

Advances in the Acquisition of Secure Systems
Based on Open Architectures
By Walt Scacchi and Thomas A. Alspaugh

 Introduction

A substantial number of development organizations are
adopting a strategy in which a software-intensive system
is developed with an open architecture (OA) [20], whose
components may be open source software (OSS) or proprietary
with open application programming interfaces (APIs). Such
systems evolve not only through the evolution of their
individual components, but also through replacement of one
component by another, possibly from a different producer or
under a different license. With this approach to software system
acquisition, the system development organization becomes
an integrator of components largely produced elsewhere that
are interconnected through open APIs as necessary to achieve
the desired result.

 An OA development process arises in a software acquisition
ecosystem in which the integrator is influenced from one
direction by the goals, interfaces, license choices, and release
cycles of the component producers, and in another direction by
the needs of its consumers. As a result the software components
are reused more widely, and the resulting OA systems can
achieve reuse benefits such as reduced costs, increased
reliability, and potentially increased agility in evolving to meet
changing needs.

The role of software acquisition ecosystems in the development and evolution of secure
open architecture systems has received insufficient consideration. Such systems are
composed of software components subject to different security requirements in an

architecture in which evolution can occur by evolving existing components or by replacing
them. But this may result in possible security requirements conflicts and organizational liability
for failure to fulfill security obligations. We have developed an approach for understanding
and modeling software security requirements as “security licenses”, as well as for analyzing
conflicts among groups of such licenses in realistic system contexts and for guiding the
acquisition, integration, or development of systems with open source components in such an
environment. Consequently, this paper reports on our efforts to extend our existing approach
to specifying and analyzing software intellectual property licenses to now address software
security licenses that can be associated with secure OA systems.

An emerging challenge is to realize the benefits of this
approach when the individual components are subject to
different security requirements. This may arise due either
to how a component’s external interfaces are specified and
defended, or to how system components are interconnected
and configured in ways that can or cannot defend the
composed system from security vulnerabilities and external
exploits. Ideally, any software element in a system composed
from components from different producers can have its security
capabilities specified, analyzed, and implemented at system
architectural design-time, build-time, or at deployment run-
time. Such capability-based security in simplest form specifies
what types, value ranges, and values of data, or control signals
(e.g., program invocations, procedure or method calls), can be
input, output, or handed off to a software plug-in or external
(helper) application, from a software component or composed
system.

When designing a secure OA system, decisions and trade-offs
must be made as to what level of security is required, as well
as what kinds of threats to security must be addressed. The
universe of possible security threats is continually emerging
and the cost/effort of defending against them ongoing.
Similarly, anticipating all possible security vulnerabilities or

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity2

AdvAnCeS In The ACquISITIon oF SeCure SySTemS BASed on oPen ArChITeCTureS (ConT.)

threats is impractical (or impossible). Further, though it may
be desirable that all systems be secure, different systems need
different levels of security, which may come at ever greater
cost or inconvenience to accommodate. Strategic systems may
need the greatest security possible, while other systems may
require much less rigorous security mechanisms. Thus, finding
an affordable, scalable, and testable means for specifying
the security requirements of software components, or OA
systems composed with components with different security
requirements, is the goal of our research.

The most basic form of security requirements that can be
asserted and tested are those associated with virtual machines.
Virtual machines (VM) abstract away the actual functional
or processing capabilities of the computational systems on
which they operate, and instead provide a limited functionality
computing surround (or “sandbox”). VM can isolate a given
component or system other software applications, utilities,
repositories, or external/remote control data access (input or
output). The capabilities for a VM (e.g., an explicit, pre-defined
list of approved operating system commands or programs
that can write data or access a repository) can be specified as
testable conditions that can be assigned to users or programs
authorized to operate within the VM. The VM technique is
now widely employed through software “hypervisors” (e.g.,
IBM VM/370, VMware, VirtualBox, Parallels Desktop
for Mac) that isolate software applications and operating
system from the underlying system platform or hardware.
Such VM act like “containment vessels” through which it
is possible to specify barriers to entry (and exit) of data and
control via security capabilities that restrict other programs.
These capabilities thus specify what rights or obligations may
be, or may not be, available for access or update to data or
control information. Thus architectural design-time decisions
pertaining to specifying the security rights or obligations for
the overall system or its components are done by specification
of VM that contain the composed system or its components.
These rights or obligations can be specified as pre-conditions
on input data or control signals, or post-conditions on output
data or control signals.

The problem of specifying the build-time and run-time
security requirements of OA systems is different from that at
design-time. In determining how to specify the software build
sequence, security requirements are manifest as capabilities that
may be specific to explicitly declared versions of designated
programs. For example, if an OA system at design-time specifies
a “Web browser” as one of its components, at build-time a
particular Web browser (Mozilla Firefox or Internet Explorer)

must then be specified, as must its baseline version (e.g.,
Firefox 4.0 or Internet Explorer 9.0). However, if the resulting
run-time version of the OA system must instead employ a
locally available Web browser (e.g., Firefox 3.6.1 or Internet
Explorer 8.0 Service Pack 2), then the OA system integrators
may either need to produce multiple run-time versions for
deployment, or else build the OA system using either (a) an
earlier version of the necessary component (e.g., Firefox 3.5 or
Internet Explorer 7.0) that is “upward compatible” with newer
browser versions; (b) a stub or abstract program interface that
allows for a later designated compatible component version
to be installed/used at run-time; or else (c) create different
run-time version alternatives (i.e., variants) of the target OA
systems that may or not be “backward compatible” with the
legacy system component versions available in the deployment
run-time environment. The need to specify build-time and
run-time components by hierarchical versions numbers like
Firefox 3.6.16.144 (and possibly timestamps of their creation
or local installation) arises since evolutionary version updates
often include security patches that close known vulnerabilities
or prevent known exploits. As indicated in the Related
Research section below, security attacks often rely on system
entry through known vulnerabilities that are present in earlier
versions of software components that have not been updated
to newer versions that don’t have the same vulnerabilities.

As we have been able to address an analogous problem of
how to specify and analyze the intellectual property rights and
obligations of the licenses of software components, our efforts
now focus on the challenge of how to specify and analyze
software components and composed system security rights
and obligations using a new information structure we call a
“security license.” The actual form of such a security license is
still to be finalized, but at this point, we believe it is appropriate
to begin to develop candidate forms or types of security licenses
for further research and development, especially for security
license forms that can be easily formalized, readily applied to
large-scale OA systems, as well as be automatically analyzed or
tested in ways we have already established [4,5]. This is another
goal of our research here.

Next, the challenge of specifying secure software systems
composed from secure or insecure components is inevitably
entwined with the software ecosystems that arise for secure
OA systems. We find that an OA software acquisition
ecosystem involves organizations and individuals producing
and consuming components, and supply paths from producer
to consumer; but also

Cyber Security and Information Systems Information Analysis Center (CSIAC) 3

AdvAnCeS In The ACquISITIon oF SeCure SySTemS BASed on oPen ArChITeCTureS (ConT.)

•	 the OA of the system(s) in question, and how best to
secure it,

•	 the open interfaces provided by the components, and how
to specify their security requirements,

•	 the degree of coupling in the evolution of related
components that can be assessed in terms of how security
rights and obligations may change, and

•	 the rights and obligations resulting from the security
licenses under which various components are released,
that propagate from producers to consumers.

An example software acquisition ecosystem producing and
integrating secure software components or secure systems is
portrayed in Figure 1.

In order to most effectively use an OA approach in
developing and evolving a system, it is essential to consider
this OA ecosystem. An OA system draws on components from
proprietary vendors and open source projects. Its architecture is
made possible by the existing general ecosystem of producers,
from which the initial components are chosen. The choice of a
specific OA begins a specialized software ecosystem involving
components that meet (or can be shimmed to meet) the open
interfaces used in the architecture. We do not claim this is the
best or the only way to reuse components or produce secure OA
systems, but it is an ever more widespread way. In this paper we
build on previous work on heterogeneously-licensed systems
[15, 22, 2] by examining how OA development affects and is
affected by software ecosystems, and the role of security licenses
for components included within OA software ecosystems.

Figure 1: An example of a software ecosystem in which secure OA systems may be developed

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity4

In the remainder of this paper, we survey some related
work (Section 2), define and examine characteristics of open
architectures with or without secure software elements (Section
3), define and examine characteristics for how secure OA
systems evolve (Section 4), introduce a structure for security
licenses (Section 5), outline security license architectures
(Section 6), and sketch our approach for security license
analysis (Section 7). We then close with a discussion addressing
how our software license and analysis scheme relates to software
products lines (Section 8), before stating our conclusions
(Section 9).

2 Related Work

Software systems, whether operating as standalone
components, or as elements within large system compositions
are continuously being subjected to security attacks. These
attacks seek to slip through software vulnerabilities known
to the attackers but perhaps not by the system integrators or
consumers. These attacks often seek to access, manipulate,
or remotely affect the data values or control signals that a
component or composed system processes for nefarious
purposes, or seek to congest or over-saturate networked
services. Recent high profile security attacks like Stuxnet [11]
reveal that security attacks may be very well planned and
employ a bundle of attack vectors and social engineering tactics
in order for the attack to reach strategic systems that are mostly
isolated and walled off from public computer networks. The
Stuxnet attack entered through software system interfaces at
either the component, application subsystem, or base operating
system level (e.g., via removable thumb drive storage devices),
and their goal was to go outside or beneath their entry context.
However, all of the Stuxnet attacks on the targeted software
system could be blocked or prevented through security
capabilities associated with the open software interfaces that
would (a) limit access or evolutionary update rights lacking
proper authorization, as well as (b) “sandboxing” (i.e., isolating)
and holding up any evolutionary updates (the attacks) prior
to their installation and run-time deployment. Furthermore,
as the Stuxnet attack involved the use of corrupted certificates
of trust from approved authorities as false credentials that
allowed evolutionary system updates to go forward, it seems
clear that additional preventions are needed that are external
to, and prior to, their installation and run-time deployment.
In our case, that means we need to specify and analyze software
security requirements and evolutionary update capabilities at
architectural design-time and system integration built-time,
and then reconcile those with the run-time system composition.
It also calls for the need to maintain the design-time, build-

time, and run-time system compositions in repositories remote
from system installations, and in possibly redundant locations
that can be encrypted, randomized, fragmented and dispersed
(e.g., via Torrents or “onion routing”) then cross-checked and
independently verified prior to run-time deployment in a high
security system application.

As already noted, both software intellectual property
licenses, and security licenses represent a collection of rights
and obligations for what can or cannot be done with a
licensed software component. Licenses thus denote non-
functional requirements that apply to a software systems or
system components as intellectual property (IP) or security
requirements (i.e., capabilities) during their development
and deployment. But rights and obligations are not limited
to concerns or constraints applicable only to software as
IP. Instead, they can be written in ways that stipulate non-
functional requirements of different kinds. Consider, for
example, that desired or necessary software system security
properties can also be expressed as rights and obligations
addressing system confidentiality, integrity, accountability,
system availability, and assurance [8, 9]. Traditionally,
developing robust specifications for non-functional software
system security properties in natural language often produces
specifications that are ambiguous, misleading, inconsistent
across system components, and lacking sufficient details [23].
Using a semantic model to formally specify the rights and
obligations required for a software system or component to
be secure [8, 9, 23] means that it may be possible to develop
both a “security architecture” notation and model specification
that associates given security rights and obligations across a
software system, or system of systems. Similarly, it suggests the
possibility of developing computational tools or interactive
architecture development environments that can be used
to specify, model, and analyze a software system’s security
architecture at different times in its development — design-
time, build-time, and run-time. The approach we have been
developing for the past few years for modeling and analyzing
software system IP license architectures for OA systems [3, 4, 5,
22], may therefore be extendable to also being able to address
OA systems with heterogeneous “software security license”
rights and obligations. Furthermore, the idea of common
or reusable software security licenses may be analogous to
the reusable security requirements templates proposed by
Firesmith [13] at the Software Engineering Institute. But such
an exploration and extension of the semantic software license
modeling, meta-modeling, and computational analysis tools
to also support software system security can be recognized as
a promising next stage of our research studies.

Cyber Security and Information Systems Information Analysis Center (CSIAC) 5

3 Secure Open Architecture Composition

Open architecture (OA) software is a customization
technique introduced by Oreizy [20] that enables third parties
to modify a software system through its exposed architecture,
evolving the system by replacing its components. Increasingly
more software-intensive systems are developed using an
OA strategy, not only with open source software (OSS)
components but also proprietary components with open APIs.
Similarly, these components may or not have their own security
requirements that must be satisfied during their build-time
integration or run-time deployment, such as registering the
software component for automatic update and installation of
new software versions that patch recently discovered security
vulnerabilities or prevent invocation of known exploits. Using
this approach can lower development costs and increase
reliability and function, as well as adaptively evolve software
security [22]. Composing a system with heterogeneously
secured components, however, increases the likelihood of
conflicts, liabilities, and no-rights stemming from incompatible
security requirements. Thus, in our work we define a secure OA
system as a software system consisting of components that are
either open source or proprietary with open API, whose overall
system rights at a minimum allow its use and redistribution,
in full or in part such that they do not introduce new security
vulnerabilities at the system architectural level.

It may appear that using a system architecture that
incorporate secure OSS and proprietary components, and
uses open APIs, will result in a secure OA system. But not
all such architectures will produce a secure OA, since the
(possibly empty) set of available license rights for an OA system
depends on: (a) how and why secure or insecure components
and open APIs are located within the system architecture, (b)
how components and open APIs are implemented, embedded,
or interconnected, and (c) the degree to which the IP and
security licenses of different OSS components encumber all
or part of a software system’s architecture into which they are
integrated [22, 1].

The following kinds of software elements appearing in
common software architectures can affect whether the resulting
systems are open or closed [6].

