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 Introduction 

A substantial number of development organizations are 
adopting a strategy in which a software-intensive system 
is developed with an open architecture (OA) [20], whose 
components may be open source software (OSS) or proprietary 
with open application programming interfaces (APIs). Such 
systems evolve not only through the evolution of their 
individual components, but also through replacement of one 
component by another, possibly from a different producer or 
under a different license. With this approach to software system 
acquisition, the system development organization becomes 
an integrator of components largely produced elsewhere that 
are interconnected through open APIs as necessary to achieve 
the desired result.

 An OA development process arises in a software acquisition 
ecosystem in which the integrator is influenced from one 
direction by the goals, interfaces, license choices, and release 
cycles of the component producers, and in another direction by 
the needs of its consumers. As a result the software components 
are reused more widely, and the resulting OA systems can 
achieve reuse benefits such as reduced costs, increased 
reliability, and potentially increased agility in evolving to meet 
changing needs. 

The role of software acquisition ecosystems in the development and evolution of secure 
open architecture systems has received insufficient consideration. Such systems are 
composed of software components subject to different security requirements in an 

architecture in which evolution can occur by evolving existing components or by replacing 
them. But this may result in possible security requirements conflicts and organizational liability 
for failure to fulfill security obligations. We have developed an approach for understanding 
and modeling software security requirements as “security licenses”, as well as for analyzing 
conflicts among groups of such licenses in realistic system contexts and for guiding the 
acquisition, integration, or development of systems with open source components in such an 
environment. Consequently, this paper reports on our efforts to extend our existing approach 
to specifying and analyzing software intellectual property licenses to now address software 
security licenses that can be associated with secure OA systems. 

An emerging challenge is to realize the benefits of this 
approach when the individual components are subject to 
different security requirements. This may arise due either 
to how a component’s external interfaces are specified and 
defended, or to how system components are interconnected 
and configured in ways that can or cannot defend the 
composed system from security vulnerabilities and external 
exploits. Ideally, any software element in a system composed 
from components from different producers can have its security 
capabilities specified, analyzed, and implemented at system 
architectural design-time, build-time, or at deployment run-
time. Such capability-based security in simplest form specifies 
what types, value ranges, and values of data, or control signals 
(e.g., program invocations, procedure or method calls), can be 
input, output, or handed off to a software plug-in or external 
(helper) application, from a software component or composed 
system. 

When designing a secure OA system, decisions and trade-offs 
must be made as to what level of security is required, as well 
as what kinds of threats to security must be addressed. The 
universe of possible security threats is continually emerging 
and the cost/effort of defending against them ongoing. 
Similarly, anticipating all possible security vulnerabilities or 
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threats is impractical (or impossible). Further, though it may 
be desirable that all systems be secure, different systems need 
different levels of security, which may come at ever greater 
cost or inconvenience to accommodate. Strategic systems may 
need the greatest security possible, while other systems may 
require much less rigorous security mechanisms. Thus, finding 
an affordable, scalable, and testable means for specifying 
the security requirements of software components, or OA 
systems composed with components with different security 
requirements, is the goal of our research. 

The most basic form of security requirements that can be 
asserted and tested are those associated with virtual machines. 
Virtual machines (VM) abstract away the actual functional 
or processing capabilities of the computational systems on 
which they operate, and instead provide a limited functionality 
computing surround (or “sandbox”). VM can isolate a given 
component or system other software applications, utilities, 
repositories, or external/remote control data access (input or 
output). The capabilities for a VM (e.g., an explicit, pre-defined 
list of approved operating system commands or programs 
that can write data or access a repository) can be specified as 
testable conditions that can be assigned to users or programs 
authorized to operate within the VM. The VM technique is 
now widely employed through software “hypervisors” (e.g., 
IBM VM/370, VMware, VirtualBox, Parallels Desktop 
for Mac) that isolate software applications and operating 
system from the underlying system platform or hardware. 
Such VM act like “containment vessels” through which it 
is possible to specify barriers to entry (and exit) of data and 
control via security capabilities that restrict other programs. 
These capabilities thus specify what rights or obligations may 
be, or may not be, available for access or update to data or 
control information. Thus architectural design-time decisions 
pertaining to specifying the security rights or obligations for 
the overall system or its components are done by specification 
of VM that contain the composed system or its components. 
These rights or obligations can be specified as pre-conditions 
on input data or control signals, or post-conditions on output 
data or control signals. 

The problem of specifying the build-time and run-time 
security requirements of OA systems is different from that at 
design-time. In determining how to specify the software build 
sequence, security requirements are manifest as capabilities that 
may be specific to explicitly declared versions of designated 
programs. For example, if an OA system at design-time specifies 
a “Web browser” as one of its components, at build-time a 
particular Web browser (Mozilla Firefox or Internet Explorer) 

must then be specified, as must its baseline version (e.g., 
Firefox 4.0 or Internet Explorer 9.0). However, if the resulting 
run-time version of the OA system must instead employ a 
locally available Web browser (e.g., Firefox 3.6.1 or Internet 
Explorer 8.0 Service Pack 2), then the OA system integrators 
may either need to produce multiple run-time versions for 
deployment, or else build the OA system using either (a) an 
earlier version of the necessary component (e.g., Firefox 3.5 or 
Internet Explorer 7.0) that is “upward compatible” with newer 
browser versions; (b) a stub or abstract program interface that 
allows for a later designated compatible component version 
to be installed/used at run-time; or else (c) create different 
run-time version alternatives (i.e., variants) of the target OA 
systems that may or not be “backward compatible” with the 
legacy system component versions available in the deployment 
run-time environment. The need to specify build-time and 
run-time components by hierarchical versions numbers like 
Firefox 3.6.16.144 (and possibly timestamps of their creation 
or local installation) arises since evolutionary version updates 
often include security patches that close known vulnerabilities 
or prevent known exploits. As indicated in the Related 
Research section below, security attacks often rely on system 
entry through known vulnerabilities that are present in earlier 
versions of software components that have not been updated 
to newer versions that don’t have the same vulnerabilities. 

As we have been able to address an analogous problem of 
how to specify and analyze the intellectual property rights and 
obligations of the licenses of software components, our efforts 
now focus on the challenge of how to specify and analyze 
software components and composed system security rights 
and obligations using a new information structure we call a 
“security license.” The actual form of such a security license is 
still to be finalized, but at this point, we believe it is appropriate 
to begin to develop candidate forms or types of security licenses 
for further research and development, especially for security 
license forms that can be easily formalized, readily applied to 
large-scale OA systems, as well as be automatically analyzed or 
tested in ways we have already established [4,5]. This is another 
goal of our research here. 

Next, the challenge of specifying secure software systems 
composed from secure or insecure components is inevitably 
entwined with the software ecosystems that arise for secure 
OA systems. We find that an OA software acquisition 
ecosystem involves organizations and individuals producing 
and consuming components, and supply paths from producer 
to consumer; but also 
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•	 the OA of the system(s) in question, and how best to 
secure it, 

•	 the open interfaces provided by the components, and how 
to specify their security requirements,

•	 the degree of coupling in the evolution of related 
components that can be assessed in terms of how security 
rights and obligations may change, and 

•	 the rights and obligations resulting from the security 
licenses under which various components are released, 
that propagate from producers to consumers. 

An example software acquisition ecosystem producing and 
integrating secure software components or secure systems is 
portrayed in Figure 1. 

In order to most effectively use an OA approach in 
developing and evolving a system, it is essential to consider 
this OA ecosystem. An OA system draws on components from 
proprietary vendors and open source projects. Its architecture is 
made possible by the existing general ecosystem of producers, 
from which the initial components are chosen. The choice of a 
specific OA begins a specialized software ecosystem involving 
components that meet (or can be shimmed to meet) the open 
interfaces used in the architecture. We do not claim this is the 
best or the only way to reuse components or produce secure OA 
systems, but it is an ever more widespread way. In this paper we 
build on previous work on heterogeneously-licensed systems 
[15, 22, 2] by examining how OA development affects and is 
affected by software ecosystems, and the role of security licenses 
for components included within OA software ecosystems. 

Figure 1: An example of a software ecosystem in which secure OA systems may be developed 
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In the remainder of this paper, we survey some related 
work (Section 2), define and examine characteristics of open 
architectures with or without secure software elements (Section 
3), define and examine characteristics for how secure OA 
systems evolve (Section 4), introduce a structure for security 
licenses (Section 5), outline security license architectures 
(Section 6), and sketch our approach for security license 
analysis (Section 7). We then close with a discussion addressing 
how our software license and analysis scheme relates to software 
products lines (Section 8), before stating our conclusions 
(Section 9). 

2 Related Work 

Software systems, whether operating as standalone 
components, or as elements within large system compositions 
are continuously being subjected to security attacks. These 
attacks seek to slip through software vulnerabilities known 
to the attackers but perhaps not by the system integrators or 
consumers. These attacks often seek to access, manipulate, 
or remotely affect the data values or control signals that a 
component or composed system processes for nefarious 
purposes, or seek to congest or over-saturate networked 
services. Recent high profile security attacks like Stuxnet [11] 
reveal that security attacks may be very well planned and 
employ a bundle of attack vectors and social engineering tactics 
in order for the attack to reach strategic systems that are mostly 
isolated and walled off from public computer networks. The 
Stuxnet attack entered through software system interfaces at 
either the component, application subsystem, or base operating 
system level (e.g., via removable thumb drive storage devices), 
and their goal was to go outside or beneath their entry context. 
However, all of the Stuxnet attacks on the targeted software 
system could be blocked or prevented through security 
capabilities associated with the open software interfaces that 
would (a) limit access or evolutionary update rights lacking 
proper authorization, as well as (b) “sandboxing” (i.e., isolating) 
and holding up any evolutionary updates (the attacks) prior 
to their installation and run-time deployment. Furthermore, 
as the Stuxnet attack involved the use of corrupted certificates 
of trust from approved authorities as false credentials that 
allowed evolutionary system updates to go forward, it seems 
clear that additional preventions are needed that are external 
to, and prior to, their installation and run-time deployment. 
In our case, that means we need to specify and analyze software 
security requirements and evolutionary update capabilities at 
architectural design-time and system integration built-time, 
and then reconcile those with the run-time system composition. 
It also calls for the need to maintain the design-time, build-

time, and run-time system compositions in repositories remote 
from system installations, and in possibly redundant locations 
that can be encrypted, randomized, fragmented and dispersed 
(e.g., via Torrents or “onion routing”) then cross-checked and 
independently verified prior to run-time deployment in a high 
security system application. 

