that software that enables or
performs the delivery of critical services and operations
satisfies resilience requirements. An organization
derives resilience requirements for such software
in part from its resilience-management activities,
including governance and program management
(Practice 1), service continuity (Practice 6), and critical
asset protection (Practice 7). For example, mitigating a
particular threat to an asset may impose resilience (and
security) requirements on the software that controls
it or access to it. An organization should also elicit
or collect requirements from stakeholders, including
customers, end users, suppliers, other partners, and
regulatory authorities. Multiple frameworks provide
recommended practices for software development that
address security and other resilience-related topics (see
Learn More for more information).

How to derive more benefit from the
recommended practices for managing
operational resilience?

The following activities will help organizations achieve
greater success when adopting the above practices for
operational resilience management:

1.	 Coordinate the implementation of these practices.
Implementing these practices requires competence
in several disciplines (incident management, asset
protection, risk management, etc.). Organizations
that create a separate solution or team to deal with
each practice will find their operational resilience-
management activities to be inefficient and difficult
to manage due to the overlaps (e.g., where do
incident management, disaster recovery, and asset
protection and sustainment begin or end?). Just as
the implementation of each operational resilience-
management practice should be driven by business
objectives, so should their collective implementation.
Organizations will improve their operational resilience
by taking an integrated approach to implementing
these activities and ensuring that there is adequate
coordination among them.

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices26

Begin by gathering representatives from the different
disciplines and departments to develop end-to-
end scenarios that describe how the organization
should respond to particular threats (as described in
Practice 2). Identify which disciplines or departments
(e.g., incident analysis, disaster recovery, and crisis
communication) to involve at each stage of the response,
including afterward, when making improvements
to processes and training for service delivery, service
continuity, and information security. Then determine
how the organization should coordinate its activities
in such scenarios. Such rehearsals or simulations help
identify superior ways to implement the operational
resilience-management practices.

The following diagram may help you remember the
purpose of each resilience-management practice. The
two practices in the “Stop the bleeding” row deal
primarily with resolving incidents. The “Improve and
manage” row of the diagram depicts the practices that
provide infrastructural and foundational support for
establishing, facilitating, measuring, and improving
asset protection and operations sustainment activities.
The position of those practices in the diagram also

indicates their role in protecting and sustaining the
health of the organization and continually improving
operational resilience-management activities. The
diagram illustrates the need for all the operational
resilience-management practices to work together.

2.	 Maintain currency with relevant standards. In
the past 10 years, standards have exploded across
all disciplines in national and international efforts
to deal with the growing number of cybersecurity
failures. The number of standards dealing
with preparedness planning has quadrupled
since 2005. An organization should develop an
integrated approach to updating its processes
to maintain compliance with standards relevant
to its business. For example, when ISO/IEC
Standard 27034 Information Technology—
Security Techniques—Application Security
was published, its guidance affected business
managers, IT managers, developers, auditors,
and end users. An organization should involve
designers, programmers, acquisition managers,
IT staff, and users to determine what changes are
needed to preserve the effectiveness of operational

MANAGING OPERATIONAL RESILIENCE (CONT.)

Cyber Security and Information Systems Information Analysis Center (CSIAC) 27

resilience-management activities while addressing
this standard.

3.	 Understand compliance issues. Compliance
issues affect all the recommended practices.
An organization must not only follow federal
and state legislation and regulations but also
be aware that state-by-state differences exist.
For example, state requirements vary for noti-
fications about data breaches, and this will in-
form the organization’s communication prac-
tices. However, an organization should view
compliance as an outcome of an integrated op-
erational resilience-management program, not
a goal. Simply following a rule may not be suf-
ficient to plan for and mitigate risk; new risks
arise much faster than the rate of legislation.

Food for thought. Could what happened to Target
happen to your organization? What will you do in the next
few days and weeks to better prepare your organization
to mitigate such attacks and the disruptions they cause to
your mission, services, and operations?

Learn More

For comprehensive information about operational
resilience management, please see:

CERT® Program. Resilience Management. http://www.cert.org/
resilience

MITRE Corporation. Cybersecurity. http://www.mitre.org/
capabilities/cybersecurity/resiliency

Weick, Karl & Sutcliffe, Kathleen. Managing the Unexpected:
Resilient Performance in an Age of Uncertainty (2nd ed.).
John Wiley & Sons, 2007.