Software source code components—These can be either (a)
standalone programs, (b) libraries, frameworks, or middleware,
(c) inter-application script code such as C shell scripts, (d)
intra-application script code, as for creating Rich Internet
Applications using domain-specific languages such as XUL for
the Firefox Web browser [12] or “mashups” [19]. whose source

code is available and they can be rebuilt, or (e) similar script
code that can either install and invoke externally developed
plug-in software components, or invoke external application
(helper) components. Each may have its own distinct IP/
security requirements.

Executable components—These components are in binary
form, and the source code may not be open for access, review,
modification, or possible redistribution [21]. If proprietary,
they often cannot be redistributed, and so such components
will be present in the design-and run-time architectures but
not in the distribution-time architecture.

Software services—An appropriate software service can replace
a source code or executable component.

Application programming interfaces/APIs—Availability
of externally visible and accessible APIs is the minimum
requirement for an “open system” [18].

Software connectors—Software whose intended purpose
is to provide a standard or reusable way of communication
through common interfaces, e.g. High Level Architecture [17],
CORBA, MS .NET, Enterprise Java Beans, and GNU Lesser
General Public License (LGPL) libraries. Connectors can
also limit the propagation of IP license obligations or provide
additional security capabilities.

Methods of connection—These include linking as part of
a configured subsystem, dynamic linking, and client-server
connections. Methods of connection affect license obligation
propagation, with different methods affecting different licenses.

Configured system or subsystem architectures—These are
software systems that are used as atomic components of a
larger system, and whose internal architecture may comprise
components with different licenses, affecting the overall system
license and its security requirements. To minimize license
interaction, a configured system or sub-architecture may be
surrounded by what we term a license firewall, namely a layer
of dynamic links, client-server connections, license shims,
or other connectors that block the propagation of reciprocal
obligations.

Figure 2 shows a high-level run-time view of a composed
OA system whose reference architectural design in Figure 3
includes all the kinds of software elements listed above. This
reference architecture has been instantiated in a build-time
configuration in Figure 4 that in turn could be realized in

AdvAnCeS In The ACquISITIon oF SeCure SySTemS BASed on oPen ArChITeCTureS (ConT.)

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity6

alternative run-time confi gurations in Figures 5, 6, 7 with
diff erent security capabilities.Th e confi gured systems consist of
software components such as a Mozilla Web browser, Gnome
Evolution email client, and AbiWord word processor (similar
to MS Word), all running on a RedHat Fedora Linux operating
system accessing fi le, print, and other remote networked servers
such as an Apache Web server. Components are interconnected

through a set of software connectors that bridge the interfaces
of components and combine the provided functionality into
the system’s services. However, note how the run-time software
architecture does not pre-determine how security capabilities
will be assigned and distributed across diff erent variants of the
run-time composition.

	
 Figure 2: An example composite OA system potentially subject to diff erent IP and security licenses

	
 Figure 3: Th e design-time architecture of the system in Figure 2 that specifi es a required security containment vessel scheme.

Cyber Security and Information Systems Information Analysis Center (CSIAC) 7

Figure 4: A secure build-time architecture describing the version running in Figure 2 with a specifi ed security contain-
ment vessel scheme.

Figure 5: Instantiated build-time OA system with maximum security architecture of Figure 4 via individual security
containment vessels for each system element.

AdvAnCeS In The ACquISITIon oF SeCure SySTemS BASed on oPen ArChITeCTureS (ConT.)

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity8

Figure 6: Instantiated build-time OA system with minimum security architecture of Figure 4 via a single overall security con-
tainment vessel for the complete system using a common software hypervisor, such as Xen, KVM, or VMware.

Figure 7: Instantiated build-time OA system with mixed security architecture of Figure 4 via security containment vessels
for some groupings of system elements.

	

Cyber Security and Information Systems Information Analysis Center (CSIAC) 9

4 OA System Evolution
An OA system can evolve by a number of distinct

mechanisms, some of which are common to all systems but
others of which are a result of heterogeneous IP and security
licenses in a single system.

By component evolution— One or more components can
evolve, altering the overall system’s characteristics (for example,
upgrading and replacing the Firefox Web browser from version
3.5 to 3.6 which may update existing software functionality
while also patching recent security vulnerabilities).

By component replacement— One or more components
may be replaced by others with different behaviors but the
same interface, or with a different interface and the addition
of shim code to make it match (for example, replacing the
AbiWord word processor with either Open Office or MS
Word, depending on which is considered the least vulnerable
to security attack).

By architecture evolution— The OA can evolve, using the
same components but in a different configuration, altering
the system’s characteristics. For example, as discussed in
Section 3, changing the configuration in which a component
is connected can change how its IP or security license affects
the rights and obligations for the overall system. This could
arise when replacing email and word processing applications
with web services like Google Mail and Google Docs, which

we might assume may be more secure since the Google services
(operating in a cloud environment) may not be easily accessed
or penetrated by a security attack.

By component license evolution— The license under which
a component is available may change, as for example when
the license for the Mozilla core components was changed
from the Mozilla Public License (MPL) to the current Mozilla
Disjunctive Tri-License; or the component may be made
available under a new version of the same license, as for example
when the GNU General Public License (GPL) version 3 was
released. Similarly, the security license for a component may be
changed by its producers, or the security license for a composed
system changed by its integrators, in order to prevent or deter
recently discovered security vulnerabilities or exploits before an
evolutionary version update (or patch) can be made available.

By a change to the desired rights or acceptable obligations—
The OA system’s integrator or consumers may desire additional
IP or security license rights (for example the right to sublicense
in addition to the right to distribute), or no longer desire specific
rights; or the set of license obligations they find acceptable
may change. In either case the OA system evolves, whether by
changing components, evolving the architecture, or other means,
to provide the desired rights within the scope of the acceptable
obligations. For example, they may no longer be willing or able
to provide the source code for components that have known
vulnerabilities that have not been patched and eliminated.

Figure 8: A second instantiation at run-time (Firefox, Google Docs and Calendar operating within different Firefox run-time
sessions, Fedora) of the OA system in Figures 2, 3, and 4 as an evolutionary alternative system version, which in turn requires an

alternative security containment scheme.

	

AdvAnCeS In The ACquISITIon oF SeCure SySTemS BASed on oPen ArChITeCTureS (ConT.)

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity10

The interdependence of integrators and producers results
in a co-evolution of software within an OA ecosystem.
Closely-coupled components from different producers must
evolve in parallel in order for each to provide its services, as
evolution in one will typically require a matching evolution
in the other. Producers may manage their evolution with a
loose coordination among releases, for example as between
the Gnome and Mozilla organizations. Each release of a
producer component create a tension through the ecosystem
relationships with consumers and their releases of OA systems
using those components, as integrators accommodate the
choices of available, supported components with their own
goals and needs. As discussed in our previous work [2], license
rights and obligations are manifested at each component’s
interface, then mediated through the system’s OA to entail
the rights and corresponding obligations for the system as a
whole. As a result, integrators must frequently re-evaluate an
OA system’s IP/security rights and obligations. In contrast
to homogeneously-licensed systems, license change across
versions is a characteristic of OA ecosystems, and architects
of OA systems require tool support for managing the ongoing
licensing changes.

•	 We propose that such support must have several
characteristics.

•	 It must rest on a license structure of rights and obligations
(Section 5), focusing on obligations that are enactable
and testable.

•	 It must take account of the distinctions between the design-
time, build-time, and distribution-time architectures
(Sections 3, 5, 6) and the rights and obligations that come
into play for each of them.

•	 It must distinguish the architectural constructs significant
for software licenses, and embody their effects on rights
and obligations (Section 3).

•	 It must define license architectures (Section 6).
•	 It must provide an automated environment for creating

and managing license architectures. We are developing a
prototype that manages a license architecture as a view of
its system architecture [2].

•	 Finally, it must automate calculations on system rights and
obligations so that they may be done easily and frequently,
whenever any of the factors affecting rights and obligations
may have changed (Section 7).

5 Security Licenses
Licenses typically impose obligations that must be met in

order for the licensee to realize the assigned rights. Common
IP/copyright license obligations include the obligation to

publish at no cost any source code you modify (MPL) or the
reciprocal obligation to publish all source code included at
build-time or statically linked (GPL). The obligations may
conflict, as when a GPL’d component’s reciprocal obligation
to publish source code of other components is combined with
a proprietary component’s license prohibition of publishing
its source code. In this case, no rights may be available for
the system as a whole, not even the right of use, because
the two obligations cannot simultaneously be met and thus
neither component can be used as part of the system. Security
capabilities can similarly be expressed and bound to the data
values and control signals that are visible in component
interfaces, or through component connectors.

Some typical security rights and obligations might be:

•	 The right to read data in containment vessel T.
•	 The obligation for a specific component to have been

vetted for the capability to read and update data in
containment vessel T.

•	 The obligation for a user to verify his/her authority to
see containment vessel T, by password or other specified
authentication process.

•	 The right to replace specified component C with some
other component.

•	 The right to add or update specified component D in a
specified configuration.

•	 The right to add, update, or remove a security mechanism.

The basic relationship between software IP/security license
rights and obligations can be summarized as follows: if the
specified obligations are met, then the corresponding rights
are granted. For example, if you publish your modified source
code and sub-licensed derived works under MPL, then you
get all the MPL rights for both the original and the modified
code. Similarly, software security requirements are specified
as security obligations that when met, allow designated users
or other software programs to access, modify, and redistribute
data and control information to designated repositories or
remote services. However, license details are complex, subtle,
and difficult to comprehend and track—it is easy to become
confused or make mistakes. The challenge is multiplied when
dealing with configured system architectures that compose a
large number of components with heterogeneous IP/security
licenses, so that the need for legal counsel begins to seem
inevitable [21, 14].

We have developed an approach for expressing software
licenses of different types (intellectual property and security

Cyber Security and Information Systems Information Analysis Center (CSIAC) 11

requirements) that is more formal and less ambiguous than
natural language, and that allows us to calculate and identify
confl icts arising from the rights and obligations of two or more
component’s licenses. Our approach is based on Hohfeld’s
classic group of eight fundamental jural relations [16], of which
we use right, duty, no-right, and privilege. We start with a
tuple <actor, operation, action, object> for expressing a right
or obligation. Th e actor is the “licensee” for all the licenses we
have examined. Th e operation is one of the following: “may”,
“must”, “must not”, or “need not”, with “may” and “need
not” expressing rights and “must” and “must not” expressing
obligations. Th e action is a verb or verb phrase describing what
may, must, must not, or need not be done, with the object
completing the description. A license may be expressed as
a set of rights, with each right associated with zero or more
obligations that must be fulfi lled in order to enjoy that right.
Figure 9 shows the meta-model with which we express licenses.

	

Figure 9: Security license meta-model

Designers of secure systems have developed a number
heuristics to guide architectural design in order to satisfy
overall system security requirements, while avoiding confl icts
among interacting security mechanisms or defenses. However,
even using design heuristics (and there are many), keeping
track of security rights and obligations across components
that are interconnected in complex OAs quickly becomes too
cumbersome. Automated support is needed to manage the
complexity of multi-component system compositions where
diff erent security requirements must be addressed through
diff erent security capabilities.

6 Security License Architectures
Our security license model forms a basis for effective

reasoning about licenses in the context of actual systems, and
calculating the resulting rights and obligations. In order to
do so, we need a certain amount of information about the
system’s confi guration at design-time, build-time, and run-time
deployment. Th e needed information comprises the license
architecture, an abstraction of the system architecture:

1. the set of components of the system (for example, see
Figure 2) for the current system confi guration, as well
as subsequently for system evolution update versions
(as seen in Figure 8);

2. the relation mapping each component to its security
requirements (specifi ed and analyzed at design-time, as
exemplifi ed in Figure 3) or capabilities (specifi ed and
analyzed at build-time in Figure 4 and run-time across
alternatives shown in Figure 5, 6, and 7);

3. the connections between components and the security
requirements or capabilities of each connector passing
data or control signals to/from it; and

4. possibly other information, such as information to
detect or prevent IP and security requirements confl icts,
which is as yet undetermined.

With this information and definitions of the licenses
involved, we believe it is possible to automatically calculate
rights and obligations for individual components or for
the entire system, as well as guide/assess system design and
evolution, using an automated environment of the kind that
we have previously demonstrated [2, 3, 4, 5].

7 Security License Analysis

Given a specifi cation of a software system’s architecture,
we can associate security license attributes with the system’s
components, connectors, and sub-system architectures,
resulting in a license architecture for the system, and
calculate the security rights and obligations for the system’s
confi guration. Due to the complexity of license architecture
analysis, and the need to re-analyze every time a component
evolves, a component’s security license changes, a component
is substituted, or the system architecture changes, OA
integrators really need an automated license architecture
analysis environment. We have developed a prototype of
such an environment for analogous calculations for software

AdvAnCeS In The ACquISITIon oF SeCure SySTemS BASed on oPen ArChITeCTureS (ConT.)

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity12

copyright licenses [3, 5], and are extending this approach to
security licenses.

7.1 Security obligation conflicts

A security obligation can conflict with another obligation,
a related right for the same or nearby components, or with
the set of available security rights, by requiring a right that
has not been granted. For instance, consider two connected
components C and D with security obligations

(O1) The obligation for component C to have been vetted
for the capability to read and update data in containment
vessel T.

(O2) The obligation for all components connected to
specified component D to grant it the capability to read
and update data in containment vessel T.

If C has not been vetted, then these two obligations conflict.
This possible conflict must be taken into consideration in
different ways at different development times:

•	 at design time, ensuring that it will be possible to vet C;
•	 at build time, ensuring that the specific implementation

of C has been vetted successfully; and
•	 possibly at run time as well, confirming that C is certified

to have been vetted, or (if C is dynamically connected at
run time) vetting C before trusting this connection to it.

The second obligation may also conflict with the set of
available security rights, for example if D is connected to
component E for which the security right

(R1) The right to read and update data in containment
vessel T using component E is not available.