As already noted, both software intellectual property 
licenses, and security licenses represent a collection of rights 
and obligations for what can or cannot be done with a 
licensed software component. Licenses thus denote non-
functional requirements that apply to a software systems or 
system components as intellectual property (IP) or security 
requirements (i.e., capabilities) during their development 
and deployment. But rights and obligations are not limited 
to concerns or constraints applicable only to software as 
IP. Instead, they can be written in ways that stipulate non-
functional requirements of different kinds. Consider, for 
example, that desired or necessary software system security 
properties can also be expressed as rights and obligations 
addressing system confidentiality, integrity, accountability, 
system availability, and assurance [8, 9]. Traditionally, 
developing robust specifications for non-functional software 
system security properties in natural language often produces 
specifications that are ambiguous, misleading, inconsistent 
across system components, and lacking sufficient details [23]. 
Using a semantic model to formally specify the rights and 
obligations required for a software system or component to 
be secure [8, 9, 23] means that it may be possible to develop 
both a “security architecture” notation and model specification 
that associates given security rights and obligations across a 
software system, or system of systems. Similarly, it suggests the 
possibility of developing computational tools or interactive 
architecture development environments that can be used 
to specify, model, and analyze a software system’s security 
architecture at different times in its development — design-
time, build-time, and run-time. The approach we have been 
developing for the past few years for modeling and analyzing 
software system IP license architectures for OA systems [3, 4, 5, 
22], may therefore be extendable to also being able to address 
OA systems with heterogeneous “software security license” 
rights and obligations. Furthermore, the idea of common 
or reusable software security licenses may be analogous to 
the reusable security requirements templates proposed by 
Firesmith [13] at the Software Engineering Institute. But such 
an exploration and extension of the semantic software license 
modeling, meta-modeling, and computational analysis tools 
to also support software system security can be recognized as 
a promising next stage of our research studies. 
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3 Secure Open Architecture Composition  

Open architecture (OA) software is a customization 
technique introduced by Oreizy [20] that enables third parties 
to modify a software system through its exposed architecture, 
evolving the system by replacing its components. Increasingly 
more software-intensive systems are developed using an 
OA strategy, not only with open source software (OSS) 
components but also proprietary components with open APIs. 
Similarly, these components may or not have their own security 
requirements that must be satisfied during their build-time 
integration or run-time deployment, such as registering the 
software component for automatic update and installation of 
new software versions that patch recently discovered security 
vulnerabilities or prevent invocation of known exploits. Using 
this approach can lower development costs and increase 
reliability and function, as well as adaptively evolve software 
security [22]. Composing a system with heterogeneously 
secured components, however, increases the likelihood of 
conflicts, liabilities, and no-rights stemming from incompatible 
security requirements. Thus, in our work we define a secure OA 
system as a software system consisting of components that are 
either open source or proprietary with open API, whose overall 
system rights at a minimum allow its use and redistribution, 
in full or in part such that they do not introduce new security 
vulnerabilities at the system architectural level. 

It may appear that using a system architecture that 
incorporate secure OSS and proprietary components, and 
uses open APIs, will result in a secure OA system. But not 
all such architectures will produce a secure OA, since the 
(possibly empty) set of available license rights for an OA system 
depends on: (a) how and why secure or insecure components 
and open APIs are located within the system architecture, (b) 
how components and open APIs are implemented, embedded, 
or interconnected, and (c) the degree to which the IP and 
security licenses of different OSS components encumber all 
or part of a software system’s architecture into which they are 
integrated [22, 1]. 

The following kinds of software elements appearing in 
common software architectures can affect whether the resulting 
systems are open or closed [6]. 

Software source code components—These can be either (a) 
standalone programs, (b) libraries, frameworks, or middleware, 
(c) inter-application script code such as C shell scripts, (d) 
intra-application script code, as for creating Rich Internet 
Applications using domain-specific languages such as XUL for 
the Firefox Web browser [12] or “mashups” [19]. whose source 

code is available and they can be rebuilt, or (e) similar script 
code that can either install and invoke externally developed 
plug-in software components, or invoke external application 
(helper) components. Each may have its own distinct IP/
security requirements. 

Executable components—These components are in binary 
form, and the source code may not be open for access, review, 
modification, or possible redistribution [21]. If proprietary, 
they often cannot be redistributed, and so such components 
will be present in the design-and run-time architectures but 
not in the distribution-time architecture. 

Software services—An appropriate software service can replace 
a source code or executable component. 

Application programming interfaces/APIs—Availability 
of externally visible and accessible APIs is the minimum 
requirement for an “open system” [18].

Software connectors—Software whose intended purpose 
is to provide a standard or reusable way of communication 
through common interfaces, e.g. High Level Architecture [17], 
CORBA, MS .NET, Enterprise Java Beans, and GNU Lesser 
General Public License (LGPL) libraries. Connectors can 
also limit the propagation of IP license obligations or provide 
additional security capabilities. 

Methods of connection—These include linking as part of 
a configured subsystem, dynamic linking, and client-server 
connections. Methods of connection affect license obligation 
propagation, with different methods affecting different licenses. 

Configured system or subsystem architectures—These are 
software systems that are used as atomic components of a 
larger system, and whose internal architecture may comprise 
components with different licenses, affecting the overall system 
license and its security requirements. To minimize license 
interaction, a configured system or sub-architecture may be 
surrounded by what we term a license firewall, namely a layer 
of dynamic links, client-server connections, license shims, 
or other connectors that block the propagation of reciprocal 
obligations. 

Figure 2 shows a high-level run-time view of a composed 
OA system whose reference architectural design in Figure 3 
includes all the kinds of software elements listed above. This 
reference architecture has been instantiated in a build-time 
configuration in Figure 4 that in turn could be realized in 
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alternative run-time confi gurations in Figures 5, 6, 7 with 
diff erent security capabilities.Th e confi gured systems consist of 
software components such as a Mozilla Web browser, Gnome 
Evolution email client, and AbiWord word processor (similar 
to MS Word), all running on a RedHat Fedora Linux operating 
system accessing fi le, print, and other remote networked servers 
such as an Apache Web server. Components are interconnected 

through a set of software connectors that bridge the interfaces 
of components and combine the provided functionality into 
the system’s services. However, note how the run-time software 
architecture does not pre-determine how security capabilities 
will be assigned and distributed across diff erent variants of the 
run-time composition.

	
   Figure 2: An example composite OA system potentially subject to diff erent IP and security licenses

	
  Figure 3: Th e design-time architecture of the system in Figure 2 that specifi es a required security containment vessel scheme.
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Figure 4: A secure build-time architecture describing the version running in Figure 2 with a specifi ed security contain-
ment vessel scheme.

Figure 5: Instantiated build-time OA system with maximum security architecture of Figure 4 via individual security 
containment vessels for each system element.
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Figure 6: Instantiated build-time OA system with minimum security architecture of Figure 4 via a single overall security con-
tainment vessel for the complete system using a common software hypervisor, such as Xen, KVM, or VMware.

Figure 7: Instantiated build-time OA system with mixed security architecture of Figure 4 via security containment vessels 
for some groupings of system elements.
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4 OA System Evolution 
An OA system can evolve by a number of distinct 

mechanisms, some of which are common to all systems but 
others of which are a result of heterogeneous IP and security 
licenses in a single system. 

By component evolution— One or more components can 
evolve, altering the overall system’s characteristics (for example, 
upgrading and replacing the Firefox Web browser from version 
3.5 to 3.6 which may update existing software functionality 
while also patching recent security vulnerabilities). 

By component replacement— One or more components 
may be replaced by others with different behaviors but the 
same interface, or with a different interface and the addition 
of shim code to make it match (for example, replacing the 
AbiWord word processor with either Open Office or MS 
Word, depending on which is considered the least vulnerable 
to security attack). 

By architecture evolution— The OA can evolve, using the 
same components but in a different configuration, altering 
the system’s characteristics. For example, as discussed in 
Section 3, changing the configuration in which a component 
is connected can change how its IP or security license affects 
the rights and obligations for the overall system. This could 
arise when replacing email and word processing applications 
with web services like Google Mail and Google Docs, which 

we might assume may be more secure since the Google services 
(operating in a cloud environment) may not be easily accessed 
or penetrated by a security attack.

By component license evolution— The license under which 
a component is available may change, as for example when 
the license for the Mozilla core components was changed 
from the Mozilla Public License (MPL) to the current Mozilla 
Disjunctive Tri-License; or the component may be made 
available under a new version of the same license, as for example 
when the GNU General Public License (GPL) version 3 was 
released. Similarly, the security license for a component may be 
changed by its producers, or the security license for a composed 
system changed by its integrators, in order to prevent or deter 
recently discovered security vulnerabilities or exploits before an 
evolutionary version update (or patch) can be made available. 

By a change to the desired rights or acceptable obligations— 
The OA system’s integrator or consumers may desire additional 
IP or security license rights (for example the right to sublicense 
in addition to the right to distribute), or no longer desire specific 
rights; or the set of license obligations they find acceptable 
may change. In either case the OA system evolves, whether by 
changing components, evolving the architecture, or other means, 
to provide the desired rights within the scope of the acceptable 
obligations. For example, they may no longer be willing or able 
to provide the source code for components that have known 
vulnerabilities that have not been patched and eliminated. 

Figure 8: A second instantiation at run-time (Firefox, Google Docs and Calendar operating within different Firefox run-time 
sessions, Fedora) of the OA system in Figures 2, 3, and 4 as an evolutionary alternative system version, which in turn requires an 

alternative security containment scheme.
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The interdependence of integrators and producers results 
in a co-evolution of software within an OA ecosystem. 
Closely-coupled components from different producers must 
evolve in parallel in order for each to provide its services, as 
evolution in one will typically require a matching evolution 
in the other. Producers may manage their evolution with a 
loose coordination among releases, for example as between 
the Gnome and Mozilla organizations. Each release of a 
producer component create a tension through the ecosystem 
relationships with consumers and their releases of OA systems 
using those components, as integrators accommodate the 
choices of available, supported components with their own 
goals and needs. As discussed in our previous work [2], license 
rights and obligations are manifested at each component’s 
interface, then mediated through the system’s OA to entail 
the rights and corresponding obligations for the system as a 
whole. As a result, integrators must frequently re-evaluate an 
OA system’s IP/security rights and obligations. In contrast 
to homogeneously-licensed systems, license change across 
versions is a characteristic of OA ecosystems, and architects 
of OA systems require tool support for managing the ongoing 
licensing changes. 

•	 We propose that such support must have several 
characteristics. 

•	 It must rest on a license structure of rights and obligations 
(Section 5), focusing on obligations that are enactable 
and testable. 

•	 It must take account of the distinctions between the design-
time, build-time, and distribution-time architectures 
(Sections 3, 5, 6) and the rights and obligations that come 
into play for each of them.

•	 It must distinguish the architectural constructs significant 
for software licenses, and embody their effects on rights 
and obligations (Section 3). 

•	 It must define license architectures (Section 6). 
•	 It must provide an automated environment for creating 

and managing license architectures. We are developing a 
prototype that manages a license architecture as a view of 
its system architecture [2]. 

•	 Finally, it must automate calculations on system rights and 
obligations so that they may be done easily and frequently, 
whenever any of the factors affecting rights and obligations 
may have changed (Section 7). 

5 Security Licenses 
Licenses typically impose obligations that must be met in 

order for the licensee to realize the assigned rights. Common 
IP/copyright license obligations include the obligation to 

publish at no cost any source code you modify (MPL) or the 
reciprocal obligation to publish all source code included at 
build-time or statically linked (GPL). The obligations may 
conflict, as when a GPL’d component’s reciprocal obligation 
to publish source code of other components is combined with 
a proprietary component’s license prohibition of publishing 
its source code. In this case, no rights may be available for 
the system as a whole, not even the right of use, because 
the two obligations cannot simultaneously be met and thus 
neither component can be used as part of the system. Security 
capabilities can similarly be expressed and bound to the data 
values and control signals that are visible in component 
interfaces, or through component connectors. 