For more information about frameworks and
maturity models, please see:

Allen, Julia & Mehravari, Nader. Presented at the “Buyer
Beware: How to be a Better Consumer of Security Maturity
Models.” RSA Conference, San Francisco, CA, February
2014.

Bodeau, Deborah, Graubart, Richard, Picciotto, Jeffrey, and
McQuaid, Rosalie. Cyber Resiliency Engineering Framework
(MTR110237). MITRE, 2012. http://www.mitre.org/

publications/technical-papers/cyber-resiliency-engineering-
framework

Caralli, Richard A., Allen, Julia H., & White, David W. CERT
Resilience Management Model (CERT-RMM): A Maturity
Model for Managing Operational Resilience. Addison-Wesley
Professional, 2011.

CMMI Product Team. CMMI for Development, Version 1.3
(CMU/SEI-2010-TR-033). Software Engineering Institute,
Carnegie Mellon University, 2010. http://resources.sei.cmu.
edu/library/asset-view.cfm?AssetID=9661

CMMI Product Team. CMMI for Services, Version 1.3 (CMU/
SEI-2010-TR-034). Software Engineering Institute,
Carnegie Mellon University, 2010. http://resources.sei.cmu.
edu/library/asset-view.cfm?AssetID=9665

Department of Energy. Cybersecurity Capability Maturity
Model (C2M2) Program. DoE, 2014. http://energy.gov/oe/
cybersecurity-capability-maturity-model-c2m2-program

Department of Homeland Security. Cyber Resilience Review
(CRR). DHS, 2014. http://www.us-cert.gov/ccubedvp/self-
service-crr

ISACA. COBIT 5: A Business Framework for the Governance and
Management of Enterprise IT. ISACA, 2012: http://www.
isaca.org/COBIT/Pages/default.aspx

McGraw, Gary et al. Building Security In Maturity Model.
http://www.bsimm.com (2012).

Microsoft. Security Development Lifecycle. http://www.
microsoft.com/security/sdl/default.aspx (2012).

National Institute of Standards and Technology. Cybersecurity
Framework (Version 1). NIST, 2014. http://www.nist.gov/
cyberframework/index.cfm

World Economic Forum. Partnering for Cyber Resilience: Risk
and Responsibility in a Hyperconnected World—Principles and
Guidelines. WEF, 2012. http://www3.weforum.org/docs/
WEF_IT_PartneringCyberResilience_Guidelines_2012.pdf

For more information about risk management,
please see:

CERT Program. OCTAVE and OCTAVE Allegro. Carnegie
Mellon Software Engineering Institute, 2012 http://cert.
org/resilience/products-services/octave/index.cfm

FAIR (Factor Analysis of Information Risk); http://
en.wikipedia.org/wiki/Factor_analysis_of_information_risk

International Organization for Standardization/International
Electrotechnical Commission (ISO/IEC). Risk Management:
Principles and Guidelines (ISO/IEC 31000:2009). ISO,
2009.

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices28

ISO/IEC. Information technology – Security techniques
– Information security risk management (ISO/IEC
27005:2011). ISO, 2011.

Chartered Institute of Purchasing and Supply. “Business
Continuity in the Supply Chain: Embedding Resilience.”
Business Continuity Institute & Chartered Institute of
Purchasing & Supply, 2010.

ISACA. COBIT 5: A Business Framework for the Governance and
Management of Enterprise IT. 2014. http://www.isaca.org/
COBIT/Pages/default.aspx

Joint Task Force Transformation Initiative. Guide for
Conducting Risk Assessments (NIST Special Publication
800-30, Revision 1). National Institute of Standards
and Technology, 2012. http://csrc.nist.gov/publications/
nistpubs/800-30-rev1/sp800_30_r1.pdf

MITRE Corporation. Supply Chain Risk Management.
MITRE, 2014. http://www.mitre.org/publications/
systems-engineering-guide/enterprise-engineering/systems-
engineering-for-mission-assurance/supply-chain-risk--
management

MITRE Corporation. Software and Supply Chain Assurance
Forum. MITRE, 2014. https://register.mitre.org/ssca

National Institute of Standards and Technology. Managing
Information Security Risk: Organization, Mission, and
Information System View (SP 800-39). NIST, 2011. http://
csrc.nist.gov/publications/nistpubs/800-39/SP800-39-final.
pdf

Simchi-Levi, David, Schmidt, William, & Wei, Yehua
Wei. “From Superstorms to Factory Fires: Managing
Unpredictable Supply-Chain Disruptions.” Harvard Business
Review (Jan./Feb. 2014).