The absence of such conflicts does not mean, of course,
that the system is secure. But the presence of conflicts reliably
indicates that it is not secure.

7.2 Rights and obligations calculations

The rights available for the entire system (the right to
read and update data in containment vessel T, the right to
replace components with other components, the right to
update component security licenses, etc.) are calculated as
the intersection of the sets of security rights available for each
component of the system. If a conflict is found involving the
obligations and rights of interacting components, it is possible
for the system architect to consider an alternative scheme, e.g.
using one or more connectors along the paths between the

components that act as a security firewall. This means that
the architecture and the automated environment together
can determine what OA design best meets the problem at
hand with available software components. Components with
conflicting security licenses do not need to be arbitrarily
excluded, but instead may expand the range of possible
architectural alternatives if the architect seeks such flexibility
and choice.

8 Discussion

Our approach to specifying and analyzing the security
requirements for a complex OA system is based on the use of
a security license. As noted, a security license is a new kind of
information structure whose purpose is to declare operational
capabilities that express the obligations and rights of users
or program to access, manipulate, control, update, or evolve
data, control signals, and accessible software system elements.
Our proposed security license is influenced by IP licenses
that are employed to specify property control and declared
copyright freedoms/restrictions, such as those for OSS
components subject to licenses like the GPLv2, MPL, LGPL,
or others. These IP licenses as information structures often
pre-exist to facilitate their widespread use, dissemination,
and common interpretation. Further, the choice of which
IP license to choose or assign to a software component
results from a trade-off analysis typically performed by the
components producers, rather than the system integrators or
consumers, as a way to protect or propagate the obligations
and rights to use, evolve, and redistribute the updated
component’s open source code.

The security licenses we propose may or not necessarily
exist prior to their specification and assignment to a given OA
system. Similarly, we may anticipate or expect that generic
security licenses will emerge and be assigned by software
component producers, as they have for OSS components,
though no such security licenses from producers yet exist.
However, one follow-on goal we seek to address is whether
and how best to specify security licenses for different types of
software elements or components so that it becomes possible
to semi-automatically specify the security license for a given
component or composed OA system through the reuse and
instantiation of security requirement templates. This idea
is somewhat similar to the license templates and taxonomy
that is employed by the Creative Commons for non-software
intellectual property like online art or new media content (cf.
http://creativecommons.org/licenses/). In this regard, it may be
possible to develop a technique and supporting computational

Cyber Security and Information Systems Information Analysis Center (CSIAC) 13

environment whereby system integrators or consumers can
conveniently specify the security requirements they seek
(e.g. fill out online security requirements forms), while
the environment interprets these specifications to generate
operational security capabilities that can be guard the entry
and exit of data or control information from the appropriate
containment vessel that encapsulates the corresponding system
element. Consequently, this is a topic for further study and
investigation.

Next, one might wonder why it is not simply desirable
to have maximum system security under all circumstances.
When considering the alternative run-time system
composition variants shown in Figures 5, 6, and 7, it
appears there may be trade-offs in one layout of security
capabilities over another. For example, the layout in Figure
5 maximizes security by encapsulating each system element
within its own containment vessel. This in turn requires a VM
technology of a kind different from that commonly available
(e.g., like VMware), and instead requires a new lightweight
VM technology that can provide security capabilities
(e.g., create, read, update authorizations) for potentially
smallscale software elements (e.g., Cshell inter-application
integration or run-time scripts). Similarly, the different
security containment layouts may affect system performance,
ease of evolutionary update, and associated level of security
administration. But these again all represent trade-offs in the
desire to achieve affordable, practical, and evermore robust
and testable secure software component/system capabilities
build-time and run-time. Thus, we take the position that it is
better to provide the ability to specify and analyze the security
requirements of different software elements at designtime, as
well as specify and analyze the security capabilities at build-
time and run-time, rather than the current practice that does
not account for system architecture nor license architecture,
and is thus inherently vulnerable to attacks that can otherwise
be prevented or detected.

One other topic that follows from our approach to
semantically modeling and analyzing OA systems that are
subject to software security licenses. More specifically, how our
approach and emerging results might shed light on software
systems whose architectures articulate a software product line.

Accordingly, organizing and developing software product
lines (SPLs) relies on the development and use of explicit
software architectures [7, 10]. However, the architecture of
a secure SPL is not necessarily a secure OA — there is no
requirement for it to be so. Thus, we are interested in discussing

what happens when SPLs may conform to a secure OA, and to
an OA that may be composed from secure SPL components.
Three considerations come to mind.

First, if the SPL is subject to a single homogeneous security
software license, which may often be the case when a single
vendor or government contractor has developed the SPL,
then the security license may act to reinforce a vendor lock-in
situation with its customers. One of the motivating factors for
OA is the desire to avoid such lock-in, whether or not the SPL
components have open or standards-compliant APIs.

Second, if an OA system employs a reference architecture
much like we have in the design-time architecture depicted
in Figure 3, which is then instantiated into a specific
software product configuration, as suggested in the build-
time architecture shown in Figure 4), then such a reference
or design-time architecture as we have presented it here
effectively defines a SPL consisting of possible different
system instantiations composed from similar components
instances (e.g., different but equivalent Web browsers, word
processors, email, calendaring applications, relational database
management systems).

Third, if the SPL is based on an OA that integrates software
components from multiple vendors or OSS components that
are subject to heterogeneous security licenses (i.e., those that
may possible conflict with one another), then we have the
situation analogous to what we have presented in this paper.
So secure SPL concepts are compatible with secure OA systems
that are composed from heterogeneously security licensed
components.

9 Conclusion

This paper introduces the concept and initial scheme
for systematically specifying and analyzing the security
requirements for complex open architecture systems. We argue
that such requirements should be expressed as operational
capabilities that can be collected and sequenced within a new
information structure we call a security license. Such a license
expresses security in terms of capabilities that provide users
or programs obligations and rights for how they may access
data or control information, as well as how the may update
or evolve system elements. These security license rights and
obligations thus play a key role in how and why an OA system
evolves in its ecosystem of software component producers,
system integrators and consumers.

AdvAnCeS In The ACquISITIon oF SeCure SySTemS BASed on oPen ArChITeCTureS (ConT.)

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity14

We note that changes to the license obligations and rights,
whether for control of intellectual property or software
security, across versions of components is a characteristic
of OA systems whose components are subject to different
security requirements or other license restrictions. A structure
for modeling software licenses and automated support for
calculating its rights and obligations are needed in order
to manage an OA system’s evolution in the context of its
ecosystem.

We have outlined an approach for achieving these and
sketched how they further the goal of reusing components
in developing software-intensive systems. Much more work
remains to be done, but we believe this approach turns a vexing
problem into one for which workable, as well as robust formal,
solutions can be obtained.

Acknowledgments

This research is supported by grants #N00244-10-1-0038,
#N00244-10-1-0077, and #N00244-12-1-0004 from the
Acquisition Research Program at the Naval Postgraduate
School, and by grant #0808783 from the U.S. National Science
Foundation. No review, approval, nor endorsement implied.

References

[1] T. A. Alspaugh and A. I. Anton. Scenario support for
effective requirements. Information and Software
Technology, 50(3):198–220, Feb. 2008.

[2] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi. Analyzing
software licenses in open architecture software systems.
In 2nd International Workshop on Emerging Trends
in FLOSS Research and Development (FLOSS), May
2009.

[3] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi.
Intellectual property rights requirements for
heterogeneously-licensed systems. In 17th IEEE
International Requirements Engineering Conference
(RE’09), pages 24–33, Aug. 31–Sept. 4 2009.

[4] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi. The
Challenge of Heterogeneously Licensed Systems in
Open Architecture Software Ecosystems, In S. Jansen,
S. Brinkkemper, and M. Cusumano (Eds.), Software
Ecosystems, Edward Elgar Publishing, (to appear, 2012).

[5] T. A. Alspaugh, W. Scacchi, and H. U. Asuncion. Software
licenses in context: The challenge of heterogeneously-
licensed systems. Journal of the Association for
Information Systems, 11(11):730–755, Nov. 2010.

[6] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2003.

[7] J. Bosch. Design and Use of Software Architectures:
Adopting and Evolving a Product-Line Approach.
Addison-Wesley, 2000.

[8] T. D. Breaux and A. I. Anton. Analyzing goal semantics
for rights, permissions, and obligations. In RE ’05:
Proceedings of the 13th IEEE International Conference
on Requirements Engineering, pages 177–188, 2005.

[9] T. D. Breaux and A. I. Anton. Analyzing regulatory rules for
privacy and security requirements. IEEE Transactions
on Software Engineering, 34(1):5–20, 2008.

[10] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley Professional,
2001.

[11] N. Falliere, L. O Murchu, and E. Chien. W32.Stuxnet
dossier, Version 1.4, February 2011, http://www.
symantec.com/content/en/us/enterprise/media/security_
response/whitepapers/w32_stuxnet_dossier.pdf

[12] K. Feldt. Programming Firefox: Building Rich Internet
Applications with XUL. O’Reilly Media, Inc., 2007.

[13] D. Firesmith. Specifying reusable security requirements.
Journal of Object Technology, 3(1):61– 75, Jan.–Feb.
2004.

[14] R. Fontana, B. M. Kuhn, E. Moglen, M. Norwood, D.
B. Ravicher, K. Sandler, J Vasile, and A. Williamson.
A Legal Issues Primer for Open Source and Free Software
Projects. Software Freedom Law Center, 2008.

[15] D. M. German and A. E. Hassan. License integration
patterns: Dealing with licenses mis-matches in
component-based development. In 28th International
Conference on Software Engineering (ICSE ’09), May
2009.

Cyber Security and Information Systems Information Analysis Center (CSIAC) 15

About the Authors

Walt Scacchi is a senior research
scientist and research faculty
member at the Institute for Software
Research, University of California,
Irvine. He received a Ph.D. in
Information and Computer Science
from UC Irvine in 1981. From
1981-1998, he was on the faculty
at the University of Southern
California. In 1999, he joined the
Institute for Software Research at

UC Irvine. He has published more than 150 research papers,
and has directed 45 externally funded research projects. In
2007, he served as General Chair of the 3rd. IFIP International
Conference on Open Source Systems (OSS2007), Limerick,
IE. In 2010, he chaired the Workshop on the Future of
Research in Free and Open Source Software, Newport Beach,
CA, for the Computing Community Consortium and the
National Science Foundation. He also serves as Co-Chair of
the Software Engineering in Practice (SEIP) Track at the 33rd
International Conference on Software Engineering, 21-28 May
2011, Honolulu, HI.

Thomas Alspaugh is adjunct
professor of Computer Science
at Georgetown University, and
visiting researcher at the Institute
for Software Research at UC
Irvine. His research interests are in
software engineering and software
requirements. Before completing
his Ph.D., he worked as a software
developer, team lead, and manager
in industry, and as a computer

scientist at the Naval Research Laboratory on the Software
Cost Reduction project, also known as the A-7E project.

[16] W. N. Hohfeld. Some fundamental legal conceptions
as applied in judicial reasoning. Yale Law Journal,
23(1):16–59, Nov. 1913.

[17] F. Kuhl, R. Weatherly, and J. Dahmann. Creating
computer simulation systems: an introduction to the
high level architecture. Prentice Hall, 1999.

[18] B. C. Meyers and P. Oberndorf. Managing Software
Acquisition: Open Systems and COTS Products.
Addison-Wesley Professional, 2001.

[19] L. Nelson and E. F. Churchill. Repurposing: Techniques
for reuse and integration of interactive systems. In
International Conference on Information Reuse and
Integration (IRI-08), page 490, 2006.

[20] P. Oreizy. Open Architecture Software: A Flexible
Approach to Decentralized Software Evolution. PhD
thesis, University of California, Irvine, 2000.

[21] L. Rosen. Open Source Licensing: Software Freedom and
Intellectual Property Law. Prentice Hall, 2005.

[22] W. Scacchi and T. A. Alspaugh. Emerging issues in the
acquisition of open source software within the U.S.
Department of Defense. In 5th Annual Acquisition
Research Symposium, May 2008.

[23] S. S. Yau and Z. Chen. A framework for specifying and
managing security requirements in collaborative systems.
In Third International Conference on Autonomic and
Trusted Computing (ATC 2006), pages 500–510, 2006.

AdvAnCeS In The ACquISITIon oF SeCure SySTemS BASed on oPen ArChITeCTureS (ConT.)

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity16

Call for Papers for Publication

The Cyber security and Information systems Information Analysis Center (CsIAC) -

https://thecsiac.com, is one of eight department of defense Information Analysis Centers

(IACs) sponsored by the defense Technical Information Center (dTIC) - http://www.dtic.mil/dtic/.

Cyber Security & Information Systems
Information Analysis Center

Preferred Formats:

• Articles must be submitted
electronically

• ms-Word, or open offi ce
equivalent

Size Guidelines:

• minimum of 1,500 – 2,000
words (3-4 typed pages using
Times New roman 12 pt font)

• maximum of 12 pages, double
column, including references

• Authors have latitude to
adjust the size as necessary to
communicate their message

Images:

• graphics and Images are
encouraged.

• print quality, 200 or better dpI.
Jpg or pNg format preferred.

For the full Article
Submission Policy, see
page 38 of this journal.

CsIAC has been formed as the consolidation of three legacy IAC’s – the Information
Assurance Technology Assurance Center (IATAC), the data and Analysis Center for
software (dACs), and the modeling and simulation Information Analysis Center (msIAC)
– along with the addition of the new technical domain of Knowledge management and
Information sharing. CsIAC is chartered to leverage best practices and expertise from
government, industry, and academia on Cyber security and Information Technology.
CsIAC’s mission is to provide dod a central point of access for Information Assurance
and Cyber security to include emerging technologies in system vulnerabilities, r&d,
models, and analysis to support the development and implementation of effective defense
against information warfare attacks.