Some typical security rights and obligations might be:

•	 The right to read data in containment vessel T.  
•	 The obligation for a specific component to have been 

vetted for the capability to read and update data in 
containment vessel T. 

•	 The obligation for a user to verify his/her authority to 
see containment vessel T, by password or other specified 
authentication process.

•	 The right to replace specified component C with some 
other component.  

•	 The right to add or update specified component D in a 
specified configuration.  

•	 The right to add, update, or remove a security mechanism.

The basic relationship between software IP/security license 
rights and obligations can be summarized as follows: if the 
specified obligations are met, then the corresponding rights 
are granted. For example, if you publish your modified source 
code and sub-licensed derived works under MPL, then you 
get all the MPL rights for both the original and the modified 
code. Similarly, software security requirements are specified 
as security obligations that when met, allow designated users 
or other software programs to access, modify, and redistribute 
data and control information to designated repositories or 
remote services. However, license details are complex, subtle, 
and difficult to comprehend and track—it is easy to become 
confused or make mistakes. The challenge is multiplied when 
dealing with configured system architectures that compose a 
large number of components with heterogeneous IP/security 
licenses, so that the need for legal counsel begins to seem 
inevitable [21, 14]. 

We have developed an approach for expressing software 
licenses of different types (intellectual property and security 
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requirements) that is more formal and less ambiguous than 
natural language, and that allows us to calculate and identify 
confl icts arising from the rights and obligations of two or more 
component’s licenses. Our approach is based on Hohfeld’s 
classic group of eight fundamental jural relations [16], of which 
we use right, duty, no-right, and privilege. We start with a 
tuple <actor, operation, action, object> for expressing a right 
or obligation. Th e actor is the “licensee” for all the licenses we 
have examined. Th e operation is one of the following: “may”, 
“must”, “must not”, or “need not”, with “may” and “need 
not” expressing rights and “must” and “must not” expressing 
obligations. Th e action is a verb or verb phrase describing what 
may, must, must not, or need not be done, with the object 
completing the description. A license may be expressed as 
a set of rights, with each right associated with zero or more 
obligations that must be fulfi lled in order to enjoy that right. 
Figure 9 shows the meta-model with which we express licenses. 

	
  

Figure 9: Security license meta-model 

Designers of secure systems have developed a number 
heuristics to guide architectural design in order to satisfy 
overall system security requirements, while avoiding confl icts 
among interacting security mechanisms or defenses. However, 
even using design heuristics (and there are many), keeping 
track of security rights and obligations across components 
that are interconnected in complex OAs quickly becomes too 
cumbersome. Automated support is needed to manage the  
complexity of multi-component system compositions where 
diff erent security requirements must be addressed through 
diff erent security capabilities.

6 Security License Architectures 
Our security license model forms a basis for effective 

reasoning about licenses in the context of actual systems, and 
calculating the resulting rights and obligations. In order to 
do so, we need a certain amount of information about the 
system’s confi guration at design-time, build-time, and run-time 
deployment. Th e needed information comprises the license 
architecture, an abstraction of the system architecture: 

1. the set of components of the system (for example, see 
Figure 2) for the current system confi guration, as well 
as subsequently for system evolution update versions 
(as seen in Figure 8);

2. the relation mapping each component to its security 
requirements (specifi ed and analyzed at design-time, as 
exemplifi ed in Figure 3) or capabilities (specifi ed and 
analyzed at build-time in Figure 4 and run-time across 
alternatives shown in Figure 5, 6, and 7); 

3. the connections between components and the security 
requirements or capabilities of each connector passing 
data or control signals to/from it; and

4. possibly other information, such as information to 
detect or prevent IP and security requirements confl icts, 
which is as yet undetermined.

With this information and definitions of the licenses 
involved, we believe it is possible to automatically calculate 
rights and obligations for individual components or for 
the entire system, as well as guide/assess system design and 
evolution, using an automated environment of the kind that 
we have previously demonstrated [2, 3, 4, 5]. 

7 Security License Analysis 

Given a specifi cation of a software system’s architecture, 
we can associate security license attributes with the system’s 
components, connectors, and sub-system architectures, 
resulting in a license architecture for the system, and 
calculate the security rights and obligations for the system’s 
confi guration. Due to the complexity of license architecture 
analysis, and the need to re-analyze every time a component 
evolves, a component’s security license changes, a component 
is substituted, or the system architecture changes, OA 
integrators really need an automated license architecture 
analysis environment. We have developed a prototype of 
such an environment for analogous calculations for software 
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copyright licenses [3, 5], and are extending this approach to 
security licenses. 

7.1 Security obligation conflicts 

A security obligation can conflict with another obligation, 
a related right for the same or nearby components, or with 
the set of available security rights, by requiring a right that 
has not been granted. For instance, consider two connected 
components C and D with security obligations 

(O1) The obligation for component C to have been vetted 
for the capability to read and update data in containment 
vessel T. 

(O2) The obligation for all components connected to 
specified component D to grant it the capability to read 
and update data in containment vessel T. 

If C has not been vetted, then these two obligations conflict. 
This possible conflict must be taken into consideration in 
different ways at different development times: 

•	 at design time, ensuring that it will be possible to vet C; 
•	 at build time, ensuring that the specific implementation 

of C has been vetted successfully; and 
•	 possibly at run time as well, confirming that C is certified 

to have been vetted, or (if C is dynamically connected at 
run time) vetting C before trusting this connection to it. 

The second obligation may also conflict with the set of 
available security rights, for example if D is connected to 
component E for which the security right 

(R1) The right to read and update data in containment 
vessel T using component E is not available. 

The absence of such conflicts does not mean, of course, 
that the system is secure. But the presence of conflicts reliably 
indicates that it is not secure.

7.2 Rights and obligations calculations 

The rights available for the entire system (the right to 
read and update data in containment vessel T, the right to 
replace components with other components, the right to 
update component security licenses, etc.) are calculated as 
the intersection of the sets of security rights available for each 
component of the system. If a conflict is found involving the 
obligations and rights of interacting components, it is possible 
for the system architect to consider an alternative scheme, e.g. 
using one or more connectors along the paths between the 

components that act as a security firewall. This means that 
the architecture and the automated environment together 
can determine what OA design best meets the problem at 
hand with available software components. Components with 
conflicting security licenses do not need to be arbitrarily 
excluded, but instead may expand the range of possible 
architectural alternatives if the architect seeks such flexibility 
and choice. 

8 Discussion 

Our approach to specifying and analyzing the security 
requirements for a complex OA system is based on the use of 
a security license. As noted, a security license is a new kind of 
information structure whose purpose is to declare operational 
capabilities that express the obligations and rights of users 
or program to access, manipulate, control, update, or evolve 
data, control signals, and accessible software system elements. 
Our proposed security license is influenced by IP licenses 
that are employed to specify property control and declared 
copyright freedoms/restrictions, such as those for OSS 
components subject to licenses like the GPLv2, MPL, LGPL, 
or others. These IP licenses as information structures often 
pre-exist to facilitate their widespread use, dissemination, 
and common interpretation. Further, the choice of which 
IP license to choose or assign to a software component 
results from a trade-off analysis typically performed by the 
components producers, rather than the system integrators or 
consumers, as a way to protect or propagate the obligations 
and rights to use, evolve, and redistribute the updated 
component’s open source code.

The security licenses we propose may or not necessarily 
exist prior to their specification and assignment to a given OA 
system. Similarly, we may anticipate or expect that generic 
security licenses will emerge and be assigned by software 
component producers, as they have for OSS components, 
though no such security  licenses from producers yet exist. 
However, one follow-on goal we seek to address is whether 
and how best to specify security licenses for different types of 
software elements or components so that it becomes possible 
to semi-automatically specify the security license for a given 
component or composed OA system through the reuse and 
instantiation of security requirement templates. This idea 
is somewhat similar to the license templates and taxonomy 
that is employed by the Creative Commons for non-software 
intellectual property like online art or new media content (cf. 
http://creativecommons.org/licenses/). In this regard, it may be 
possible to develop a technique and supporting computational 
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environment whereby system integrators or consumers can 
conveniently specify the security requirements they seek 
(e.g. fill out online security requirements forms), while 
the environment interprets these specifications to generate 
operational security capabilities that can be guard the entry 
and exit of data or control information from the appropriate 
containment vessel that encapsulates the corresponding system 
element. Consequently, this is a topic for further study and 
investigation.

Next, one might wonder why it is not simply desirable 
to have maximum system security under all circumstances. 
When considering the alternative run-time system 
composition variants shown in Figures 5, 6, and 7, it 
appears there may be trade-offs in one layout of security 
capabilities over another. For example, the layout in Figure 
5 maximizes security by encapsulating each system element 
within its own containment vessel. This in turn requires a VM 
technology of a kind different from that commonly available 
(e.g., like VMware), and instead requires a new lightweight 
VM technology that can provide security capabilities 
(e.g., create, read, update authorizations) for potentially 
smallscale software elements (e.g., Cshell inter-application 
integration or run-time scripts). Similarly, the different 
security containment layouts may affect system performance, 
ease of evolutionary update, and associated level of security 
administration. But these again all represent trade-offs in the 
desire to achieve affordable, practical, and evermore robust 
and testable secure software component/system capabilities 
build-time and run-time. Thus, we take the position that it is 
better to provide the ability to specify and analyze the security 
requirements of different software elements at designtime, as 
well as specify and analyze the security capabilities at build-
time and run-time, rather than the current practice that does 
not account for system architecture nor license architecture, 
and is thus inherently vulnerable to attacks that can otherwise 
be prevented or detected.

One other topic that follows from our approach to 
semantically modeling and analyzing OA systems that are 
subject to software security licenses. More specifically, how our 
approach and emerging results might shed light on software 
systems whose architectures articulate a software product line. 

Accordingly, organizing and developing software product 
lines (SPLs) relies on the development and use of explicit 
software architectures [7, 10]. However, the architecture of 
a secure SPL is not necessarily a secure OA — there is no 
requirement for it to be so. Thus, we are interested in discussing 

what happens when SPLs may conform to a secure OA, and to 
an OA that may be composed from secure SPL components. 
Three considerations come to mind. 

First, if the SPL is subject to a single homogeneous security 
software license, which may often be the case when a single 
vendor or government contractor has developed the SPL, 
then the security license may act to reinforce a vendor lock-in 
situation with its customers. One of the motivating factors for 
OA is the desire to avoid such lock-in, whether or not the SPL 
components have open or standards-compliant APIs. 

Second, if an OA system employs a reference architecture 
much like we have in the design-time architecture depicted 
in Figure 3, which is then instantiated into a specific 
software product configuration, as suggested in the build-
time architecture shown in Figure 4), then such a reference 
or design-time architecture as we have presented it here 
effectively defines a SPL consisting of possible different 
system instantiations composed from similar components 
instances (e.g., different but equivalent Web browsers, word 
processors, email, calendaring applications, relational database 
management systems). 

Third, if the SPL is based on an OA that integrates software 
components from multiple vendors or OSS components that 
are subject to heterogeneous security licenses (i.e., those that 
may possible conflict with one another), then we have the 
situation analogous to what we have presented in this paper. 
So secure SPL concepts are compatible with secure OA systems 
that are composed from heterogeneously security licensed 
components.