Tomhave, Ben, Heidt Erik T., & Robins, Anne Elizabeth.
Comparing Methodologies for IT Risk Assessment and Analysis.
Gartner, 2014. https://www.gartner.com/doc/2659816/
comparing-methodologies-it-risk-assessment

Wikipedia. FAIR (Factor Analysis of Information Risk).
2014. http://en.wikipedia.org/wiki/Factor_analysis_of_
information_risk

For more information about external-
dependencies management, please see:

CMMI Product Team. CMMI for Acquisition, Version 1.3
(CMU/SEI-2010-TR-032). Software Engineering Institute,
Carnegie Mellon University, 2010. http://resources.sei.cmu.
edu/library/asset-view.cfm?AssetID=9657

Harrington, Lisa H., Sandor Boyson, & Thomas M. Corsi.
X-SCM : The New Science of X-treme Supply Chain
Management. New York: Routledge, 2011.

National Institute of Standards and Technology. Security
and Privacy Controls for Federal Information (SP 800-53,
Rev. 4). NIST, 2013. http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-53r4.pdf

National Institute of Standards and Technology. Supply Chain
Risk Management Practices for Federal Information Systems
and Organizations (SP 800-161). NIST, http://csrc.nist.gov/
publications/drafts/800-161/sp800_161_draft.pdf

For more information about resilience
engineering, please see:

Hollnagel, Erik, Paries, Jean, Woods, David, & Wreathall,
John. Resilience Engineering in Practice: A Guidebook.
Ashgate, 2013.

Mehravari, Nader & Allen, Julia H. Cyber Risk and Resilience
Management, Security and Survivability (Podcast). CERT
Program, Carnegie Mellon Software Engineering Institute,
2013.

Mehravari, Nader & Allen, Julia H. Demand for an Integrated
Approach to Better Manage Risk (Podcast). CERT Program,
Carnegie Mellon Software Engineering Institute, 2013.

Mehravari, Nader & Allen, Julia H. Making the Case for
Operational Resilience (Podcast). CERT Program, Carnegie
Mellon Software Engineering Institute, 2012.

Sheffi, Yossi. The Resilient Enterprise: Overcoming Vulnerability
for Competitive Advantage. MIT Press, 2007.

Woods, David D., & Leveson, Nancy. Resilience Engineering:
Concepts and Precepts. Ashgate, 2006.

MANAGING OPERATIONAL RESILIENCE (CONT.)

Cyber Security and Information Systems Information Analysis Center (CSIAC) 29

For more information about getting started with
operational resilience management, please see:

Bodeau, Deborah. Jumpstart Resiliency with What You’ve
Got. MITRE, 2013. http://www.mitre.org/capabilities/
cybersecurity/overview/cybersecurity-blog/jumpstart-
resiliency-with-what-you%E2%80%99ve-got

SANS Institute. Twenty Critical Security Controls for Effective
Cyber Defense: Consensus Audit Guidelines (CAG), Version
3.1. SANS, 2011. http://www.sans.org/critical-security-
controls

For more information about resilience policy
development, please see:

Department of Homeland Security. Enabling Distributed
Security in Cyberspace: Building a Healthy and Resilient Cyber
Ecosystem with Automated Collective Action. DHS, 2011.

International Organization for Standardization/International
Electrotechnical Commission (ISO/IEC). Information
technology — Security Techniques — Information
Security Management Systems — Requirements (ISO/IEC
27001:2005(E)). ISO, 2005.

ISO/IEC. Information Technology — Security Techniques —
Code of Practice for Information Security Management (ISO/
IEC 27002:2005(E)). ISO, 2005.

Keogh, Miles & Cody, Christina. Resilience in Regulated
Utilities. National Association of Regulatory Utility
Commissioners. http://www.naruc.org/Grants/Documents/
Resilience%20in%20Regulated%20Utilities%20
ONLINE%2011_12.pdf

Mehravari, Nader. “Effects of Recent Federal Policies on
Security and Resiliency Landscapes,” RSA Conference, San
Francisco, CA, February 2014.