CsIAC publishes the quarterly Journal of Cyber Security and Information Systems, focusing
on scientifi c and technical research & development, methods and processes, policies
and standards, security, reliability, quality, and lessons learned case histories. The latest
issue may be viewed or downloaded at https://www.thecsiac.com/journal/welcome-csiac.

During the calendar year 2013 CSIAC will be
accepting articles submitted by the professional

community for consideration.

Articles in the areas of Information Assurance, Software Engineering, Knowledge
Management, Information Sharing, and Modeling & Simulation may be submitted.

CsIAC will review articles and assist candidate authors in creating the fi nal draft if the
article is selected for publication. however, we cannot guarantee publication within a
fi xed time frame. Note that CsIAC does not pay for articles published.

To Submit an Article

drafts may be emailed to Journal@thecsiac.com.

Cyber Security and Information Systems Information Analysis Center (CSIAC) 17

CSIAC Webinars

Each month CSIAC presents live webinars, free of charge, via WebEx. Previous webinars are archived on
vimeo.com and can be viewed at any time. Here are a few of our recent webinars. Upcoming webinars
will be highlighted on the CSIAC home page.

COSt eStiMAtiOn Of AGile
prOJeCtS

Agile has become a popular development methodology in
software and systems development in recent years, but how do
we tailor our estimation processes to this new methodology?
Traditional methods do not apply in terms of project sizing and
planning. How can we fi nd an accurate point of comparison
with industry trends? Presented by industry veteran Larry
Putnam, Jr., QSM takes you through the basic steps on how
to customize the estimation process to Agile.

lawrence h. putnam

Lawrence H. Putnam, Jr., Co-
CEO Larry has 23 years of
experience using the Putnam-
SLIM Methodology. He has
participated in hundreds of
estimation and oversight service
engagements, and is responsible
for product management of the SLIM-Suite of measurement
tools and customer care programs. Larry has delivered
numerous speeches at conferences on software estimation and
measurement, and has trained – over a fi ve-year period – more
than 1,000 software professionals on industry best practice
measurement, estimation and control techniques and in the
use of the SLIM-Suite.

 → watch & listen: http://vimeo.com/21448188

ClOud nine, Are we there yet?

In 1961 at the MIT Centennial, John McCarthy opined “if
computers of the kind I have advocated become the computers
of the future, then computing may someday be organized as a
public utility just as the telephone system is a public utility….
the computer utility could become the basis of a new and
important industry” [1]. In 2006, Amazon Web Services was

launched providing computing on a utility basis. Since that
time the notion of cloud computing has been emerging and
evolving. Cloud computing is a paradigm that makes the
notion of utility computing a reality. Instead of Information
Technology (IT) organizations investing in all of the hardware,
software and infrastructure necessary to meet their business
needs, cloud computing makes access to hardware, software
and infrastructure available through the internet, generally
utilizing a pay for use model. Basically cloud computing
allows an organization to adopt a diff erent economic model
for meeting IT needs by reducing capital investments and
increasing operational investments, a model which is likely to
off er cost savings to many organizations.

Th is webinar introduces the concept of cloud computing and
discusses the potential benefi ts for a business as well as those
things which could be barriers to adoption. It examines the
types of applications where cloud computing is an effi cient cost
eff ective solution and the types of applications where its use
could be problematic or costly. Several examples of successful
cloud implementations are presented and discussed.

Arlene f. Minkiewicz

Arlene F. Minkiewicz is the Chief
Scientist at PRICE Systems, LLC. In
this role, she leads the cost research
activity for the entire suite of cost
estimating products that PRICE
provides. Ms. Minkiewicz has more
than 27 years of experience with
PRICE building cost models. Her
recent accomplishments include the development of cost
estimating models for complex systems and systems of systems
as well as research focused on the costs and benefi ts associated
with migration to Service Oriented Architectures. Minkiewicz
has published many articles on software measurement and
estimation and frequently presents her research at industry
forums.

 → watch & listen: http://vimeo.com/25096379

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity18

MeASure QuAlity And QuAntify
reliABility Of CritiCAl SOftwAre

Software in critical applications must operate safely and
reliably. Since testing can only show the presence of defects,
but not their absence, how can engineers be confident that
their software is robust? Using static code analysis with formal
methods, it is possible to prove the absence of certain run-time
errors in source code. By using these techniques software teams
are able to quantify where software may or may not fail.

This webinar will introduce advanced verification techniques
for software intended for critical applications. Through
demonstrations, case-studies, and examples, attendees will
learn how to develop and verify high quality software, use
workflows and tools that improve software quality and
reliability, and prove to certification authorities that certain
types of defects can never occur.

Jay Abraham

Jay Abraham is currently a Technical Manager
at The MathWorks. His area of expertise is in
software tools for the verification of critical
embedded applications. He has 21 years
software and hardware design experience. Jay
began his career as a microprocessor designer
at IBM followed by engineering and design
positions at hardware, software tools, and embedded operating
systems companies such as Magma Design Automation and
Wind River Systems. He has held vice-chairmanships in IEEE
standards committees and has presented at conferences and
publications such as the Design Automation Conference,
Embedded Systems Conference, International System
Safety Conference, and Systems and Software Technology
Conference. Jay has a MS in Computer Engineering from
Syracuse University and a BS in Electrical Engineering from
Boston University.

 → watch & listen: http://vimeo.com/25831986

MOdel driven develOpMent

The idea of generating code from models has been implemented
in a variety of ways with relative success. Most commercially
available tools are UML-based, but the amount of code

automatically produced from UML diagrams by those tools
is relatively small compared to that of a fully functional
application. Consequently, with most UML-based tools,
hand-coding is still the most significant phase in the process
of applications development and is therefore one of the areas
in which most of the effort is put by development teams.

Project sizing and cost estimation are, along with the
implementation itself, perhaps the two most crucial issues that
a project manager has to face. Project managers have to estimate
costs and allocate resources to the development of a system
before it is built, so they tend to rely on their experience in
having built similar systems in the past, and some even use rules
of thumb (e.g. estimate the size of the system to be built based
on the number of database tables it will have to deal with).

This presentation/demonstration will describe an MDA-
based approach that provides developers with a technology
that not only lets them define and, unlike most tools,
automatically produce fully functional applications but that
also automatically sizes (using the International Function
Point Users Group (IFPUG) functional sizing methodology)
the systems to be developed even before the first line of code
is generated. The resulting functional size is then used for
calculating the cost of code generation. Thus, this is actually a
testimony of how one software service provider has developed
its business model around the “cost per delivered functional
unit” construct.

Whereas UML (among other diagram types) provides for
Static (class diagram) & Dynamic (state transition diagram)
object models, an ideal solution would also incorporate
a Functional (services, methods, operations, calculations,
etc.) and Presentation Model (user interface definitions). If
the Model can instantiate a complete system (client, 100%
business logic, dbms etc.) then dramatic improvements in
productivity (Function Points/day) can be realized.

Juan Carlos Molina

Juan Carlos Molina has a BS in
Computer Science from the Technical
University of Valencia (Spain) and is the
Research and Development Manager
for Integranova. Having worked as
applications developer for mainframe
and information systems for several
years, in 1998 he joined the OO-Method research group at
the Technical University as academic researcher to develop

Cyber Security and Information Systems Information Analysis Center (CSIAC) 19

CSIAC Webinars

a model compiler to transform object-oriented conceptual
models into Visual Basic applications. In 1999, he was hired
by CARE Technologies, a spin-off resulting from the reasearch
group, now Integranova, where he coordinates the R&D
division that develops Integranova Model Execution System,
a set of tools which fully support an MDA-based, conceptual
model-centric software development approach. In the last years
he has coordinated and participated in the development of
model validators, formal grammars, model compilers, sizing
tools and metamodeling tools.

Greg Bishop

Greg Bishop is a graduate of the US
Air Force Academy (1972) and served
as an Intelligence Officer from 1972-
1978 primarily in Southeast Asia and
Germany . He went to work at Hewlett-
Packard in sales in 1978 and retired in
2010 working mainly in the Federal
sector. He is now the North American Director of Sales for
Integranova and lives in Littleton, CO.

 → watch & listen: http://vimeo.com/26961405

SeCurinG SySteMS thrOuGh
SOftwAre reliABility
enGineerinG

Software reliability engineering (SRE) represents a well-
established set of techniques for specification and assessment of
dependability of software-based systems. Application of these
techniques to security concerns could provide further helpful
assistance for software assurance efforts.

Key aspects of SRE include establishing quantitative reliability
targets, constructing usage profiles of the operational system,
and conducting statistically based testing to predict system
reliability.

Security analysis would build on the success of SRE by
establishing multiple quantitative targets including availability
and risk exposure, using threat modeling to identify a variety of
misuse cases, and fundamentally rethinking software reliability
growth modeling.

This presentation will also introduce the “Roadmap to
Dependability” project and invite participants to become active
in developing or reviewing “Roadmap” products.

taz daughtrey

Taz Daughtrey is Senior Software
Quality Scientist at Quanterion
Solutions and teaches software
engineering at James Madison
University. He is a Fellow of the
American Society for Quality, where
he was the Founding Editor of their journal Software Quality
Professional. Taz has extensive experience in the commercial
and naval nuclear power industries as well as providing training
and consulting throughout North America, Europe, and Japan.
He is currently also a Director of the American Software Testing
Qualifications Board.

 → watch & listen: http://vimeo.com/28164978

it eStiMAtiOn 6 truthSyOu MuSt
leArn

Software estimation is both art and science. Many good
cost software cost estimation models, strategies, tools and
techniques exist and are useful. However, estimation for
NON-SOFTWARE information technology intensive projects
is a domain that is often characterized by ad-hoc cowboy
practices yielding inconsistent performance. But why change
and how could you? This Webinar presented by Galorath
Incorporated provides valuable information on improving
IT estimation performance. It will discuss experience and
research that indicates that when an organization coalesces
tribal knowledge into organizational intelligence performance
improves. Following that, an overview of the characteristics
and attributes of the SEER for IT tool and how they address
crucial needs of the IT shop.

Karen Mcritchie

Karen McRitchie is a VP of Development.
Ms. McRitchie is responsible for the
design, development, implementation and
validation of the parametric estimation
relationships found in the SEER™

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity20

estimation product line. Ms. McRitchie has participated
in numerous estimation, data collection, and calibration
efforts and has trained hundreds of cost analysts in the use,
application, and calibration of SEER-SEM™ and SEER-H™.
She has been active in the International Society of Parametric
Analysts (ISPA) for many years was honored in 2002 with the
Parametrician of the Year award.

 → watch & listen: http://vimeo.com/30454475

pArtitiOninG COMplexity:
BreAKinG dOwn withOut
BreAKinG dOwn

Complex systems are, in a word, complex. The underlying
complexity of a given problem is constant. Complexity can
be hidden, but it cannot be eliminated. Consequently, one
major objective should be aimed at effectively managing
complexity through an appropriately layered partitioning
approach. Beginning in the systems engineering domain (top-
down design), it is necessary to conduct a (strictly human)
process of defining and bounding the problem space such
that the initial set of steps taken in the system specification
design accurately reflect a solution to the actual problem at
hand, and not a redefinition of the problem. With sufficient
functional and non-functional requirements, the next steps
further the top-down design in which the system is partitioned
into compositional subsystems, and within each subsystem
a set of cooperative related entities that carry individually
assigned tasks. With the system specification in place, the other
dimension of complexity that underlies the problem space is
handled (bottom up) in the software engineering domain. As
the SLOC (source lines of code) required for implementation
of the functional requirements increases, the human effort
required for handling various non-functional aspects such as
performance, security, testability, readability, and reusability
and therefore understandability and maintainability, can very
quickly grow beyond manageable thresholds unless certain
design principles are adhered too. Automation is necessary to
assist with management of aspects including but not limited to
testability and reliability. One major design objective should be
to optimize the use of “abstraction” to achieve appropriate levels
of functionality partitioning. In this way we localize complexity
in order that the system remains manageable regardless of how
large it becomes. To achieve this, the design approach must
appropriately adopt a multi-paradigm philosophy; otherwise

abstraction becomes a means to only hide complexity, and
this is dangerous because it influences us to forget that the
complexity still exists, and often creates the illusion that magic
is happening! In this talk we discuss a system engineering
philosophy and a software engineering methodology that
combines object oriented and aspect oriented models.

Michael weir

Michael Weir is a Senior Systems Analyst
with Quanterion Solutions, Inc. He has
over 30 years of experience in military
R&D and operational deployment of
communications and networking systems
in the United States and overseas. Having
seen the good, bad, and the ugly in the
flow of systems development and deployment (or not) over
three decades, Mr. Weir has a perspective on where the
hard problems begin, and on how they evolve and consume
resources that should be productive, but aren’t. His current
focus with complex systems is on effectively recognizing trust
and identity and handling them properly across system and
sub-system boundaries.

Mike Corley

Mike Corley is a Senior Software Architect
for Quanterion Solutions, Inc. He is
associated with the DACS (Data Analysis
Center for Software) and the Air Force
Research Laboratory (AFRL) in Rome.
He has more than 10 years of professional
experience providing technical R&D
support to AFRL in areas including signal processing,
computer/network and cyber security, and applications
requiring complex software system architecture design and
programming best practices. Mr. Corley is a recently admitted
Ph.D. candidate at Syracuse University.