9 Conclusion 

This paper introduces the concept and initial scheme 
for systematically specifying and analyzing the security 
requirements for complex open architecture systems. We argue 
that such requirements should be expressed as operational 
capabilities that can be collected and sequenced within a new 
information structure we call a security license. Such a license 
expresses security in terms of  capabilities that provide users 
or programs obligations and rights for how they may access 
data or control information, as well as how the may update 
or evolve system elements. These security license rights and 
obligations thus play a key role in how and why an OA system 
evolves in its ecosystem of software component producers, 
system integrators and consumers. 
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We note that changes to the license obligations and rights, 
whether for control of intellectual property or software 
security, across versions of components is a characteristic 
of OA systems  whose components are subject to different 
security requirements or other license restrictions. A structure 
for modeling software licenses and automated support for 
calculating its rights and obligations are needed in order 
to manage an OA system’s evolution in the context of its 
ecosystem. 

We have outlined an approach for achieving these and 
sketched how they further the goal of reusing components 
in developing software-intensive systems. Much more work 
remains to be done, but we believe this approach turns a vexing 
problem into one for which workable, as well as robust formal, 
solutions can be obtained. 
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CSIAC Webinars

Each month CSIAC presents live webinars, free of charge, via WebEx.  Previous webinars are archived on 
vimeo.com and can be viewed at any time. Here are a few of our recent webinars.  Upcoming webinars 
will be highlighted on the CSIAC home page.

COSt eStiMAtiOn Of AGile 
prOJeCtS

Agile has become a popular development methodology in 
software and systems development in recent years, but how do 
we tailor our estimation processes to this new methodology? 
Traditional methods do not apply in terms of project sizing and 
planning. How can we fi nd an accurate point of comparison 
with industry trends? Presented by industry veteran Larry 
Putnam, Jr., QSM takes you through the basic steps on how 
to customize the estimation process to Agile.

lawrence h. putnam

Lawrence H. Putnam, Jr., Co-
CEO  Larry has 23 years of 
experience using the Putnam-
SLIM Methodology. He has 
participated in hundreds of 
estimation and oversight service 
engagements, and is responsible 
for product management of the SLIM-Suite of measurement 
tools and customer care programs. Larry has delivered 
numerous speeches at conferences on software estimation and 
measurement, and has trained – over a fi ve-year period – more 
than 1,000 software professionals on industry best practice 
measurement, estimation and control techniques and in the 
use of the SLIM-Suite.

 → watch & listen:  http://vimeo.com/21448188

ClOud nine, Are we there yet?

In 1961 at the MIT Centennial, John McCarthy opined “if 
computers of the kind I have advocated become the computers 
of the future, then computing may someday be organized as a 
public utility just as the telephone system is a public utility…. 
the computer utility could become the basis of a new and 
important industry” [1]. In 2006, Amazon Web Services was 

launched providing computing on a utility basis. Since that 
time the notion of cloud computing has been emerging and 
evolving. Cloud computing is a paradigm that makes the 
notion of utility computing a reality. Instead of Information 
Technology (IT) organizations investing in all of the hardware, 
software and infrastructure necessary to meet their business 
needs, cloud computing makes access to hardware, software 
and infrastructure available through the internet, generally 
utilizing a pay for use model. Basically cloud computing 
allows an organization to adopt a diff erent economic model 
for meeting IT needs by reducing capital investments and 
increasing operational investments, a model which is likely to 
off er cost savings to many organizations.

Th is webinar introduces the concept of cloud computing and 
discusses the potential benefi ts for a business as well as those 
things which could be barriers to adoption. It examines the 
types of applications where cloud computing is an effi  cient cost 
eff ective solution and the types of applications where its use 
could be problematic or costly. Several examples of successful 
cloud implementations are presented and discussed.

Arlene f. Minkiewicz
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PRICE building cost models. Her 
recent accomplishments include the development of cost 
estimating models for complex systems and systems of systems 
as well as research focused on the costs and benefi ts associated 
with migration to Service Oriented Architectures. Minkiewicz 
has published many articles on software measurement and 
estimation and frequently presents her research at industry 
forums.

 → watch & listen:  http://vimeo.com/25096379

Journal of Cyber Security and Information Systems 1-2 February 2013: Secure Systems and Software Productivity18



MeASure QuAlity And QuAntify 
reliABility Of CritiCAl SOftwAre

Software in critical applications must operate safely and 
reliably. Since testing can only show the presence of defects, 
but not their absence, how can engineers be confident that 
their software is robust? Using static code analysis with formal 
methods, it is possible to prove the absence of certain run-time 
errors in source code. By using these techniques software teams 
are able to quantify where software may or may not fail.

This webinar will introduce advanced verification techniques 
for software intended for critical applications. Through 
demonstrations, case-studies, and examples, attendees will 
learn how to develop and verify high quality software, use 
workflows and tools that improve software quality and 
reliability, and prove to certification authorities that certain 
types of defects can never occur.

Jay Abraham

Jay Abraham is currently a Technical Manager 
at The MathWorks. His area of expertise is in 
software tools for the verification of critical 
embedded applications. He has 21 years 
software and hardware design experience. Jay 
began his career as a microprocessor designer 
at IBM followed by engineering and design 
positions at hardware, software tools, and embedded operating 
systems companies such as Magma Design Automation and 
Wind River Systems. He has held vice-chairmanships in IEEE 
standards committees and has presented at conferences and 
publications such as the Design Automation Conference, 
Embedded Systems Conference, International System 
Safety Conference, and Systems and Software Technology 
Conference. Jay has a MS in Computer Engineering from 
Syracuse University and a BS in Electrical Engineering from 
Boston University.

 → watch & listen:  http://vimeo.com/25831986

MOdel driven develOpMent

The idea of generating code from models has been implemented 
in a variety of ways with relative success. Most commercially 
available tools are UML-based, but the amount of code 

automatically produced from UML diagrams by those tools 
is relatively small compared to that of a fully functional 
application. Consequently, with most UML-based tools, 
hand-coding is still the most significant phase in the process 
of applications development and is therefore one of the areas 
in which most of the effort is put by development teams.

Project sizing and cost estimation are, along with the 
implementation itself, perhaps the two most crucial issues that 
a project manager has to face. Project managers have to estimate 
costs and allocate resources to the development of a system 
before it is built, so they tend to rely on their experience in 
having built similar systems in the past, and some even use rules 
of thumb (e.g. estimate the size of the system to be built based 
on the number of database tables it will have to deal with).

This presentation/demonstration will describe an MDA-
based approach that provides developers with a technology 
that not only lets them define and, unlike most tools, 
automatically produce fully functional applications but that 
also automatically sizes (using the International Function 
Point Users Group (IFPUG) functional sizing methodology) 
the systems to be developed even before the first line of code 
is generated. The resulting functional size is then used for 
calculating the cost of code generation. Thus, this is actually a 
testimony of how one software service provider has developed 
its business model around the “cost per delivered functional 
unit” construct.

Whereas UML (among other diagram types) provides for 
Static (class diagram) & Dynamic (state transition diagram) 
object models, an ideal solution would also incorporate 
a Functional (services, methods, operations, calculations, 
etc.) and Presentation Model (user interface definitions). If 
the Model can instantiate a complete system (client, 100% 
business logic, dbms etc.) then dramatic improvements in 
productivity ( Function Points/day) can be realized.

Juan Carlos Molina
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a model compiler to transform object-oriented conceptual 
models into Visual Basic applications. In 1999, he was hired 
by CARE Technologies, a spin-off resulting from the reasearch 
group, now Integranova, where he coordinates the R&D 
division that develops Integranova Model Execution System, 
a set of tools which fully support an MDA-based, conceptual 
model-centric software development approach. In the last years 
he has coordinated and participated in the development of 
model validators, formal grammars, model compilers, sizing 
tools and metamodeling tools.

Greg Bishop

Greg Bishop  is a graduate of the US 
Air Force Academy (1972) and served 
as an Intelligence Officer from 1972-
1978 primarily in Southeast Asia and 
Germany . He went to work at Hewlett-
Packard in sales in 1978 and retired in 
2010 working mainly in the Federal 
sector. He is now the North American Director of Sales for 
Integranova and lives in Littleton, CO.

 → watch & listen:  http://vimeo.com/26961405

SeCurinG SySteMS thrOuGh 
SOftwAre reliABility 
enGineerinG

Software reliability engineering (SRE) represents a well-
established set of techniques for specification and assessment of 
dependability of software-based systems. Application of these 
techniques to security concerns could provide further helpful 
assistance for software assurance efforts.

Key aspects of SRE include establishing quantitative reliability 
targets, constructing usage profiles of the operational system, 
and conducting statistically based testing to predict system 
reliability.

Security analysis would build on the success of SRE by 
establishing multiple quantitative targets including availability 
and risk exposure, using threat modeling to identify a variety of 
misuse cases, and fundamentally rethinking software reliability 
growth modeling.

This presentation will also introduce the “Roadmap to 
Dependability” project and invite participants to become active 
in developing or reviewing “Roadmap” products.

taz daughtrey 

Taz Daughtrey  is Senior Software 
Quality Scientist at Quanterion 
Solutions and teaches software 
engineering at James Madison 
University. He is a Fellow of the 
American Society for Quality, where 
he was the Founding Editor of their journal Software Quality 
Professional. Taz has extensive experience in the commercial 
and naval nuclear power industries as well as providing training 
and consulting throughout North America, Europe, and Japan. 
He is currently also a Director of the American Software Testing 
Qualifications Board.

 → watch & listen:  http://vimeo.com/28164978

it eStiMAtiOn 6 truthSyOu MuSt 
leArn

Software estimation is both art and science. Many good 
cost software cost estimation models, strategies, tools and 
techniques exist and are useful. However, estimation for 
NON-SOFTWARE information technology intensive projects 
is a domain that is often characterized by ad-hoc cowboy 
practices yielding inconsistent performance. But why change 
and how could you? This Webinar presented by Galorath 
Incorporated provides valuable information on improving 
IT estimation performance. It will discuss experience and 
research that indicates that when an organization coalesces 
tribal knowledge into organizational intelligence performance 
improves. Following that, an overview of the characteristics 
and attributes of the SEER for IT tool and how they address 
crucial needs of the IT shop.

Karen Mcritchie

Karen McRitchie is a VP of Development. 
Ms. McRitchie is responsible for the 
design, development, implementation and 
validation of the parametric estimation 
relationships found in the SEER™ 
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estimation product line. Ms. McRitchie has participated 
in numerous estimation, data collection, and calibration 
efforts and has trained hundreds of cost analysts in the use, 
application, and calibration of SEER-SEM™ and SEER-H™. 
She has been active in the International Society of Parametric 
Analysts (ISPA) for many years was honored in 2002 with the 
Parametrician of the Year award.