Motef, John D. Critical Infrastructure Resilience: The Evolution
of Policy and Programs and Issues for Congress. Congressional
Research Service, August 2012. http://www.fas.org/sgp/crs/
homesec/R42683.pdf

Open Web Application Security Project (OWASP). https://
www.owasp.org/index.php/Main_Page

World Economic Forum. Risk and Responsibility in a
Hyperconnected World—Pathways to Global Cyber Resilience.
WEF, 2012.

About the Author(s)

Dr. Nader Mehravari is with the
CERT® Division of the Software
Engineering Institute (SEI) at the
Carnegie Mellon University. His
current areas of interest and research
include operational resilience,
cybersecurity and resilience
management, protection and
sustainment of critical infrastructure,

preparedness planning, and associated risk management
principles and practices.

Pamela Curtis is a Senior
Researcher on the Resilient
Enterprise Management Team in
the CERT Program at the Software
Engineering Institute. Curtis
conducts analytical studies and
investigations and develops models
and assessments related to

improving and measuring operational resilience. She has
over 25 years of experience in the information technology
domain as a systems analyst, programmer, process
improvement team leader, technical communicator, and
manager. Curtis holds a BA with a concentration in
Management from Simmons College and an MS in
Management Information Systems from Boston University.

Julia Allen is a senior member of
the technical staff within the CERT
Program at the Software
Engineering Institute (SEI), a unit
of Carnegie Mellon University in
Pittsburgh, PA. Allen is engaged in
developing and transitioning
executive outreach programs in
enterprise security and governance,

as well as conducting research in software security and
assurance. Prior to this technical assignment, Ms. Allen
served as acting Director of the SEI for an interim period
of six months, as well as Deputy Director/Chief Operating
Officer for three years. Before joining the SEI, she was a
vice president in embedded systems software development
for Science Applications International Corporation, and
managed large software development programs for TRW
(now Northrop Grumman).

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices30

AUTHOR BIOS AND CONTACT INFORMATION
When you submit your article to CSIAC, you also need
to submit a brief bio, which is printed at the end of your
article. Additionally, CSIAC requests that you provide contact
information (email and/or phone and/or web address), which
is also published with your article so that readers may follow
up with you. You also need to send CSIAC your preferred
mailing address for receipt of the Journal in printed format.
All authors receive 5 complementary copies of the Journal
issue in which their article appears and are automatically
registered to receive future issues of Journal

COPYRIGHT:

Submittal of an original and previously unpublished article
constitutes a transfer of ownership for First Publication
Rights for a period of ninety days following publication. After
this ninety day period full copyright ownership returns to
the author. CSIAC always grants permission to reprint or
distribute the article once published, as long as attribution is
provided for CSIAC as the publisher and the Journal issue in
which the article appeared is cited. The primary reason for
CSIAC holding the copyright is to insure that the same article
is not published simultaneously in other trade journals. The
Journal enjoys a reputation of outstanding quality and value.
We distribute the Journal to more than 30,000 registered
CSIAC patrons free of charge and we publish it on our website
where thousands of viewers read the articles each week.

FOR INVITED AUTHORS:
CSIAC typically allocates the author one month to prepare
an initial draft. Then, upon receipt of an initial draft, CSIAC
reviews the article and works with the author to create a
final draft; we allow 2 to 3 weeks for this process. CSIAC
expects to have a final draft of the article ready for
publication no later than 2 months after the author accepts
our initial invitation.

PREFERRED FORMATS:

•• Articles must be submitted electronically.
•• MS-Word, or Open Office equivalent (something that

can be edited by CSIAC)

SIZE GUIDELINES:
•• Minimum of 1,500 – 2,000 words (3-4 typed pages using

Times New Roman 12 pt font) Maximum of 12 pages
•• Authors have latitude to adjust the size as necessary to

communicate their message

IMAGES:
•• Graphics and Images are encouraged.
•• Print quality, 300 or better DPI. JPG or PNG format

preferred

Note: Please embed the graphic images into your article to
clarify where they should go but send the graphics as separate
files when you submit the final draft of the article. This makes
it easier should the graphics need to be changed or resized.