 → watch & listen: http://vimeo.com/31872231

SySteM Of SySteMS CApABility-tO-
reQuireMentS enGineerinG

Given an existing set of interconnected, independent systems,
often referred to as a system of systems (SoS), one of the key

Cyber Security and Information Systems Information Analysis Center (CSIAC) 21

activities according to the DoD Systems Engineering Guide
for Systems of Systems is “translating SoS capability objectives
into high-level SoS requirements”. Capability engineering
starts with understanding the desired capability and identifying
various options for achieving that capability. Initial capability
engineering is typically done by assessing available resources
and assets to identify existing functions from which the new
capability can be composed, followed by a gap analysis for
each alternative identified. Finally, each alternative is further
evaluated in terms of capability performance, cost, and
schedule, resulting in information that can be used to support
the trade decision. This presentation:

•	 Provides additional guidance for translating capability
objectives into requirements

•	 Defines SoS engineering (SoSE) methods, processes, and
tools (MPTs) that might support this activity

•	 Illustrates how the SoSE MPTs would be used and
integrated to support SoS engineering using Regional Area
Crisis Response SoS (RACRS) example

While many of the techniques and methods described here
are not new, they are used in ways tailored to support SoS
and SoSE analyses and integrated together through a process
to support capability-to-requirements engineering in a
more rigorous, repeatable manner, resulting in meaningful
information about alternatives that can be used to support a
final decision on how the capability will be implemented. The
MPTs described here are illustrated using the RACRS SoS.
RACRS is a notional SoS that has been crafted to support
SoSE research using actual systems in the public domain often
employed to respond to regional crisis situations.

Jo Ann lane

Jo Ann Lane is a research assistant
professor at the University of Southern
California Center for Systems and
Software Engineering, conducting
research in the areas of software
engineering, systems engineering,
and system of systems engineering
(SoSE). She was a co-author of the
2008 Department of Defense Systems Engineering Guide for
Systems of Systems. Current areas of research include SoSE
processes, SoSE cost modeling, and SoS constituent system
interoperability. Prior to her current work in academia, she was
a key technical member of Science Applications International
Corporation›s Software and Systems Integration Group for

over 20 years, responsible for the development and integration
of software-intensive systems and systems of systems. She
received her PhD in systems engineering from the University
of Southern California and her Master’s in computer science
from San Diego State University.

 → watch & listen: http://vimeo.com/36080073

MOdern file And dAtA
StruCtureS fACilitAte dAtA
hidinG And infOrMAtiOn
exfiltrAtiOn

The complexity and flexibility that is built into modern file and
data structures provide opportunities for criminals or worse to
hide, exfiltrate and covertly communicate data. This webinar
will discuss file / data structure vulnerabilities and exploits. We
will also discuss mitigating strategies that will help to close the
gaps now and we will discuss future approaches to data and file
structures that could systemically reduce the threat.

Chet hosmer

Chet Hosmer, Chief Scient is t
WetStone/Allen , has been researching
and developing technology and
training surrounding data hiding,
steganography and watermarking
for over a decade. He has made
numerous appearances to discuss the
threat steganography poses including
National Public Radio’s Kojo Nnamdi
show, ABC’s Primetime Thursday, NHK Japan, Crime
TechTV and ABC News Australia. He has also been a
frequent contributor to technical and news stories relating to
steganography and has been interviewed and quoted by IEEE,
The New York Times, The Washington Post, Government
Computer News, Salon.com and Wired Magazine. Chet also
delivers keynote and plenary talks on various cyber security
related topics around the world every year.

 → watch & listen: http://vimeo.com/37661944

CSIAC Webinars

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity22

MOdel BASed SySteMS
enGineerinG: A SOlutiOn tO
COMplexity Or JuSt A COMplex
SOlutiOn?

Model Based Systems Engineering (MBSE) has been around
for decades and has enjoyed a considerable amount of success
and acceptance in industry and academia. However, MBSE
is not without its challenges, particularly with respect to its
practical application to large scale system development. As
we research solutions to these open MBSE challenges, it is
important for us to evaluate the state of MBSE based on how
much system complexity it reduces relative to how much
complexity it adds to the system development process itself.
This interactive virtual panel features leading MBSE experts
from industry, academia and the government discussing this
and other issues. Using real-world experience, backed by data
artifacts and experiments from the research and application
domains documented in the SPRUCE portal and elsewhere,
the panelists will present their points of view and wrap up with
an evaluation of the state of the MBSE practice and actionable
ideas that you can start implementing today.

dr. robert france

Dr. Robert France is a Full Professor
in the Department of Computer
Science at Colorado State University.
His research interests are in the area
of Software Engineering, in particular
formal specification techniques,
software modeling techniques,
software product lines, and domain-
specific modeling languages. He is an
editor-in-chief of the Springer journal on Softw are and System
Modeling (SoSyM), and is on the editorial board of IEEE
Computer and the Journal on Software Testing, Verification,
and Reliability. He is a past Steering Committee Chair of the
MODELS/UML conference series, and is the PC Chair for
MODELS 2012. He was also a member of the revision task
forces for the UML 1.x standards. He was awarded the Ten
Year Most Influential Paper award at MODELS in 2008.

 → watch & listen: http://vimeo.com/38052031

At the CSIAC we are always pleased to hear from our

journal readers. We are very interested in your suggestions,

compliments, complaints, or questions. Please visit our

website http://journal.thecsiac.com, and fill out the survey

form. If you provide us with your contact information, we will

be able to reach you to answer any questions.

we like your feedback

Cyber Security and Information Systems Information Analysis Center (CSIAC) 23

Introduction
The topic of productivity continues to be a concern to those

organizations developing software. The reason for this is that
most of these groups have invested thousands upon thousands
of dollars in processes, methods, tools and training aimed at
reducing costs, increasing quality and improving operational
effectiveness via productivity improvements. However,
questions persist as to whether or not these investments have
yielded positive returns. Let us take the case where a small
software firm of 30 professionals brings in a new technology
like agile methods [1, 2] as an example. When you tally the
costs involved, the expenses for new software tools and agile
classes alone will average $10,000 per employee when you
consider that one full week of time will be needed for training.
To achieve a payback of $300,000 a year, as shown in Table 1,
this firm will have to achieve a productivity increase of 20%
during the first year of the initiative exclusive of other costs.
Most proponents would agree that achieving such a yield
during the initial year of the move to agile would be highly
unlikely due to large learning curves. A two year time window
would be a much more reasonable assumption especially if
other costs like mentoring and process changes (daily standup
meeting, etc.) were assumed by the analysis.

Software productivity progress during the first
decade of the 21st Century: Quantifying productivity
Bydonald J. reifer

This paper summarizes the progress various industries have made in software

productivity during the first decade of the 21st century. It begins by summarizing

the productivity gains that occurred from 2000 and 2010 using data from 1,000

completed projects, none of which is over ten years old. Next, it categorizes the project

data that were used to make further comparisons in terms of organizational demographics

(size of engineering workforces for parent firms), degree of outsourcing, amount of

contracting, life cycle stage (requirements, development and/or maintenance) and

development paradigm employed (agile, evolutionary, iterative/incremental development,

spiral or waterfall). Finally, the factors to which productivity growth seems to be most

sensitive to are then identified by industry grouping and discussed as we look into the

future to forecast what the next decade has in store for us.

Year 1 Year 2 TOTAL

Current productivity (ESLOC/SM)1 100 110

Work that can be achieved by 30
professionals (ESLOC)2

36K 39.6K

Improvement (10%/year) 110 121

Added work that can be achieved at
10% increase (ESLOC)

3,600 3,960

Savings with 10% improvement ($50/
ESLOC)3

$180K $198K $378K

Improvement increased to 20% per
year

120 144

Added work that can be achieved at
20% increase (ESLOC)

7,200 12,240

Savings with 20% improvement ($50/
ESLOC)

$360K $612K $972K

Table 1 - Notional Payback for Agile Initiative

Table 1 Notes

1. Assume that productivity increases 10% annually normally
2. ESLOC, as will be discussed later in the paper, takes into

account reused and legacy code
3. The cost of $50/ESLOC was an average taken from the

software tools domain for illustrative purposes only

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity24

SoFTWAre ProduCTIvITy ProgreSS durIng The FIrST deCAde oF The
21ST CenTury: quAnTIFyIng ProduCTIvITy (ConT.)

The question that the example raises is how much productivity
improvement can you expect to achieve realistically when
making such major investments? In addition, what are the
productivity norms that you would compare against and how
are they computed? These are some of the questions that this
paper was written to address.

2 Definition of Productivity

Software productivity is defined by IEEE Standard 1045-
1992 [3] as the ratio of units of output generated to units of
input used to generate them. The inputs typically consist of the
effort expressed either in staff-months or staff-hours of effort
expended to produce a given output. Outputs are most often
represented in either source lines of code, function points or
some proxy alternative (use case points, story points, feature
points, web objects, etc.). Labor is typically scoped from the
start of software requirements analysis through delivery i.e.,
the completion of software integration and test. It includes
the following twelve related activities:

•	 Software requirements analysis
•	 Software architectural design
•	 Software implementation
•	 Software integration and test
•	 Software development test & evaluation
•	 Software task management
•	 Software documentation
•	 Software version control
•	 Software peer reviews
•	 Software quality engineering
•	 Liaison with other engineering groups
•	 Integrated product team participation

All directly charged labor is included in this tabulation.
For example, labor hours for the leads who charge the project
directly are included. Labor hours for executive management
who charge overhead or other accounts are excluded as are
charges made by the quality assurance staff who report to
groups that are independent of the software engineering
organization.

For outputs, we use equivalent new logical source lines of
code (SLOC). This definition permits modified (including
major modifications where changes are greater than 50 percent
and minor modifications where alterations are less than 50
percent), reused (software that is designed for reuse) [4],
auto-generated/generated code, and code carried over without
modification from one build or increment to another to be

equated to new source lines (i.e., this a separate category from
modified, reused and generated code as it is defined in terms
of entire components which are carried forward and used as is
without modifications in a software build or delivery). It also
allows function point sizing estimates to be related to SLOC
counts using industry accepted conversion factors [5] where
function points and their variants (feature points, web objects,
etc.) are a specification rather than SLOC-based measure of
software size.

The formula used to determine equivalent SLOCs, which
is expressed as follows, builds on and extends work done by
Dr. Barry Boehm for the popular COCOMO-II estimation
model [4]:

Equivalent SLOC = New + (0.65) Major Modifications +
(0.35) Minor Modifications + (0.15) Reused + (0.08) Auto-

Generated/Generated + (0.02) Carry-Over

Many issues make counting such inputs and outputs
hard [6]. To address these issues, a set of standard counting
conventions must be developed and used. The conventions
that we adopted for our analysis are based on those devised for
the COCOMO-II cost model and are as follows:

•	 The scope of all projects starts with software requirements
analysis and finishes with software delivery, i.e., completion
of software development test & evaluation.

	− For commercial systems, the scope extends from
approval of project startup until sell-off. In other
words, the scope for applications systems development
extends from product conception to sell-off to the
customer.
	− For defense systems, the scope extends from the
software requirements review until handoff to the
system test for hardware and software integration and
testing. It assumes that the software deliverables have
successfully passed its software development test &
evaluation (software selloff).

•	 Projects can employ any of a variety of methods and
practices that range from simple to sophisticated.

•	 Effort includes all chargeable engineering, management
and support labor in the numbers.

	− It includes software engineering (requirements,
design, programming and test), task management and
support personnel (data management, configuration
management, network administration, etc.) who
charge the project directly.
	− It typically does not include independent quality

Cyber Security and Information Systems Information Analysis Center (CSIAC) 25

SoFTWAre ProduCTIvITy ProgreSS durIng The FIrST deCAde oF The
21ST CenTury: quAnTIFyIng ProduCTIvITy (ConT.)

assurance, system or operational test, and beta
test personnel who charge their time to accounts
other than software. It does include the software
effort needed to support those who charge these
accounts (liaison, meetings, integrated product team
assignments, etc.).
	− As an example, the software effort includes version
control. However, it does not include the software
effort needed to assess the impact of a major change to
the system if this is funded through a Program Office
account and charged separately.
	− As another example, the software effort includes
responding to a quality assurance group’s independent
assessment of their product if the quality group had a
separate charge number which they charged to.

•	 The average number of hours per staff month was 152 (used
to take holidays, vacation, sick leave, etc. into account).

•	 SLOC is defined by Florac and Carleton [7] to be logical
source line of code using the conventions issued by the
Software Engineering Institute (SEI) as altered by current
practice. All SLOC counts adhere to these counting
conventions with the exception of deleted lines which are
included in the counts in the same manner as added lines.

•	 Function point sizes are defined using current International
Function Point Users Group (IFPUG) standards.

•	 Function point sizes were converted to source lines of
code (SLOC) using backfiring factors published by
various experts as available on their web sites and in the
public domain (e.g., see http://sunset.usc.edu/classes/
cs510_2011/ECs_2011/ec39-Software%20Sizing.ppt,
p. 30).

•	 Projects used many different life cycle models and
methodologies. For example, web projects typically used
some form of agile process and lightweight methods, while
military projects used more classical waterfall-oriented or
incremental processes and methods. Commercial projects
used object-oriented methodology predominantly, while
military projects used a broader mix of conventional and
object-oriented approaches.

•	 Projects used a variety of programming languages. For
example, web projects employed Java, Perl and Visual C
while military projects used predominately C/C++.

•	 Most projects surveyed used more than one programming
language on their projects. The cost per SLOC when
provided is therefore provided for the predominate
language. Some adjustments were made to combine
different language generations.

•	 Dollars used to determine cost are assumed to be constant
year 2010 dollars.

•	 The cost assumed per staff month (SM) of effort of
$18,000 assumes an average labor mix and includes
all direct labor costs plus applicable overhead, but not
general & administrative (G&A) costs and profit. The
mix assumes that the average staff experience across the
team in the application domain was 5 to 8 years. It
assumes that staff has the skills and experience needed
with the application, methods and tools used to develop
the products.

•	 Many of the organizations surveyed were trying to exploit
commercial off-the-shelf packages, open source software
and legacy systems (existing software developed previously
whose heritage and quality varied greatly) to reduce the
volume of work involved. Piecing the system together
and making it work were a challenge.

•	 Most of the defense and government organizations
surveyed were rated at CMMI Level 4 or greater, while
most commercial firms were not [8]. For the most part,
the processes that commercial organizations used were
mostly ISO certified.