 → watch & listen:  http://vimeo.com/30454475

pArtitiOninG COMplexity: 
BreAKinG dOwn withOut 
BreAKinG dOwn

Complex systems are, in a word, complex. The underlying 
complexity of a given problem is constant. Complexity can 
be hidden, but it cannot be eliminated. Consequently, one 
major objective should be aimed at effectively managing 
complexity through an appropriately layered partitioning 
approach. Beginning in the systems engineering domain (top-
down design), it is necessary to conduct a (strictly human) 
process of defining and bounding the problem space such 
that the initial set of steps taken in the system specification 
design accurately reflect a solution to the actual problem at 
hand, and not a redefinition of the problem. With sufficient 
functional and non-functional requirements, the next steps 
further the top-down design in which the system is partitioned 
into compositional subsystems, and within each subsystem 
a set of cooperative related entities that carry individually 
assigned tasks. With the system specification in place, the other 
dimension of complexity that underlies the problem space is 
handled (bottom up) in the software engineering domain. As 
the SLOC (source lines of code) required for implementation 
of the functional requirements increases, the human effort 
required for handling various non-functional aspects such as 
performance, security, testability, readability, and reusability 
and therefore understandability and maintainability, can very 
quickly grow beyond manageable thresholds unless certain 
design principles are adhered too. Automation is necessary to 
assist with management of aspects including but not limited to 
testability and reliability. One major design objective should be 
to optimize the use of “abstraction” to achieve appropriate levels 
of functionality partitioning. In this way we localize complexity 
in order that the system remains manageable regardless of how 
large it becomes. To achieve this, the design approach must 
appropriately adopt a multi-paradigm philosophy; otherwise 

abstraction becomes a means to only hide complexity, and 
this is dangerous because it influences us to forget that the 
complexity still exists, and often creates the illusion that magic 
is happening! In this talk we discuss a system engineering 
philosophy and a software engineering methodology that 
combines object oriented and aspect oriented models.

Michael weir

Michael Weir is a Senior Systems Analyst 
with Quanterion Solutions, Inc. He has 
over 30 years of experience in military 
R&D and operational deployment of 
communications and networking systems 
in the United States and overseas. Having 
seen the good, bad, and the ugly in the 
flow of systems development and deployment (or not) over 
three decades, Mr. Weir has a perspective on where the 
hard problems begin, and on how they evolve and consume 
resources that should be productive, but aren’t. His current 
focus with complex systems is on effectively recognizing trust 
and identity and handling them properly across system and 
sub-system boundaries.

Mike Corley

Mike Corley is a Senior Software Architect 
for Quanterion Solutions, Inc. He is 
associated with the DACS (Data Analysis 
Center for Software) and the Air Force 
Research Laboratory (AFRL) in Rome. 
He has more than 10 years of professional 
experience providing technical R&D 
support to AFRL in areas including signal processing, 
computer/network and cyber security, and applications 
requiring complex software system architecture design and 
programming best practices. Mr. Corley is a recently admitted 
Ph.D. candidate at Syracuse University.

 → watch & listen:  http://vimeo.com/31872231

SySteM Of SySteMS CApABility-tO-
reQuireMentS enGineerinG

Given an existing set of interconnected, independent systems, 
often referred to as a system of systems (SoS), one of the key 
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activities according to the DoD Systems Engineering Guide 
for Systems of Systems is “translating SoS capability objectives 
into high-level SoS requirements”. Capability engineering 
starts with understanding the desired capability and identifying 
various options for achieving that capability. Initial capability 
engineering is typically done by assessing available resources 
and assets to identify existing functions from which the new 
capability can be composed, followed by a gap analysis for 
each alternative identified. Finally, each alternative is further 
evaluated in terms of capability performance, cost, and 
schedule, resulting in information that can be used to support 
the trade decision. This presentation:

•	 Provides additional guidance for translating capability 
objectives into requirements

•	 Defines SoS engineering (SoSE) methods, processes, and 
tools (MPTs) that might support this activity

•	 Illustrates how the SoSE MPTs would be used and 
integrated to support SoS engineering using Regional Area 
Crisis Response SoS (RACRS) example

While many of the techniques and methods described here 
are not new, they are used in ways tailored to support SoS 
and SoSE analyses and integrated together through a process 
to support capability-to-requirements engineering in a 
more rigorous, repeatable manner, resulting in meaningful 
information about alternatives that can be used to support a 
final decision on how the capability will be implemented. The 
MPTs described here are illustrated using the RACRS SoS. 
RACRS is a notional SoS that has been crafted to support 
SoSE research using actual systems in the public domain often 
employed to respond to regional crisis situations.

Jo Ann lane

Jo Ann Lane  is a research assistant 
professor at the University of Southern 
California Center for Systems and 
Software Engineering, conducting 
research in the areas of software 
engineering, systems engineering, 
and system of systems engineering 
(SoSE). She was a co-author of the 
2008 Department of Defense Systems Engineering Guide for 
Systems of Systems. Current areas of research include SoSE 
processes, SoSE cost modeling, and SoS constituent system 
interoperability. Prior to her current work in academia, she was 
a key technical member of Science Applications International 
Corporation›s Software and Systems Integration Group for 

over 20 years, responsible for the development and integration 
of software-intensive systems and systems of systems. She 
received her PhD in systems engineering from the University 
of Southern California and her Master’s in computer science 
from San Diego State University.

 → watch & listen:  http://vimeo.com/36080073

MOdern file And dAtA 
StruCtureS fACilitAte dAtA
hidinG And infOrMAtiOn 
exfiltrAtiOn

The complexity and flexibility that is built into modern file and 
data structures provide opportunities for criminals or worse to 
hide, exfiltrate and covertly communicate data. This webinar 
will discuss file / data structure vulnerabilities and exploits. We 
will also discuss mitigating strategies that will help to close the 
gaps now and we will discuss future approaches to data and file 
structures that could systemically reduce the threat.

Chet hosmer

Chet Hosmer,  Chief  Scient is t 
WetStone/Allen , has been researching 
and developing technology and 
training surrounding data hiding, 
steganography and watermarking 
for over a decade. He has made 
numerous appearances to discuss the 
threat steganography poses including 
National Public Radio’s Kojo Nnamdi 
show, ABC’s Primetime Thursday, NHK Japan, Crime 
TechTV and ABC News Australia. He has also been a 
frequent contributor to technical and news stories relating to 
steganography and has been interviewed and quoted by IEEE, 
The New York Times, The Washington Post, Government 
Computer News, Salon.com and Wired Magazine. Chet also 
delivers keynote and plenary talks on various cyber security 
related topics around the world every year.

 → watch & listen:  http://vimeo.com/37661944

CSIAC Webinars
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MOdel BASed SySteMS 
enGineerinG: A SOlutiOn tO 
COMplexity Or JuSt A COMplex 
SOlutiOn?

Model Based Systems Engineering (MBSE) has been around 
for decades and has enjoyed a considerable amount of success 
and acceptance in industry and academia. However, MBSE 
is not without its challenges, particularly with respect to its 
practical application to large scale system development. As 
we research solutions to these open MBSE challenges, it is 
important for us to evaluate the state of MBSE based on how 
much system complexity it reduces relative to how much 
complexity it adds to the system development process itself. 
This interactive virtual panel features leading MBSE experts 
from industry, academia and the government discussing this 
and other issues. Using real-world experience, backed by data 
artifacts and experiments from the research and application 
domains documented in the SPRUCE portal and elsewhere, 
the panelists will present their points of view and wrap up with 
an evaluation of the state of the MBSE practice and actionable 
ideas that you can start implementing today.

dr. robert france

Dr. Robert France is a Full Professor 
in the Department of Computer 
Science at Colorado State University. 
His research interests are in the area 
of Software Engineering, in particular 
formal specification techniques, 
software modeling techniques, 
software product lines, and domain-
specific modeling languages. He is an 
editor-in-chief of the Springer journal on Softw are and System 
Modeling (SoSyM), and is on the editorial board of IEEE 
Computer and the Journal on Software Testing, Verification, 
and Reliability. He is a past Steering Committee Chair of the 
MODELS/UML conference series, and is the PC Chair for 
MODELS 2012. He was also a member of the revision task 
forces for the UML 1.x standards. He was awarded the Ten 
Year Most Influential Paper award at MODELS in 2008.

 → watch & listen:  http://vimeo.com/38052031

At the CSIAC we are always pleased to hear from our 

journal readers.  We are very interested in your suggestions, 

compliments, complaints, or questions. Please visit our 

website http://journal.thecsiac.com, and fill out the survey 

form. If you provide us with your contact information, we will 

be able to reach you to answer any questions.

we like your feedback
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Introduction
The topic of productivity continues to be a concern to those 

organizations developing software.  The reason for this is that 
most of these groups have invested thousands upon thousands 
of dollars in processes, methods, tools and training aimed at 
reducing costs, increasing quality and improving operational 
effectiveness via productivity improvements.  However, 
questions persist as to whether or not these investments have 
yielded positive returns.  Let us take the case where a small 
software firm of 30 professionals brings in a new technology 
like agile methods [1, 2] as an example.  When you tally the 
costs involved, the expenses for new software tools and agile 
classes alone will average $10,000 per employee when you 
consider that one full week of time will be needed for training.  
To achieve a payback of $300,000 a year, as shown in Table 1, 
this firm will have to achieve a productivity increase of 20% 
during the first year of the initiative exclusive of other costs.  
Most proponents would agree that achieving such a yield 
during the initial year of the move to agile would be highly 
unlikely due to large learning curves.  A two year time window 
would be a much more reasonable assumption especially if 
other costs like mentoring and process changes (daily standup 
meeting, etc.) were assumed by the analysis.

Software productivity progress during the first 
decade of the 21st Century: Quantifying productivity
Bydonald J. reifer

This paper summarizes the progress various industries have made in software 

productivity during the first decade of the 21st century.  It begins by summarizing 

the productivity gains that occurred from 2000 and 2010 using data from 1,000 

completed projects, none of which is over ten years old.  Next, it categorizes the project 

data that were used to make further comparisons in terms of organizational demographics 

(size of engineering workforces for parent firms), degree of outsourcing, amount of 

contracting, life cycle stage (requirements, development and/or maintenance) and 

development paradigm employed (agile, evolutionary, iterative/incremental development, 

spiral or waterfall).  Finally, the factors to which productivity growth seems to be most 

sensitive to are then identified by industry grouping and discussed as we look into the 

future to forecast what the next decade has in store for us.

Year 1 Year 2 TOTAL

Current productivity (ESLOC/SM )1 100 110

Work that can be achieved by 30 
professionals (ESLOC)2

36K 39.6K

Improvement (10%/year) 110 121

Added work that can be achieved at 
10% increase (ESLOC)

3,600 3,960

Savings with 10% improvement ($50/
ESLOC)3

$180K $198K $378K

Improvement increased to 20% per 
year

120 144

Added work that can be achieved at 
20% increase (ESLOC)

7,200 12,240

Savings with 20% improvement ($50/
ESLOC)

$360K $612K $972K

Table 1 - Notional Payback for Agile Initiative

Table 1 Notes

1. Assume that productivity increases 10% annually normally
2. ESLOC, as will be discussed later in the paper, takes into 

account reused and legacy code
3. The cost of $50/ESLOC was an average taken from the 

software tools domain for illustrative purposes only
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SoFTWAre ProduCTIvITy ProgreSS durIng The FIrST deCAde oF The 
21ST CenTury: quAnTIFyIng ProduCTIvITy (ConT.)