CONTACT INFORMATION:
CSIAC
100 Seymour Road Suite C102
Utica, NY 13502
Phone: (800) 214-7921
Fax: 315-351-4209

Michael Weir, CSIAC Director
John Dingman, Managing Editor
Email: info@csiac.org

Article Submission Policy

The CSIAC Journal is a quarterly journal focusing on scientific and technical research & development, methods and
processes, policies and standards, security, reliability, quality, and lessons learned case histories. CSIAC accepts articles
submitted by the professional community for consideration. CSIAC will review articles and assist candidate authors in
creating the final draft if the article is selected for publication. However, we cannot guarantee publication within a fixed
time frame. Note that CSIAC does not pay for articles published.

CSIAC is a DoD sponsored Information Analysis Center (IAC), administratively managed by the Defense Technical Information Center (DTIC),
technically managed by the Air Force Research Laboratory (AFRL) in Rome, NY and operated by Quanterion Solutions Incorporated, Utica, NY.

Cyber Security and Information Systems Information Analysis Center (CSIAC) 31

John Dingman
Managing Editor

Quanterion Solutions, CSIAC

Michael Weir
CSIAC Director

Quanterion Solutions, CSIAC

Paul R. Croll
President

PR Croll LLC

 Dr. Dennis R. Goldenson
Senior Member of the Technical Staff

Software Engineering Institute

Shelley Howard
Graphic Designer

Quanterion Solutions, CSIAC

 Dr. Paul B. Losiewicz
Senior Scientific Advisor
Quanterion Solutions, Inc.

 Michele Moss
Lead Associate

Booz Allen Hamilton

 Dr. Kenneth E. Nidiffer
Director of Strategic Plans for

Government Programs
Software Engineering Institute

Richard Turner, DSc
Distinguished Service Professor

Stevens Institute of Technology

ABOUT THIS PUBLICATION

The Journal of Cyber Security and Information Systems is published
quarterly by the Cyber Security and Information Systems Information Analysis
Center (CSIAC). The CSIAC is a DoD sponsored Information Analysis Center
(IAC), administratively managed by the Defense Technical Information Center
(DTIC). The CSIAC is technically managed by Air Force Research Laboratory
in Rome, NY and operated by Quanterion Solutions Incorporated in Utica, NY.

Reference herein to any specific commercial products, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States
Government or the CSIAC. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the
CSIAC, and shall not be used for advertising or product endorsement purposes.

CSIAC
100 Seymour Road

Utica, NY 13502-1348
Phone: 800-214-7921 • Fax: 315-732-3261

E-mail: info@csiac.org
URL: https://www.csiac.org/

Distribution Statement
Unclassified and Unlimited

ABOUT THE JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

COVER DESIGN
Shelley Howard

Graphic Designer
Quanterion Solutions, CSIAC

ARTICLE REPRODUCTION

Images and information presented in these articles may be reproduced as long
as the following message is noted:

“This article was originally published in the Journal of Cyber Security and
Information Systems Vol.III, No II”

In addition to this print message, we ask that you notify CSIAC regarding any
document that references any article appearing in the CSIAC Journal.

Requests for copies of the referenced journal may be submitted to the
following address:

Cyber Security and Information Systems
100 Seymour Road
Utica, NY 13502-1348

Phone: 800-214-7921
Fax: 315-732-3261
E-mail: info@csiac.org

An archive of past newsletters is available at https://journal.csiac.org.

CSIAC JOURNAL
EDITORIAL BOARD

Journal of Cyber Security and Information Systems Volume III Number II: Early Prevention & Best Practices32

Cyber Security and Information Systems
Information Analysis Center
100 Seymour Road
Suite C-102
Utica, NY 13502

PRSRT STD
U.S. Postage

P A I D
Permit #566

UTICA, NY

Return Service Requested

Journal of Cyber Security and Information Systems – September 2015
Early Prevention & Best Practices

— IN THIS ISSUE —

Increasing Assurance Levels Through Early Verification with Type Safety
By Rick Murphy.. 2

Looking at M&S Education Through the Prism of the Video Game Industry
By John Lawson III... 12

Agile at Scale (AAS)
By Robert L. Nord, Ipek Ozkaya - Software Engineering Institute... 15

Managing Operational Resilience
By Julia H. Allen, Pamela Curtis, Nader Mehravari - Software Engineering Institute... 21