Productivity and Quality

Productivity can easily be manipulated by eliminating
tasks within the scope identified and altering definitions.
For example, including comments and/or blank lines in the
definition of a source line of code (SLOC) can effectively
increase size by 20 to 40 percent based on which programming
language(s) is being employed. As another example, limiting
scope to extend from detailed design through software testing
results in productivity numbers that are 40 to 60 percent higher
because they involve a smaller percentage of the total software
development effort. As a final example, productivity numbers
for software maintenance are much higher than the actuals
because they do not include the entire effort within their scope.
Because these maintenance numbers include only the numbers
for the generating new releases, they appear to have higher
productivity than they should [9]. In reality, they should
also include the effort required to sustain the older versions
of the software in the field within their scope. They should
also address the effort that the maintenance staff expends to
sustain the platforms and facilities to get a true picture of the
actual productivity that the organization is achieving.

In addition, productivity can also be easily increased by
manipulating quality. For example, increasing the defect
density from our current norm of measurement of 1 to 3 to
a rate of 3 to 10 defects/thousand equivalent source lines of
code (EKSLOC) upon release of the software to the field can
result in productivity increases of between 18 to 40 percent

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity26

for a telecommunications application of between 100 and
250 EKSLOC. In many cases, such quality degradations
occur inadvertently when the products are released to the field
prematurely due to deadline pressures.

Productivity and Cost

Finally, many people confuse productivity improvement
with cost reduction. Productivity and cost in terms of effort
expended to generate a software product are separable issues
because the factors that influence them are different. For
example, the easiest way to increase productivity is to get staff
to generate more output per unit of input using automation
and tools. In contrast, costs can most easily be cut by out-
sourcing the work overseas to reduce labor costs.

You can validate the concept that productivity and cost are
related but separable variables by realizing that you can increase
both at the same time by being very productive generating the
wrong thing. This phenomenon becomes apparent when your
team generates the wrong product very efficiently because it
failed to capture the right requirements.

3 Data and Data Bases Employed

In many people’s minds, the key to determining productivity,
cost and quality relationships is to basing your results on
empirical data. Over the past 30 years, I have gathered
data from over 100 software development shops via data
exchange agreements. In exchange for their data, we provide
them productivity norms classified by industrial sector and
application domain. They use these norms to determine
how well they are performing relative to their industry
and competition. As part of the agreement, we sign legal
documents that define how we will protect the data because the
data is considered very proprietary. This makes sense because
these firms do not want their competition to know what their
current productivity is and what their actual cost and quality
norms are. As a result, we can neither share the details of our
databases nor the data contained within them. We can only
share our analysis results.

Some have criticized this practice of presenting data without
providing the details because they distrust results that they
cannot see, replicate and validate. Others are happy to
have benchmarks that they can compare their own baselines
against even if there is no access to the underlying data used
to determine the benchmarks. Because we believe some in the
community can use our results, we have supplied it. However,
we advise making an effort to validate these benchmarks against

your own numbers. There will be critics who will question the
source of the numbers especially if the benchmarks do not tell
the story that the critics want to recite.

Data Bases

Table 2 summarizes the range of actual software productivity
experienced during 2010 along with their range of size and
defect densities for 1,000 projects within our databases by
industrial sector and application domain for the 93 current
organizations from which we currently gather data. Please
note that the 2000 database [10] was characterized differently
and as such some of the entries associated with it had to be
adjusted for normalization purposes. In addition, the project
tallies and size ranges in the Table pertain to the 2010 database,
not the 2000 entries. Finally, note that the entries in the two
databases can only be normalized and compared when they
have a like scope and definitions.

The division between firms within the commercial and
defense sectors is about 75:25. All of the data have been
refreshed so that no data point is more than 10 years old in
the 2010 database. In addition, Table 2 includes relatively
large amount of new data in the 2010 database supplied by
seven new organizations, all of which are commercial. The
industrial sectors included are:

•	 Commercial – firms within this sector include those
profit-making organizations that design, develop, field,
maintain and sustain Information Technology (IT)
products and services. In some cases, these organizations
may manufacture and sell such systems commercially.
In others, they may integrate and use products supplied
by others to automate their systems and procedures
(production control, finance and accounting, travel, etc.).

•	 Defense – firms within this sector include those profit-
making organizations that design, develop, field, maintain
and/or sustain systems used by the military for a full range
of weapons system (fire control, mission planning, sensor
data processing, situation awareness, etc.) and support
(medical, information systems like billings, etc.). Such
systems tend to be more complex than their commercial
counterpart primarily because they involve safety and
security issues.

For Table 2, defect density in the table refers to the number
of defects per thousand lines of code (d/KSLOC) measured
after delivery. KSLOC in this context is measured in equivalent
lines of code to take modified, reused, generated and carry-
over code into account as noted earlier in the COCOMO

Cyber Security and Information Systems Information Analysis Center (CSIAC) 27

II discussion. While there has been some work aimed at
identifying how many defects developers should expect as
they generate software products, these benchmarks vary a great
deal as a function of process. However, these developmental
defect rates can be used very effectively when the software

process is controlled (i.e., as a function of process maturity)
to predict the number of defects remaining in a build. This
metric gives developers insight into whether they have tested
enough assuming that they have set some goal for the numbers
of defects remaining at delivery.

Sector Application
Domain

No. of
Projects1

Size Range
(EKSLOC)2

Productivity Range
(ESLOC/SM)3

Defect Density
(d/KESLOC)4

Commercial Automation 65 45 to 325 225 to 407 (272) 4.1

(729) Command and Control 73 35 to 3,875 78 to 265 (165) 0.75

Information Tech5 106 30 to 4,580 229 to 522 (363) 4.3

Medical7 35 45 to 1,125 238 to 433 (305) 2.5

Scientific Systems 44 35 to 1,090 185 to 387 (231) 1.6

Software Tools8 106 18 to 1,895 236 to 441 (332) 4.8

Telecommunications 81 25 to 3,732 175 to 435 (321) 2.7

Test Systems7 49 28 to 785 225 to 453 (323) 3.3

Training/Simulation 35 45 to 2,130 243 to 477 (313) 4.1

Web Business 135 20 to 655 255 to 665 (315) 6.8

Defense Military – Airborne 52 18 to 2,330 68 to 197 (123) 0.3

(271) Military – Ground 51 35 to 5,210 87 to 275 (215) 0.6

Military – Info Tech7,9 59 25 to 1,755 173 to 497 (335) 3.9

Military - Medical7 33 45 to 950 212 to 417 (285) 1.3

Military – Missile 25 15 to 647 55 to 143 (98) 0.2

Military – Space 31 22 to 1,750 83 to 198 (117) 0.3

Military – Trainers7 20 45 to 2,250 172 to 498 (311) 1.0

TOTAL 1,000 15 to 5,210 55 to 665 (257) 2.65

Table 2 – Number of Projects by Domain and Industrial Sector (2010)

Table 2 Notes

1. Projects are software development activities that result in delivery of a product to a customer. Under certain circumstances, they
can include increments when they are delivered to the customer for interim use as other increments are being developed.

2. Size in equivalent KSLOC uses the approach in Section 1 to address the following five categories of code: new, modified (segmented
by major and minor changes), reused (designed for reuse), generated and carry-over (refactored for use as-is with no modifications;
e.g., build 1 code used in build 2).

3. Range of productivity for these 2010 benchmarks have the average value denoted in parentheses. The definition of the life cycle
scope and what labor is included in the computation is as noted in Section 1.

4. Refers to the average number of defects per thousand SLOC after delivery. These defect rates have held relatively constant across
the decade because they have been established as goals of the development.

5. Was Data Processing in the 2000 benchmark article.
6. Most of the data collected for these benchmarks were submitted using function points. Function points were converted to lines of

code so that measures reported could be normalized. Conversion factors were developed to take into account the mix of programming
languages employed, reuse and other factors based on guidance provided by IFPUG (International Function Point Users Group).

7. These five applications domains are new for the 2010 benchmark.
8. Was Environments/Tools in 2000 benchmark article.
9. The root cause of productivity being substantially lower in the military-info tech domain than its commercial counterpart revolves

around the amount of rigor and degree of governance applied, not the defect rates established as goals.

SoFTWAre ProduCTIvITy ProgreSS durIng The FIrST deCAde oF The
21ST CenTury: quAnTIFyIng ProduCTIvITy (ConT.)

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity28

 As summarized Figure 1, the net productivity improvement
across the decade ranges from between 2 to 3 percent per
year independent of whatever was viewed as the newest
software salvation. Table 3 summarizes the degree of
software productivity improvement experienced by sector and
application domain using the norms established in 2000 that
are noted in the Table and used as our basis for increases [10].
The reason the rate is lower than might be expected is that
current requirements are tougher and software products that
we are building are getting bigger and more complex. Based
on these findings, the community needs to set more realistic
goals as they continuously introduce technology to make it
easier to develop our products (i.e., our make technology).
However, even at such levels these modified productivity
improvement goals are sufficient to expend funds on new
technology especially when compelling technical and economic
arguments are made to justify investments [11]. However, you
will need to select the technologies carefully and take charge
of the risk involved in making the systematic transition to
its widespread use [12]. Else, the technology you try to use
may rapidly overwhelm you and your chances of success will
diminish accordingly.

Figure 1 - Trends in Productivity Improvement by Sector dur-
ing the last Decade

As shown in Table 3, commercial projects have experienced
a 31.8% gain in software productivity over the decade, while
defense projects improved about half of that at 17.1%. The
contributing factors to these large differences in software
productivity improvement during the last decade between
these two sectors revolve around the software development
and management practices used (including the degree of
automation), reliability expectations, complexity of the
product, and workforce influences. For example, defense firms
have taken a more conservative approach when it comes to
adopting agile methods because of the nature of their business
which is governed by acquisition regulations and contract law.

ARE YOU GETTING
THE MAX FROM

YOUR SOFTWARE
INVESTMENT?

Technologies Covered:
• SEI/CMM/CMMI
• SEI Team Software Process (TSP)
• SEI Personal Software Process (PSP)
• Inspections
• Reuse
• Cleanroom

And Many More!
Graphs Showing Impact of Software
Technologies on:

• ROI
• Productivity
• Quality

Summarizes Facts from Open Literature

The CSIAC ROI Dashboard

Access the CSIAC ROI Dashboard
https://sw.thecsiac.com/databases/roi/

Cyber Security and Information Systems Information Analysis Center (CSIAC) 29

Based on their underlying nature and use, defense systems
tend to be larger, more complex and have higher reliability
expectations than their commercial counterparts. The practices
used during the decade have gotten leaner and more agile [2].
Automation has become widely used during development for
tasks like refactoring [13] and testing [14]. During the decade,
workforce issues have dominated as firms have strived to
address the economic downturn by cutting their costs through
out-sourcing and increasing their productivity through the use
of automation and packaged software.

While these factors will not change during the next decade,
the systems that we work on will. Systems will continue to

become more and more distributed as will the workforces that
will be used to develop them. Social media and new forms
of collaboration will be developed to address the needs of
the ever expanding global community developing software.
System-of-system principles [15] will dominate the engineering
solutions that will evolve that will exploit such new solutions as
cloud computing, social networking and model-based software
development. As a consequence of these actions, systems
and software engineering will continue to converge especially
when building software-intensive systems and new more agile
and lean engineering methods will be developed to accelerate
getting products to market at reasonable costs.

SoFTWAre ProduCTIvITy ProgreSS durIng The FIrST deCAde oF The
21ST CenTury: quAnTIFyIng ProduCTIvITy (ConT.)

Sector Application
Domain

Productivity Range (ESLOC/SM)
2000 Database

Productivity Range (ESLOC/SM)
2010 Database

Percent Gain1, 2
(Decade)

Commercial Automation3 120 to 440 (225) 225 to 407 (272) 20.9%

(754) Command & Control 95 to 330 (225) 78 to 265 (165) +

Info Tech3,4 165 to 500 (270) 229 to 522 (373) 38.2%

Medical5 No data 238 to 433 (305) N/A

Scientific Systems 130 to 360 (195) 185 to 387 (231) 18.5%

Software Tools6 143 to 610 (260) 236 to 441 (332) 27.7%

Telecommunications 175 to 440 (250) 175 to 435 (321) 28.4%

Test Systems5 No data 225 to 453 (323) N/A

Training/Simulation 143 to 780 (224) 243 to 477 (313) 39.7%

Web Business3 190 to 975 (225) 255 to 665 (315) 40.0%

Average gain across all domains - Commercial 31.8%

Defense Military – Airborne 65 to 250 (105) 68 to 197 (123) 17.1%

(246) Military – Ground 80 to 300 (195) 87 to 275 (215) 10.2%

Military – Info Tech5 No data 173 to 497 (335) N/A

Military - Medical5 No data 212 to 417 (285) N/A

Military – Missile 52 TO 165 (85) 55 to 143 (98) 15.3%

Military – Space 45 to 175 (90) 83 to 198 (117) 30.0%

Military – Trainers5 No data 172 to 498 (311) N/A

Average gain across all domains - Defense 17.1%

Table 3 Notes
+ The types of command and control projects included in the 2000 and 2010 databases were defined differently in that the former

included several instances that were reclassified as automation and process control. The number of process control entries in the
2000 database brought the average much higher. If these projects were eliminated, the productivity would have been on the order
of 135 ESLOC/SM. However, we do not believe the results are comparable because different technology was used.

1. Gain within an application domain is calculated as (2010 - 2000 entries)/2000 entry. Overall gain is computed as the weighted
average across all domains for which we have entries in both databases.

2. Because the data were refreshed to keep it current, few of the projects included in the 2000 database appear in the 2010 database.
3. Average productivity in 2000 was changed in the Table due to normalization.
4. Was Data Processing in the 2000 benchmark article.
5. These five applications domains are new for the 2010 benchmark.
6. Was Environments/Tools in 2000 benchmark article.