The question that the example raises is how much productivity 
improvement can you expect to achieve realistically when 
making such major investments?  In addition, what are the 
productivity norms that you would compare against and how 
are they computed?  These are some of the questions that this 
paper was written to address.

2 Definition of Productivity

Software productivity is defined by IEEE Standard 1045-
1992 [3] as the ratio of units of output generated to units of 
input used to generate them.  The inputs typically consist of the 
effort expressed either in staff-months or staff-hours of effort 
expended to produce a given output.  Outputs are most often 
represented in either source lines of code, function points or 
some proxy alternative (use case points, story points, feature 
points, web objects, etc.).  Labor is typically scoped from the 
start of software requirements analysis through delivery i.e., 
the completion of software integration and test. It includes 
the following twelve related activities:  

•	 Software requirements analysis
•	 Software architectural design
•	 Software implementation
•	 Software integration and test
•	 Software development test & evaluation
•	 Software task management
•	 Software documentation
•	 Software version control
•	 Software peer reviews
•	 Software quality engineering
•	 Liaison with other engineering groups
•	 Integrated product team participation

All directly charged labor is included in this tabulation.  
For example, labor hours for the leads who charge the project 
directly are included.  Labor hours for executive management 
who charge overhead or other accounts are excluded as are 
charges made by the quality assurance staff who report to 
groups that are independent of the software engineering 
organization.

For outputs, we use equivalent new logical source lines of 
code (SLOC).  This definition permits modified (including 
major modifications where changes are greater than 50 percent 
and minor modifications where alterations are less than 50 
percent), reused (software that is designed for reuse) [4], 
auto-generated/generated code, and code carried over without 
modification from one build or increment to another to be 

equated to new source lines (i.e., this a separate category from 
modified, reused and generated code as it is defined in terms 
of entire components which are carried forward and used as is 
without modifications in a software build or delivery).  It also 
allows function point sizing estimates to be related to SLOC 
counts using industry accepted conversion factors [5] where 
function points and their variants (feature points, web objects, 
etc.) are a specification rather than SLOC-based measure of 
software size.  

The formula used to determine equivalent SLOCs, which 
is expressed as follows, builds on and extends work done by 
Dr. Barry Boehm for the popular COCOMO-II estimation 
model [4]:

Equivalent SLOC = New + (0.65) Major Modifications + 
(0.35) Minor Modifications + (0.15) Reused + (0.08) Auto-

Generated/Generated + (0.02) Carry-Over 

Many issues make counting such inputs and outputs 
hard [6].  To address these issues, a set of standard counting 
conventions must be developed and used.  The conventions 
that we adopted for our analysis are based on those devised for 
the COCOMO-II cost model and are as follows:

•	 The scope of all projects starts with software requirements 
analysis and finishes with software delivery, i.e., completion 
of software development test & evaluation.

	− For commercial systems, the scope extends from 
approval of project startup until sell-off.  In other 
words, the scope for applications systems development 
extends from product conception to sell-off to the 
customer.
	− For defense systems, the scope extends from the 
software requirements review until handoff to the 
system test for hardware and software integration and 
testing.  It assumes that the software deliverables have 
successfully passed its software development test & 
evaluation (software selloff).

•	 Projects can employ any of a variety of methods and 
practices that range from simple to sophisticated.   

•	 Effort includes all chargeable engineering, management 
and support labor in the numbers.

	− It includes software engineering (requirements, 
design, programming and test), task management and 
support personnel (data management, configuration 
management, network administration, etc.) who 
charge the project directly.
	− It typically does not include independent quality 
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assurance, system or operational test, and beta 
test personnel who charge their time to accounts 
other than software.  It does include the software 
effort needed to support those who charge these 
accounts (liaison, meetings, integrated product team 
assignments, etc.).
	− As an example, the software effort includes version 
control.  However, it does not include the software 
effort needed to assess the impact of a major change to 
the system if this is funded through a Program Office 
account and charged separately.
	− As another example, the software effort includes 
responding to a quality assurance group’s independent 
assessment of their product if the quality group had a 
separate charge number which they charged to.

•	 The average number of hours per staff month was 152 (used 
to take holidays, vacation, sick leave, etc. into account).

•	 SLOC is defined by Florac and Carleton [7] to be logical 
source line of code using the conventions issued by the 
Software Engineering Institute (SEI) as altered by current 
practice.  All SLOC counts adhere to these counting 
conventions with the exception of deleted lines which are 
included in the counts in the same manner as added lines.

•	 Function point sizes are defined using current International 
Function Point Users Group (IFPUG) standards.  

•	 Function point sizes were converted to source lines of 
code (SLOC) using backfiring factors published by 
various experts as available on their web sites and in the 
public domain (e.g., see http://sunset.usc.edu/classes/
cs510_2011/ECs_2011/ec39-Software%20Sizing.ppt, 
p. 30). 

•	 Projects used many different life cycle models and 
methodologies.  For example, web projects typically used 
some form of agile process and lightweight methods, while 
military projects used more classical waterfall-oriented or 
incremental processes and methods.  Commercial projects 
used object-oriented methodology predominantly, while 
military projects used a broader mix of conventional and 
object-oriented approaches.

•	 Projects used a variety of programming languages.  For 
example, web projects employed Java, Perl and Visual C 
while military projects used predominately C/C++.  

•	 Most projects surveyed used more than one programming 
language on their projects.  The cost per SLOC when 
provided is therefore provided for the predominate 
language.  Some adjustments were made to combine 
different language generations.

•	 Dollars used to determine cost are assumed to be constant 
year 2010 dollars.

•	 The cost assumed per staff month (SM) of effort of 
$18,000 assumes an average labor mix and includes 
all direct labor costs plus applicable overhead, but not 
general & administrative (G&A) costs and profit.  The 
mix assumes that the average staff experience across the 
team in the application domain was 5 to 8 years.  It 
assumes that staff has the skills and experience needed 
with the application, methods and tools used to develop 
the products.

•	 Many of the organizations surveyed were trying to exploit 
commercial off-the-shelf packages, open source software 
and legacy systems (existing software developed previously 
whose heritage and quality varied greatly) to reduce the 
volume of work involved.  Piecing the system together 
and making it work were a challenge.  

•	 Most of the defense and government organizations 
surveyed were rated at CMMI Level 4 or greater, while 
most commercial firms were not [8].  For the most part, 
the processes that commercial organizations used were 
mostly ISO certified.  

Productivity and Quality

Productivity can easily be manipulated by eliminating 
tasks within the scope identified and altering definitions.  
For example, including comments and/or blank lines in the 
definition of a source line of code (SLOC) can effectively 
increase size by 20 to 40 percent based on which programming 
language(s) is being employed.  As another example, limiting 
scope to extend from detailed design through software testing 
results in productivity numbers that are 40 to 60 percent higher 
because they involve a smaller percentage of the total software 
development effort.  As a final example, productivity numbers 
for software maintenance are much higher than the actuals 
because they do not include the entire effort within their scope.  
Because these maintenance numbers include only the numbers 
for the generating new releases, they appear to have higher 
productivity than they should [9].  In reality, they should 
also include the effort required to sustain the older versions 
of the software in the field within their scope.  They should 
also address the effort that the maintenance staff expends to 
sustain the platforms and facilities to get a true picture of the 
actual productivity that the organization is achieving.

In addition, productivity can also be easily increased by 
manipulating quality.  For example, increasing the defect 
density from our current norm of measurement of 1 to 3 to 
a rate of 3 to 10 defects/thousand equivalent source lines of 
code (EKSLOC) upon release of the software to the field can 
result in productivity increases of between 18 to 40 percent 
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for a telecommunications application of between 100 and 
250 EKSLOC.  In many cases, such quality degradations 
occur inadvertently when the products are released to the field 
prematurely due to deadline pressures.

Productivity and Cost

Finally, many people confuse productivity improvement 
with cost reduction.  Productivity and cost in terms of effort 
expended to generate a software product are separable issues 
because the factors that influence them are different.  For 
example, the easiest way to increase productivity is to get staff 
to generate more output per unit of input using automation 
and tools.  In contrast, costs can most easily be cut by out-
sourcing the work overseas to reduce labor costs.  

You can validate the concept that productivity and cost are 
related but separable variables by realizing that you can increase 
both at the same time by being very productive generating the 
wrong thing.  This phenomenon becomes apparent when your 
team generates the wrong product very efficiently because it 
failed to capture the right requirements. 

3 Data and Data Bases Employed

In many people’s minds, the key to determining productivity, 
cost and quality relationships is to basing your results on 
empirical data.  Over the past 30 years, I have gathered 
data from over 100 software development shops via data 
exchange agreements.  In exchange for their data, we provide 
them productivity norms classified by industrial sector and 
application domain.  They use these norms to determine 
how well they are performing relative to their industry 
and competition.  As part of the agreement, we sign legal 
documents that define how we will protect the data because the 
data is considered very proprietary.  This makes sense because 
these firms do not want their competition to know what their 
current productivity is and what their actual cost and quality 
norms are.  As a result, we can neither share the details of our 
databases nor the data contained within them.  We can only 
share our analysis results.  

Some have criticized this practice of presenting data without 
providing the details because they distrust results that they 
cannot see, replicate and validate.  Others are happy to 
have benchmarks that they can compare their own baselines 
against even if there is no access to the underlying data used 
to determine the benchmarks.  Because we believe some in the 
community can use our results, we have supplied it.  However, 
we advise making an effort to validate these benchmarks against 

your own numbers. There will be critics who will question the 
source of the numbers especially if the benchmarks do not tell 
the story that the critics want to recite.  

Data Bases

Table 2 summarizes the range of actual software productivity 
experienced during 2010 along with their range of size and 
defect densities for 1,000 projects within our databases by 
industrial sector and application domain for the 93 current 
organizations from which we currently gather data.  Please 
note that the 2000 database [10] was characterized differently 
and as such some of the entries associated with it had to be 
adjusted for normalization purposes.  In addition, the project 
tallies and size ranges in the Table pertain to the 2010 database, 
not the 2000 entries.  Finally, note that the entries in the two 
databases can only be normalized and compared when they 
have a like scope and definitions.

The division between firms within the commercial and 
defense sectors is about 75:25.  All of the data have been 
refreshed so that no data point is more than 10 years old in 
the 2010 database.  In addition, Table 2 includes relatively 
large amount of new data in the 2010 database supplied by 
seven new organizations, all of which are commercial.  The 
industrial sectors included are:  

•	 Commercial – firms within this sector include those 
profit-making organizations that design, develop, field, 
maintain and sustain Information Technology (IT) 
products and services.  In some cases, these organizations 
may manufacture and sell such systems commercially.  
In others, they may integrate and use products supplied 
by others to automate their systems and procedures 
(production control, finance and accounting, travel, etc.).

•	 Defense – firms within this sector include those profit-
making organizations that design, develop, field, maintain 
and/or sustain systems used by the military for a full range 
of weapons system (fire control, mission planning, sensor 
data processing, situation awareness, etc.) and support 
(medical,  information systems like billings, etc.).  Such 
systems tend to be more complex than their commercial 
counterpart primarily because they involve safety and 
security issues.