Table 3 – Productivity Improvement by Domain and Industrial Sector from 2000 to 2010

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity30

Application domains employed are characterized in Table 4 to provide a more complete description of the types of projects
within our databases. It is important to note that developing application domain specific numbers allows us to improve our
statistical accuracy.

Domain Characterization

Automation This domain supports applications like those used in an auto/truck assembly plant. Here automated
conveyer belts transport the vehicle through a series of finishing stages. Robots assemble the vehicle
and specialized diagnostic tools perform quality checks. All of these actions are under the control
of supervisory system with a man-in-the-loop to contend with reliability issues. Process control
applications are included as well like those in oil pipeline operations.

Command & Control This supports applications like those used for network control and switching and for displaying
information to users. An example system would be a smart house and many of the applications
that reside in it. Such software is command-driven and highly interactive. In some applications like
determining and displaying situational awareness during operations, the software operates in real-time.

Information Technology This domain is a catch-all for many types of information systems including applications in the following
nine NAICS codes:

•	 Agricultural, forestry and fishing
•	 Mining (coal, metals, oil and gas extraction, etc.)
•	 Construction
•	 Manufacturing (chemicals, food, metals, petroleum, rubber, tobacco, etc.)
•	 Transportation, communications, electric, gas and sanitary services
•	 Wholesale trade
•	 Retail trade (food stores, apparel, home furnishings, etc.)
•	 Services (auto repair, education, entertainment, legal, travel, etc.)
•	 Public administration (justice, taxation, legislation, etc.)

Medical This domain supports systems developed to support patients in clinics, hospitals and in care facilities
including in the home. They provide for doctor, dental, vision and prescription drug care. Medical
systems are for the most part currently client-server systems that provide centralized access to a range
of information including that used for wellness, diagnosis and patient care.

Scientific Systems This domain supports number-crunching applications like weather or seismic processing. In such
systems, large numbers of computers are used in parallel to perform mathematical calculations. For
example, seismic systems do oil prospecting by taking samples and filtering lots of noisy geological data
over and over, again and again. Weather modeling and forecasting is another application that falls into
this category.

Software Tools This domain supports software development and maintenance operations with specialized packages
and systems aimed at enhancing productivity and cutting costs. A tool is a program that developers
use to create, debug, maintain and otherwise support other programs and applications. They can be
provided as standalone packages or integrated collections of tools called environments.

Telecommunications This domain supports a wide range of developments for broadband, land line, microwave, radio,
satellite, and wireless applications. This domain includes a wide range of applications because the
software supports phones, faxes, wireless devices, telegraph, transmission systems, switching systems,
satellite systems, local exchanges and a host of other types of equipment including broadband
networks, virtual and private branch exchanges (PBX).

Test Systems This domain supports a variety of automatic test equipment designed to diagnose problems in both
hardware and software, including components like integrated circuit cards. These systems control the
execution of tests, the comparison of predicted to actual outcomes, the setting up of test preconditions,
and other test control and reporting functions.

Table 4 - Characterization of Application Domains (continued on next page)

Cyber Security and Information Systems Information Analysis Center (CSIAC) 31

Training/Simulation This domain supports a variety of training devices, from games to full-blown system simulators. The
large trainers/simulators typically are being built to train commercial pilots, pipeline operators, and
other personnel in the use and care of complicated equipment and systems. Currently, medium-sized
simulators are being developed for applications like e-learning and e-commerce.

Web Business This domain supports a full range of applications ranging from e-travel reservation systems to
integrated web-based business suite that do everything including financials, inventory and e-commerce
(ordering, sales, etc.). Such systems range in size from individual to corporate web sites tied to the
Internet and private networks. They include wikis and blogs and work groups. They support instant
messaging, twitter and other social networking technologies.

Military - Airborne This domain supports embedded applications aboard fighters, helicopters and other types of aircraft
including drones and unmanned aerial vehicles. Military airborne applications range the gamut
from real-time sensor processing systems like terrain-following radars to more mode-based mission
management systems.

Military - Ground This domain includes systems that range from artillery to air defense to tanks to manned and unmanned
combat vehicles to reconnaissance platforms. The characteristics of these projects vary greatly as does
the size. Some integrate information to perform tasks like tracking troop movement so that their
location is known. In contrast, others line unmanned systems include robots that roam the battlefield
gathering intelligence as they search for enemy troops.

Military - Information
Technology

This domain is a catch-all for many types of information systems being developed and maintained by
and for the military. While these systems share similar features with their commercial counterparts, they
are less broad and designed to support the military’s needs for current and accurate information.

Military - Medical This domain supports systems developed to support active duty personnel in the field, in hospitals
and in care facilities including in the home. They provide doctor, dental, vision and drugs at military
hospitals and clinics on base. They provide first aid and combat related services at home and in the field.

Military - Missile This domain supports typically embedded air-to-air, air-to-ground, ship-to-shore, ship-to-ship, ground-
to-space, air-to-space and space-to-space applications - both air (missile) and ground (launcher).
Systems also in this category also include more modern weapons like ground-based anti-missile missiles
and exoatmospheric kill vehicles, guided projectiles and directed energy systems.

Military - Space This domain supports a wide variety of systems that operate both in space and on the ground to
perform missions ranging from satellite control to weather mapping. Such systems operate in real-
time in space autonomously or under the control of a ground station. Many types of applications are
supported.

Military - Trainers This domain supports a variety of realistic rehearsal and training systems. Soldiers should train as they
should fight. In response, training systems are built to use mission equipment to provide students with
as near an environment as they would expect to experience operationally. The look, feel and sounds
of the mission are replicated as are the operational procedures, including those related to exercising
emergency procedures.

Table 4 - Characterization of Application Domains (continued from previous page)

4 More about the Data

The data that these findings and forecasts were predicated
upon was compiled from 93 leading organizations in many
industries across the United States. As shown in Figure 2,
the size of the engineering workforces involved in supplying
the 1,000 project data points used ranged from twenty to
thousands of engineers using the classifications that follow:

•	 Small – less than one hundred engineering employees.
•	 Medium – between one hundred and five hundred

engineering employees.
•	 Large – over five hundred engineering employees.

Counts used do not assume that employees were in a single
location. However, all of the locations surveyed as part of the
effort were within the United States. In some cases, contractors
that were working as members of software teams were included
within the counts because these personnel fulfilled roles that
employees normally performed during the development. In
these cases, it seemed easier for the organization involved to
get money than staff authorizations.58%

SoFTWAre ProduCTIvITy ProgreSS durIng The FIrST deCAde oF The
21ST CenTury: quAnTIFyIng ProduCTIvITy (ConT.)

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity32

Figure 2 - Size of Engineering Workforces

For the most part, the staff working defense projects was
more experienced than those working commercial ones. So
were staff members performing maintenance rather than
development tasks; i.e., the maintenance teams had 8 years
versus 4 years of average experience. Figure 3 highlights the
comparison between commercial and defense projects by
summarizing the average years of experience taken from our
1,000 project database.

Figure 3 - Average Workforce Experience

The software development paradigm used to develop
software has changed radically during the past decade within
the commercial sector. A software paradigm consists of a
framework for modeling software development consisting
of a set of activities, methods, practices, reviews and
transformations programmers use to develop software and
associated products. As shown in Figure 4, commercial and
defense firms differed greatly in the paradigms that they used
(see below for definitions) to get their software development
projects completed:

•	 Waterfall Process – refers to a sequential software
development process in which progress is seen as flowing
steadily downwards (like a waterfall) through a series of
phases like analysis, design, implementation, testing,
qualification, delivery and maintenance. Providing
feedback between phases and using well defined milestones
to gate the transitions between stages are viewed as the
keys to success with this paradigm [16].

•	 Iterative or Incremental Process – refers to a cyclical

software development process in which progress is made
in iterations like builds or releases after the initial planning
and analysis is completed. A build is defined for these
purposes as a group of programs that are integrated, tested
and qualified before delivery to the client. Deployment
is made iteratively with cyclical interactions focusing on
addressing feedback into builds or releases [17].

•	 Spiral – refers to a cyclical software development process
that combines elements of both design and prototyping-
in-stages to combine advantages of both the waterfall and
incremental process using a single methodology. Early
focus is placed on reducing requirements volatility in hope
that this will speed the later stages of development [18].

•	 Evolutionary – refers to a cyclical software development
process where feedback is passed from one evolution of the
system (could be either an increment or spiral) to another
using a well-defined and disciplined set of practices [19].

•	 Agile – refers to a group of modern software development
methodologies based on iterative development, where
requirements and solutions evolve through collaboration
between self-organizing, cross-functional teams. Several
agile varieties ranging from those that focus on defining
tests first to those that start by defining requirements
employing user stories [20].

•	 Hybrid – some unique combination of any of the
paradigms listed above whose aim is to take advantage of
them when developing software.

Figure 4 - Distribution of Software Paradigm Employed Dur-
ing Development by Sector

The totals in Figure 4 did not originally sum to one hundred
percent in some cases. The reason for this is that some projects
in our databases used multiple paradigms. During the early
stages, they developed the software incrementally. Then, as the
system matured and was fielded, they switched to a waterfall
approach because the risk was acceptable. In other cases,
parts of the system like servers were developed incrementally,
while other parts like clients and web applications used agile
methods for their development paradigm. For ease of use, we

Cyber Security and Information Systems Information Analysis Center (CSIAC) 33

have normalized all both the defense and commercial entries
to total one hundred percent each.

Many people have asked me what the differences in
productivity were when using agile and other paradigms. My
answer has been that it depends. The reason for this is most
agile projects that were captured in our database in the 2000
to 2008 timeframe were small and it was hard to compare
them with others that were much larger in scale. However,
we started to get larger project after 2008 and have included
Figure 5 to illustrate the comparisons for both the defense (18
projects, 6 each methodology) and commercial (48 projects,
16 each methodology) sectors across all applications domains
for projects that were less than 250 EKSLOC. It seems that
moving smartly to agile seems cost-effective based on the
benefits derived through increased software productivity.

Figure 5 - Productivity Comparison based on Development
Paradigm

Figure 5 Notes

•	 Software productivity reported for paradigms using definitions
and scope in Part 1 of this article using SLOC/PM.

•	 Agile projects are for the most part being done using Scrum
methodology as it seems to scale for use on larger projects [2].

Another of the factors that influenced software productivity
was degree of in-sourcing and out-sourcing. Due to the
economic downturn during the past decade, commercial
firms have increased out-sourcing software work overseas. In
other cases, they use H-1B visas to bring qualified personnel
into the United States to do specific software jobs at wages
less than the prevailing salaries in the marketplace. Costs are
definitely cut by such practices, sometimes by as much as two to
ten. However, cultural issues, communications and increased
management burden can cause resulting productivity to be
less than expected for teams residing in the United States.
However, most firms using out-sourcing have addressed these
issues and the practice is viewed as cost-effective based on the
prevalence of the approach as illustrated in Figure 6.

SoFTWAre ProduCTIvITy ProgreSS durIng The FIrST deCAde oF The
21ST CenTury: quAnTIFyIng ProduCTIvITy (ConT.)

It should be noted that many defense organizations have
resisted out-sourcing primarily because of security issues.
They use United States citizens exclusively to do the work
because of its sensitivity. In other cases, both commercial and
defense firms have resorted to in-sourcing work to address
their staffing needs and reduce costs (i.e., hired contractors to
work in-house as members of their teams). Off-loading work
to residents (both citizens and sometimes green card holders)
reduces management and communications burdens and
permits productivity to rise naturally. Even though in-sourcing
only lowers the labor costs by a factor of 20 to 50 percent, it
tends to improve teamwork and productivity thereby making
the practice cost-effective for many of firms involved in our
data collection.

Figure 6 - In-Sourcing versus Out-Sourcing by Sector

5 Factor Analysis

As we mentioned earlier in this paper, productivity
improvement is sensitive to a number of factors. The factors
around which most of the variation in productivity revolves
by sector and their impacts are summarized in Table 1. It is
interesting to note that several of these factors have changed
during the decade. The most prominent of these has been
growth in size and complexity of the products and the
relaxation of process improvement mandates. The simplest
explanation for the relapse of the process mandate is that the
firms that embraced the movement have for the most part
achieved their goal of achieving high levels of maturity using
either the CMMI or ISO model as their basis for evaluation.
The other prevalent explanation is that firms have moved to
agile because they felt that process improvement methodologies
were too rigid and some balance between discipline and agility
was needed [21].

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity34

Factor 2000 Database 2010 Database

Commercial Defense Commercial Defense

Software development and
management practices

Focus on ISO
processes

Focus on CMMI
processes

Move to agile
methods

Focus continues on
CMMI

Size mostly moderate Size small to moderate Size gets bigger and
bigger

Size gets bigger and
bigger

Requirements simple/
moderate

Requirements difficult Requirements
moderate/hard

Requirements more
difficult

Automation moderate Automation moderate Automation gets
higher

Automation gets
higher

3rd and 4th GEN
languages

Ada dies. Return to
C/C++

4th and 5th GEN
languages

3rd and 4th GEN
languages

Rate of progress
reporting

Metrics-based
management

Agile metrics Earned value
reporting

Interdisciplinary teams Integrated product
teams

Social networking Integrated product
teams

Reliability expectations Low to moderate Moderate to very high Low to moderate Moderate to very high

Product complexity Low to moderate Moderate to very high Low to moderate Moderate to very high

Client-server
architecture

Real-time processing Broadcast-subscriber Real-time processing

Mega data centers Mega data centers Movement to clouds Movement to clouds

Distributed systems Distributed systems Net-centric systems Systems of systems

Workforce influences Turnover high Turnover moderate Turnover high Turnover moderate

Young workforce Middle aged
workforce

Young workforce Aged workforce

Internet revolution Internet revolution Internet a way of life Internet a security
worry

Shops mostly
centralized

Shops mostly
centralized

Shops mostly
decentralized

Shops mostly
centralized

Starting to outsource Starting to insource Outsourcing normal Insourcing normal
Table 5 - Factors that Influence Productivity by Sector by Year

As shown in Table 5, the continued advance of technology
has had a profound impact on how we get the work associated
with software projects done during the past decade. For
example, the use of the Internet has facilitated the ability of
geographically-dispersed teams to work together in virtual
space to build products. Along with the good, the use of
such technology also created problems. For example, working
in virtual space has amplified the need for new forms of
collaboration and tighter network security. In contrast, the
advent of the use of social networking altered how our teams
communicate with each other, clients and collaborators, both
actual and potential. Finally, security in general has become
a bigger issue as we store information in the clouds and share
it across virtual space.

6 D ata Validation

Many people have questioned the validity of my databases
over the years mainly because they could not independently
review the data entries. As anyone who has dealt with data
knows, firms treat their productivity, cost and quality actuals
as proprietary. Any leakage could create damage especially if
they fell into the hands of competitors who used them to win
competitive bids. As a consequence, those who receive data
must protect it. To release it requires supplier approval. In our
case, this is an almost impossible task because it means that we
would need to solicit the approval of as many 93 organizations
before we could make it made public.

Of course, we validate the data as we receive it to ensure
that it conforms to the conventions that we have set for its
definition. If there are holes or inconsistencies in the data, we

Cyber Security and Information Systems Information Analysis Center (CSIAC) 35

SoFTWAre ProduCTIvITy ProgreSS durIng The FIrST deCAde oF The
21ST CenTury: quAnTIFyIng ProduCTIvITy (ConT.)

interact with the supplier to resolve the issues we have found
prior to entering it into our databases. Once a new dataset
is formed, we look for outliers and test it statistically. We
also perform hypothesis testing and look to determine the
statistical errors.

With the data tightly held, how would you go about
validating our conclusions? The easiest answer to these
questions is by comparison against your and others’ results.
While some productivity data has been made available by
others like Capers Jones [22], the only productivity databases
that I know that are maintained and kept up-to-date are those
sold by the DACS (Data & Analysis Center for Software) [23]
and International Software Benchmarking Standards Group
(ISBSG) [24]. The DACS database has recently been upgraded
by the University of Southern California to contain more
current results. Figure 7 illustrates how the results reported
in this paper compare to similar findings taken from these two
sources. Again, the individual data are not available because
of the need to maintain privacy. As the Figure illustrates, our
findings seem reasonable when you make the effort to compare
like data with like data.

Figure 7 - Comparison of Productivity (SLOC/SM) Findings
with DACS and ISBSG Benchmarks

Figure 7 Notes
•	 Because each of the benchmarks has different scopes, we

had to normalize the life cycle phases and labor categories
included.

•	 We made some assumptions about what to include because
application domains were defined differently in each of the
databases.

•	 We also converted function point size to source lines of code
(SLOC) to ensure all size entries used the same basis.

7 Summary and Conclusions

In summary, the past decade has seen considerable
improvements in the technology that most software
organizations use to architect, develop, test, manage and
maintain their products, both in the defense and commercial
sectors. These improvements have in turn sparked software
productivity increases that I believe are considerable. While
some would be disappointed and say that the magnitude of
these increases is not high enough for them, such gains are
sufficient for anyone to use to justify major investments in
new software techniques, tools and technology. For example,
a mere 2 percent gain each year in productivity improvements
in a firm that employs 1,000 software engineers justifies
millions of dollars in expenditures. I am personally excited
about the results and am hopeful that they will continue
and accelerate.

I would like to take this opportunity to thank those in the
community who have supported my productivity, cost and
quality benchmarking activities over the years. They have
provided the funding and data that have made it possible for
me to be able to provide these results over the years. I would
specifically like to thank Mr. Peter McLoone of Lockheed
Martin and the DACS staff for their insightful inputs and
suggestions for improving this manuscript.

Finally, in conclusion, I believe that putting these
productivity results in the public domain is important because
they provide the community with an empirical basis for
comparison. Such comparisons will in turn help those running
software organizations and projects to set realistic expectations.
I encourage others who have such empirical results to make
it public as well. This would enable the community to agree
on numbers that everyone could and should use for the
community’s benefit.

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity36

References
 [1] Cockburn, A., Agile Software Development, Addison-

Wesley, Upper Saddle River, NJ, 2002.

 [2] Cohn, M., Succeeding with Agile, Addison-Wesley,
Upper Saddle River, NJ, 2010.

 [3] IEEE Computer Society, IEEE Standard for Software
Productivity Measurement, IEEE Std 1045-1992,
September 17, 1992.

 [4] Boehm, B.W., Abts, C., Brown, A.W., Chulani, S.,
Clark, B.K., Horowitz, E., Madachy, R., Reifer, D. and
Steece, B., Software Cost Estimation with COCOMO
II, Prentice Hall, Upper Saddle River, NJ, 2000.

 [5] Capers Jones published the original table that backfired
function points to lines of code in the 1990’s. These
tables are now for sale at http://www.spr.com/
programming-languages-table.html.

 [6] Park, R, Software Size Measurement: A Framework
for Counting Source Statement, CMU/SEI-92-20,
Software Engineering Institute, Pittsburgh, PA, 1992.

 [7] Florac, W.A. and Carleton, A.D. (Editors), Measuring
the Software Process, Addison-Wesley, 1999.

 [8] NDIA CMMI® Working Group, CMMI® for Small
Business, November 2010 (see http://www.ndia.org/
Divisions/Divisions/SystemsEngineering/Documents/
Committees/CMMI%20Working%20Group/
CMMI4SmallBusiness_CMMIWG.pdf).

 [9] Reifer, D.J., Software Maintenance Success Recipes,
CRC Press, Boca Raton, FL, 2011.

[10] Reifer, D.J., “Let the Numbers Do the Talking,”
Crosstalk, March 2002, pp. 4-8.

[11] Reifer, D.J., Making the Software Business Case:
Improvement by the Numbers, Addison-Wesley, Upper
Saddle River, NJ, 2001.

[12] Reifer, D.J., Software Change Management: Case
Studies and Practical Advice, Microsoft Press,
Redmond, WA, 2011.

[13] Fields, J., Harvie, S., Fowler, M. and Beck, K.,
Refactoring: Ruby Edition, Addison-Wesley, 2009.

[14] Kung, D.C., Hsia, P. and Gao, J., Testing Object-
Oriented Software (Practitioners), Wiley, IEEE
Computer Society Press, 1998.

[15] Jamshidi, M., Systems of Systems Engineering:
Principles and Applications, CRC Press, 2008.

[16] Royce, W.W., “Managing the Development of Large
Software Systems,” Proceedings Wescon, IEEE, August
1970, pp. 1-9.

[17] Larman, C. and Basili, V., “Iterative and Incremental
Development: A Brief History,” Computer, IEEE, June
2003, pp. 2-11.

[18] Boehm, B. W., “A Spiral Model of Software Development
and Enhancement,” Computer, IEEE, May 1988, pp.
61-72.

[19] May, E.L. and Zimmer, B. A, “The Evolutionary
Development Model for Software,” Hewlett Packard
Journal, August 1996, available at the following web
site: http://www.hpl.hp.com/hpjournal/96aug/aug96a4.
pdf.

[20] The Agile Alliance web site provides broad coverage for
the methodology at http://www.agilealliance.org/.

[21] Reifer, D. J., Software Change Management: Case
Studies and Practical Advice, Microsoft Press, 2011.

[22] Jones, C., Software Assessments, Benchmarks and
Best Practices, Addison-Wesley, Upper Saddle River,
NJ, 2000.

[23] Information about the Data & Analysis Center for
Software (DACS) is available at http://www.thedacs.
com/.

[24] Information about the International Software
Benchmarking Standards Group (ISBSG) is available
at http://www.isbsg.org/.

Cyber Security and Information Systems Information Analysis Center (CSIAC) 37

AuThor BIos ANd CoNTACT INFormATIoN
When you submit your article to CsIAC, you also need to submit
a brief bio, which is printed at the end of your article. Additionally,
CsIAC requests that you provide contact information (email and/
or phone and/or web address), which is also published with your
article so that readers may follow up with you. You also need to
send CsIAC your preferred mailing address for receipt of the
Journal in printed format. All authors receive 5 complementary
copies of the Journal issue in which their article appears and are
automatically registered to receive future issues of Journal. up to
20 additional copies may be requested by the author at no cost.

CopYrIghT:
submittal of an original and previously unpublished article
constitutes a transfer of ownership for First publication rights
for a period of ninety days following publication. After this ninety
day period full copyright ownership returns to the author. CsIAC
always grants permission to reprint or distribute the article once
published, as long as attribution is provided for CsIAC as the
publisher and the Journal issue in which the article appeared is
cited. The primary reason for CsIAC holding the copyright is to
insure that the same article is not published simultaneously in
other trade journals. The Journal enjoys a reputation of outstanding
quality and value. We distribute the Journal to more than 30,000
registered CsIAC patrons free of charge and we publish it on our
website where thousands of viewers read the articles each week.

For INvITed AuThors:
CsIAC typically allocates the author one month to prepare an
initial draft. Then, upon receipt of an initial draft, CsIAC reviews
the article and works with the author to create a final draft; we
allow 2 to 3 weeks for this process. CsIAC expects to have a final
draft of the article ready for publication no later than 2 months
after the author accepts our initial invitation.

For some issues CsIAC has a guest editor (because of their
expertise) who conducts most of the communication with other
authors. If you have been invited by a guest editor, you should

PreFerred FormATS:

•	 Articles must be submitted electronically.
•	 ms-Word, or open office equivalent (something that can

be edited by CsIAC)

SIze guIdelIneS:
•	 minimum of 1,500 – 2,000 words (3-4 typed pages using Times

New roman 12 pt font) maximum of 12 pages
•	 Authors have latitude to adjust the size as necessary to

communicate their message

ImAgeS:
•	 graphics and Images are encouraged.
•	 print quality, 200 or better dpI. Jpg or pNg format preferred

Note: please embed the graphic images into your article to clarify
where they should go but send the graphics as separate files when
you submit the final draft of the article. This makes it easier should
the graphics need to be changed or resized.

ConTACT InFormATIon:
CsIAC
100 seymour road suite C102
utica, NY 13502
phone: (800) 214-7921
Fax: 315-351-4209

John dingman, managing editor
phone: (315) 351-4222
email: jdingman@quanterion.com

Tom mcgibbon, CsIAC director
phone: (315) 351-4203
email: tmcgibbon@quanterion.com

Article Submission Policy

The CSIAC Journal is a quarterly journal focusing on scientific and technical research & development, methods and processes,

policies and standards, security, reliability, quality, and lessons learned case histories. CSIAC accepts ar ticles submitted by the

professional community for consideration. CSIAC will review articles and assist candidate authors in creating the final draft if the

ar ticle is selected for publication. However, we cannot guarantee publication within a fixed time frame.

Note that CSIAC does not pay for ar ticles published.

CSIAC is a DoD sponsored Information Analysis Center (IAC), administratively managed by the Defense Technical Information Center (DTIC), technically
managed by the Air Force Research Laboratory (AFRL) in Rome, NY and operated by Quanterion Solutions Incorporated, Utica, NY.

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity38

CSiAC
100 Seymour road

utica, ny 13502-1348
phone: 800-214-7921

fax: 315-351-4209
e-mail: info@thecsiac.com

url: http://www.thecsiac.com/

John dingman
Managing editor

quanterion Solutions, CSIAC

thomas McGibbon
CSiAC director

quanterion Solutions, CSIAC

Shelley howard
Graphic designer

quanterion Solutions, CSIAC

paul engelhart
CSiAC COr

Air Force research lab

ABouT ThIS PuBlICATIon
the Journal of Cyber Security and information Systems is published quarterly by the Cyber Security and Information
Systems Information Analysis Center (CSIAC). The CSIAC is a dod sponsored Information Analysis Center (IAC), administratively
managed by the defense Technical Information Center (dTIC). The CSIAC is technically managed by Air Force research laboratory
in rome, ny and operated by quanterion Solutions Incorporated in utica, ny.

Reference herein to any specifi c commercial products, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the united States government or
the CSIAC. The views and opinions of authors expressed herein do not necessarily state or refl ect those of the United States
government or the CSIAC, and shall not be used for advertising or product endorsement purposes.

Distribution Statement:
unclassifi ed and unlimited

ABouT The JournAl oF CyBer SeCurITy And InFormATIon SySTemS

Cover deSIgn
Shelley howard

Graphic designer
quanterion Solutions, CSIAC

ArTICle reProduCTIon
Images and information presented in these articles may be reproduced as long
as the following message is noted:

“This article was originally published in the Journal of Cyber Security and
Information Systems vol.1, no.1 october 2012. “

In addition to this print message, we ask that you notify CSIAC regarding any
document that references any article appearing in the CSIAC Journal.

requests for copies of the referenced journal may be submitted to the
following address:

Cyber Security and information Systems
100 Seymour road
utica, ny 13502-1348

phone: 800-214-7921
fax: 315-351-4209
e-mail: info@thecsiac.com

An archive of past newsletters is available at https://journal.thecsiac.com.

Cyber Security and Information Systems Information Analysis Center (CSIAC) 39

Cyber Security and information Systems
information Analysis Center
100 Seymour road
Suite C-102
utica, ny 13502

PRSRT STD
U.S. Postage

P A I D
Permit #566

UTICA, NY

Return Service Requested

Journal of Cyber Security and information Systems – february 2013
Secure Systems and Software Productivity

— In ThIS ISSue —

Advances in the Acquisition of Secure Systems Based on Open Architectures
By Walt Scacchi and Thomas A. Alspaugh ... 02

CSiAC webinars .. 18

Software productivity progress during the first decade of the 21st Century:
Quantifying productivity
Bydonald J. reifer ... 24