For Table 2, defect density in the table refers to the number 
of defects per thousand lines of code (d/KSLOC) measured 
after delivery.  KSLOC in this context is measured in equivalent 
lines of code to take modified, reused, generated and carry-
over code into account as noted earlier in the COCOMO 
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II discussion. While there has been some work aimed at 
identifying how many defects developers should expect as 
they generate software products, these benchmarks vary a great 
deal as a function of process.  However, these developmental 
defect rates can be used very effectively when the software 

process is controlled (i.e., as a function of process maturity) 
to predict the number of defects remaining in a build.  This 
metric gives developers insight into whether they have tested 
enough assuming that they have set some goal for the numbers 
of defects remaining at delivery.

Sector Application 
Domain

No. of 
Projects1

Size Range 
(EKSLOC)2

Productivity Range 
(ESLOC/SM)3

Defect Density 
(d/KESLOC)4

Commercial Automation 65 45 to 325 225 to 407 (272) 4.1

(729) Command and Control 73 35 to 3,875 78 to 265 (165) 0.75

Information Tech5 106 30 to 4,580 229 to 522 (363) 4.3

Medical7 35 45 to 1,125 238 to 433 (305) 2.5

Scientific Systems 44 35 to 1,090 185 to 387 (231) 1.6

Software Tools8 106 18 to 1,895 236 to 441 (332) 4.8

Telecommunications 81 25 to 3,732 175 to 435 (321) 2.7

Test Systems7 49 28 to 785 225 to 453 (323) 3.3

Training/Simulation 35 45 to 2,130  243 to 477 (313) 4.1

Web Business 135 20 to 655 255 to 665 (315) 6.8

Defense Military – Airborne 52 18 to 2,330 68 to 197 (123) 0.3

(271) Military – Ground 51 35 to 5,210 87 to 275 (215) 0.6

Military – Info Tech7,9 59 25 to 1,755 173 to 497 (335) 3.9

Military - Medical7 33 45 to 950 212 to 417 (285) 1.3

Military – Missile 25 15 to 647 55 to 143 (98) 0.2

Military – Space 31 22 to 1,750 83 to 198 (117) 0.3

Military – Trainers7 20 45 to 2,250 172 to 498 (311) 1.0

TOTAL 1,000 15 to 5,210 55 to 665 (257) 2.65

Table 2 – Number of Projects by Domain and Industrial Sector (2010)

Table 2 Notes

1. Projects are software development activities that result in delivery of a product to a customer.    Under certain circumstances, they 
can include increments when they are delivered to the customer for interim use as other increments are being developed.

2. Size in equivalent KSLOC uses the approach in Section 1 to address the following five categories of code: new, modified (segmented 
by major and minor changes), reused (designed for reuse), generated and carry-over (refactored for use as-is with no modifications; 
e.g., build 1 code used in build 2).

3. Range of productivity for these 2010 benchmarks have the average value denoted in parentheses.  The definition of the life cycle 
scope and what labor is included in the computation is as noted in Section 1.  

4. Refers to the average number of defects per thousand SLOC after delivery.  These defect rates have held relatively constant across 
the decade because they have been established as goals of the development. 

5. Was Data Processing in the 2000 benchmark article.  
6. Most of the data collected for these benchmarks were submitted using function points.  Function points were converted to lines of 

code so that measures reported could be normalized.  Conversion factors were developed to take into account the mix of programming 
languages employed, reuse and other factors based on guidance provided by IFPUG (International Function Point Users Group).

7. These five applications domains are new for the 2010 benchmark.
8. Was Environments/Tools in 2000 benchmark article.
9. The root cause of productivity being substantially lower in the military-info tech domain than its commercial counterpart revolves 

around the amount of rigor and degree of governance applied, not the defect rates established as goals.

SoFTWAre ProduCTIvITy ProgreSS durIng The FIrST deCAde oF The 
21ST CenTury: quAnTIFyIng ProduCTIvITy (ConT.)
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 As summarized Figure 1, the net productivity improvement 
across the decade ranges from between 2 to 3 percent per 
year independent of whatever was viewed as the newest 
software salvation.  Table 3 summarizes the degree of 
software productivity improvement experienced by sector and 
application domain using the norms established in 2000 that 
are noted in the Table and used as our basis for increases [10].
The reason the rate is lower than might be expected is that 
current requirements are tougher and software products that 
we are building are getting bigger and more complex.  Based 
on these findings, the community needs to set more realistic 
goals as they continuously introduce technology to make it 
easier to develop our products (i.e., our make technology).  
However, even at such levels these modified productivity 
improvement goals are sufficient to expend funds on new 
technology especially when compelling technical and economic 
arguments are made to justify investments [11].  However, you 
will need to select the technologies carefully and take charge 
of the risk involved in making the systematic transition to 
its widespread use [12].  Else, the technology you try to use 
may rapidly overwhelm you and your chances of success will 
diminish accordingly.

Figure 1 - Trends in Productivity Improvement by Sector dur-
ing the last Decade

As shown in Table 3, commercial projects have experienced 
a 31.8% gain in software productivity over the decade, while 
defense projects improved about half of that at 17.1%.  The 
contributing factors to these large differences in software 
productivity improvement during the last decade between 
these two sectors revolve around the software development 
and management practices used (including the degree of 
automation), reliability expectations, complexity of the 
product, and workforce influences.  For example, defense firms 
have taken a more conservative approach when it comes to 
adopting agile methods because of the nature of their business 
which is governed by acquisition regulations and contract law. 

ARE YOU GETTING 
THE MAX FROM 

YOUR SOFTWARE 
INVESTMENT?

Technologies Covered:
• SEI/CMM/CMMI
• SEI Team Software Process (TSP)
• SEI Personal Software Process (PSP)
• Inspections
• Reuse
• Cleanroom

And Many More!
Graphs Showing Impact of Software 
Technologies on:

• ROI
• Productivity
• Quality

Summarizes Facts from Open Literature

The CSIAC ROI Dashboard

Access the CSIAC ROI Dashboard
https://sw.thecsiac.com/databases/roi/
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Based on their underlying nature and use, defense systems 
tend to be larger, more complex and have higher reliability 
expectations than their commercial counterparts. The practices 
used during the decade have gotten leaner and more agile [2].  
Automation has become widely used during development for 
tasks like refactoring [13] and testing [14].  During the decade, 
workforce issues have dominated as firms have strived to 
address the economic downturn by cutting their costs through 
out-sourcing and increasing their productivity through the use 
of automation and packaged software.

While these factors will not change during the next decade, 
the systems that we work on will.  Systems will continue to 

become more and more distributed as will the workforces that 
will be used to develop them.  Social media and new forms 
of collaboration will be developed to address the needs of 
the ever expanding global community developing software.  
System-of-system principles [15] will dominate the engineering 
solutions that will evolve that will exploit such new solutions as 
cloud computing, social networking and model-based software 
development.  As a consequence of these actions, systems 
and software engineering will continue to converge especially 
when building software-intensive systems and new more agile 
and lean engineering methods will be developed to accelerate 
getting products to market at reasonable costs.

SoFTWAre ProduCTIvITy ProgreSS durIng The FIrST deCAde oF The 
21ST CenTury: quAnTIFyIng ProduCTIvITy (ConT.)

Sector Application 
Domain

Productivity Range (ESLOC/SM)
2000 Database

Productivity Range (ESLOC/SM)
2010 Database

Percent Gain1, 2
(Decade)

Commercial Automation3 120 to 440 (225) 225 to 407 (272) 20.9%

(754) Command & Control 95 to 330 (225) 78 to 265 (165) +

Info Tech3,4 165 to 500 (270) 229 to 522 (373) 38.2%

Medical5 No data 238 to 433 (305) N/A

Scientific Systems 130 to 360 (195) 185 to 387 (231) 18.5%

Software Tools6 143 to 610 (260) 236 to 441 (332) 27.7%

Telecommunications  175 to 440 (250) 175 to 435 (321) 28.4%

Test Systems5 No data 225 to 453 (323) N/A

Training/Simulation  143 to 780 (224)  243 to 477 (313) 39.7%

Web Business3  190 to 975 (225) 255 to 665 (315) 40.0%

Average gain across all domains - Commercial 31.8%

Defense Military – Airborne  65 to 250 (105) 68 to 197 (123) 17.1%

(246) Military – Ground  80 to 300 (195) 87 to 275 (215) 10.2%

Military – Info Tech5 No data 173 to 497 (335) N/A

Military - Medical5 No data 212 to 417 (285) N/A

Military – Missile 52 TO 165 (85) 55 to 143 (98) 15.3%

Military – Space  45 to 175 (90) 83 to 198 (117) 30.0%

Military – Trainers5 No data 172 to 498 (311) N/A

Average gain across all domains - Defense 17.1%

Table 3 Notes
+  The types of command and control projects included in the 2000 and 2010 databases were defined differently in that the former 

included several instances that were reclassified as automation and process control.  The number of process control entries in the 
2000 database brought the average much higher.  If these projects were eliminated, the productivity would have been on the order 
of 135 ESLOC/SM.  However, we do not believe the results are comparable because different technology was used.

1. Gain within an application domain is calculated as (2010 - 2000 entries)/2000 entry.  Overall gain is computed as the weighted 
average across all domains for which we have entries in both databases.

2. Because the data were refreshed to keep it current, few of the projects included in the 2000 database appear in the 2010 database. 
3. Average productivity in 2000 was changed in the Table due to normalization.
4. Was Data Processing in the 2000 benchmark article.  
5. These five applications domains are new for the 2010 benchmark.
6. Was Environments/Tools in 2000 benchmark article.

Table 3 – Productivity Improvement by Domain and Industrial Sector from 2000 to 2010
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Application domains employed are characterized in Table 4 to provide a more complete description of the types of projects 
within our databases.  It is important to note that developing application domain specific numbers allows us to improve our 
statistical accuracy.

Domain Characterization

Automation This domain supports applications like those used in an auto/truck assembly plant.  Here automated 
conveyer belts transport the vehicle through a series of finishing stages.  Robots assemble the vehicle 
and specialized diagnostic tools perform quality checks.  All of these actions are under the control 
of supervisory system with a man-in-the-loop to contend with reliability issues.  Process control 
applications are included as well like those in oil pipeline operations.

Command & Control This supports applications like those used for network control and switching and for displaying 
information to users.  An example system would be a smart house and many of the applications 
that reside in it.  Such software is command-driven and highly interactive.  In some applications like 
determining and displaying situational awareness during operations, the software operates in real-time.  

Information Technology This domain is a catch-all for many types of information systems including applications in the following 
nine NAICS codes:

•	 Agricultural, forestry and fishing
•	 Mining (coal, metals, oil and gas extraction, etc.) 
•	 Construction
•	 Manufacturing (chemicals, food, metals, petroleum, rubber, tobacco, etc.)  
•	 Transportation, communications, electric, gas and sanitary services
•	 Wholesale trade
•	 Retail trade (food stores, apparel, home furnishings, etc.)
•	 Services (auto repair, education, entertainment, legal, travel, etc.)
•	 Public administration (justice, taxation, legislation, etc.)

Medical This domain supports systems developed to support patients in clinics, hospitals and in care facilities 
including in the home.  They provide for doctor, dental, vision and prescription drug care.  Medical 
systems are for the most part currently client-server systems that provide centralized access to a range 
of information including that used for wellness, diagnosis and patient care.  

Scientific Systems This domain supports number-crunching applications like weather or seismic processing.  In such 
systems, large numbers of computers are used in parallel to perform mathematical calculations.  For 
example, seismic systems do oil prospecting by taking samples and filtering lots of noisy geological data 
over and over, again and again.  Weather modeling and forecasting is another application that falls into 
this category.

Software Tools This domain supports software development and maintenance operations with specialized packages 
and systems aimed at enhancing productivity and cutting costs.  A tool is a program that developers 
use to create, debug, maintain and otherwise support other programs and applications.  They can be 
provided as standalone packages or integrated collections of tools called environments.  

Telecommunications This domain supports a wide range of developments for broadband, land line, microwave, radio, 
satellite, and wireless applications.  This domain includes a wide range of applications because the 
software supports phones, faxes, wireless devices, telegraph, transmission systems, switching systems, 
satellite systems, local exchanges and a host of other types of equipment including broadband 
networks, virtual and private branch exchanges (PBX).  

Test Systems This domain supports a variety of automatic test equipment designed to diagnose problems in both 
hardware and software, including components like integrated circuit cards.  These systems control the 
execution of tests, the comparison of predicted to actual outcomes, the setting up of test preconditions, 
and other test control and reporting functions.  

Table 4 - Characterization of Application Domains (continued on next page)
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Training/Simulation This domain supports a variety of training devices, from games to full-blown system simulators.  The 
large trainers/simulators typically are being built to train commercial pilots, pipeline operators, and 
other personnel in the use and care of complicated equipment and systems.  Currently, medium-sized 
simulators are being developed for applications like e-learning and e-commerce.  

Web Business This domain supports a full range of applications ranging from e-travel reservation systems to 
integrated web-based business suite that do everything including financials, inventory and e-commerce 
(ordering, sales, etc.).   Such systems range in size from individual to corporate web sites tied to the 
Internet and private networks.   They include wikis and blogs and work groups.  They support instant 
messaging, twitter and other social networking technologies.  

Military - Airborne This domain supports embedded applications aboard fighters, helicopters and other types of aircraft 
including drones and unmanned aerial vehicles.   Military airborne applications range the gamut 
from real-time sensor processing systems like terrain-following radars to more mode-based mission 
management systems.  

Military - Ground This domain includes systems that range from artillery to air defense to tanks to manned and unmanned 
combat vehicles to reconnaissance platforms. The characteristics of these projects vary greatly as does 
the size.  Some integrate information to perform tasks like tracking troop movement so that their 
location is known.  In contrast, others line unmanned systems include robots that roam the battlefield 
gathering intelligence as they search for enemy troops.  

Military - Information 
Technology

This domain is a catch-all for many types of information systems being developed and maintained by 
and for the military.  While these systems share similar features with their commercial counterparts, they 
are less broad and designed to support the military’s needs for current and accurate information. 

Military - Medical This domain supports systems developed to support active duty personnel in the field, in hospitals 
and in care facilities including in the home.  They provide doctor, dental, vision and drugs at military 
hospitals and clinics on base.  They provide first aid and combat related services at home and in the field.  

Military - Missile This domain supports typically embedded air-to-air, air-to-ground, ship-to-shore, ship-to-ship, ground-
to-space, air-to-space and space-to-space applications - both air (missile) and ground (launcher).  
Systems also in this category also include more modern weapons like ground-based anti-missile missiles 
and exoatmospheric kill vehicles, guided projectiles and directed energy systems.  

Military - Space This domain supports a wide variety of systems that operate both in space and on the ground to 
perform missions ranging from satellite control to weather mapping.  Such systems operate in real-
time in space autonomously or under the control of a ground station.  Many types of applications are 
supported.  

Military - Trainers This domain supports a variety of realistic rehearsal and training systems.  Soldiers should train as they 
should fight.  In response, training systems are built to use mission equipment to provide students with 
as near an environment as they would expect to experience operationally.  The look, feel and sounds 
of the mission are replicated as are the operational procedures, including those related to exercising 
emergency procedures.  

Table 4 - Characterization of Application Domains (continued from previous page)

4 More about the Data

The data that these findings and forecasts were predicated 
upon was compiled from 93 leading organizations in many 
industries across the United States.  As shown in Figure 2, 
the size of the engineering workforces involved in supplying 
the 1,000 project data points used ranged from twenty to 
thousands of engineers using the classifications that follow:

•	 Small – less than one hundred engineering employees.
•	 Medium – between one hundred and five hundred 

engineering employees.
•	 Large – over five hundred engineering employees.

Counts used do not assume that employees were in a single 
location.  However, all of the locations surveyed as part of the 
effort were within the United States.  In some cases, contractors 
that were working as members of software teams were included 
within the counts because these personnel fulfilled roles that 
employees normally performed during the development.  In 
these cases, it seemed easier for the organization involved to 
get money than staff authorizations.58%

SoFTWAre ProduCTIvITy ProgreSS durIng The FIrST deCAde oF The 
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Figure 2 - Size of Engineering Workforces

For the most part, the staff working defense projects was 
more experienced than those working commercial ones.  So 
were staff members performing maintenance rather than 
development tasks; i.e., the maintenance teams had 8 years 
versus 4 years of average experience.  Figure 3 highlights the 
comparison between commercial and defense projects by 
summarizing the average years of experience taken from our 
1,000 project database.  

Figure 3 - Average Workforce Experience

The software development paradigm used to develop 
software has changed radically during the past decade within 
the commercial sector.  A software paradigm consists of a 
framework for modeling software development consisting 
of a set of activities, methods, practices, reviews and 
transformations programmers use to develop software and 
associated products.  As shown in Figure 4, commercial and 
defense firms differed greatly in the paradigms that they used 
(see below for definitions) to get their software development 
projects completed:

•	 Waterfall Process – refers to a sequential software 
development process in which progress is seen as flowing 
steadily downwards (like a waterfall) through a series of 
phases like analysis, design, implementation, testing, 
qualification, delivery and maintenance.  Providing 
feedback between phases and using well defined milestones 
to gate the transitions between stages are viewed as the 
keys to success with this paradigm [16]. 

•	 Iterative or Incremental Process – refers to a cyclical 

software development process in which progress is made 
in iterations like builds or releases after the initial planning 
and analysis is completed.   A build is defined for these 
purposes as a group of programs that are integrated, tested 
and qualified before delivery to the client.  Deployment 
is made iteratively with cyclical interactions focusing on 
addressing feedback into builds or releases [17].

•	 Spiral – refers to a cyclical software development process 
that combines elements of both design and prototyping-
in-stages to combine advantages of both the waterfall and 
incremental process using a single methodology.  Early 
focus is placed on reducing requirements volatility in hope 
that this will speed the later stages of development [18].

•	 Evolutionary – refers to a cyclical software development 
process where feedback is passed from one evolution of the 
system (could be either an increment or spiral) to another 
using a well-defined and disciplined set of practices [19]. 

•	 Agile – refers to a group of modern software development 
methodologies based on iterative development, where 
requirements and solutions evolve through collaboration 
between self-organizing, cross-functional teams.  Several 
agile varieties ranging from those that focus on defining 
tests first to those that start by defining requirements 
employing user stories [20].   

•	 Hybrid – some unique combination of any of the 
paradigms listed above whose aim is to take advantage of 
them when developing software. 

Figure 4 - Distribution of Software Paradigm Employed Dur-
ing Development by Sector

The totals in Figure 4 did not originally sum to one hundred 
percent in some cases.  The reason for this is that some projects 
in our databases used multiple paradigms.  During the early 
stages, they developed the software incrementally.  Then, as the 
system matured and was fielded, they switched to a waterfall 
approach because the risk was acceptable.  In other cases, 
parts of the system like servers were developed incrementally, 
while other parts like clients and web applications used agile 
methods for their development paradigm.  For ease of use, we 
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have normalized all both the defense and commercial entries 
to total one hundred percent each.

Many people have asked me what the differences in 
productivity were when using agile and other paradigms.  My 
answer has been that it depends.  The reason for this is most 
agile projects that were captured in our database in the 2000 
to 2008 timeframe were small and it was hard to compare 
them with others that were much larger in scale.  However, 
we started to get larger project after 2008 and have included 
Figure 5 to illustrate the comparisons for both the defense (18 
projects, 6 each methodology) and commercial (48 projects, 
16 each methodology) sectors across all applications domains 
for projects that were less than 250 EKSLOC.  It seems that 
moving smartly to agile seems cost-effective based on the 
benefits derived through increased software productivity. 

Figure 5 - Productivity Comparison based on Development 
Paradigm

Figure 5 Notes

•	 Software productivity reported for paradigms using definitions 
and scope in Part 1 of this article using SLOC/PM.

•	 Agile projects are for the most part being done using Scrum 
methodology as it seems to scale for use on larger projects [2].

Another of the factors that influenced software productivity 
was degree of in-sourcing and out-sourcing.  Due to the 
economic downturn during the past decade, commercial 
firms have increased out-sourcing software work overseas.  In 
other cases, they use H-1B visas to bring qualified personnel 
into the United States to do specific software jobs at wages 
less than the prevailing salaries in the marketplace.  Costs are 
definitely cut by such practices, sometimes by as much as two to 
ten.  However, cultural issues, communications and increased 
management burden can cause resulting productivity to be 
less than expected for teams residing in the United States.  
However, most firms using out-sourcing have addressed these 
issues and the practice is viewed as cost-effective based on the 
prevalence of the approach as illustrated in Figure 6.  

SoFTWAre ProduCTIvITy ProgreSS durIng The FIrST deCAde oF The 
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It should be noted that many defense organizations have 
resisted out-sourcing primarily because of security issues.  
They use United States citizens exclusively to do the work 
because of its sensitivity. In other cases, both commercial and 
defense firms have resorted to in-sourcing work to address 
their staffing needs and reduce costs (i.e., hired contractors to 
work in-house as members of their teams).  Off-loading work 
to residents (both citizens and sometimes green card holders) 
reduces management and communications burdens and 
permits productivity to rise naturally.  Even though in-sourcing 
only lowers the labor costs by a factor of 20 to 50 percent, it 
tends to improve teamwork and productivity thereby making 
the practice cost-effective for many of firms involved in our 
data collection.

Figure 6 - In-Sourcing versus Out-Sourcing by Sector

5 Factor Analysis

As we mentioned earlier in this paper, productivity 
improvement is sensitive to a number of factors.  The factors 
around which most of the variation in productivity revolves 
by sector and their impacts are summarized in Table 1.   It is 
interesting to note that several of these factors have changed 
during the decade.  The most prominent of these has been 
growth in size and complexity of the products and the 
relaxation of process improvement mandates.  The simplest 
explanation for the relapse of the process mandate is that the 
firms that embraced the movement have for the most part 
achieved their goal of achieving high levels of maturity using 
either the CMMI or ISO model as their basis for evaluation.  
The other prevalent explanation is that firms have moved to 
agile because they felt that process improvement methodologies 
were too rigid and some balance between discipline and agility 
was needed [21].
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Factor 2000 Database 2010 Database

Commercial Defense Commercial Defense

Software development and 
management practices

Focus on ISO 
processes

Focus on CMMI 
processes

Move to agile 
methods

Focus continues on 
CMMI

Size mostly moderate Size small to moderate Size gets bigger and 
bigger

Size gets bigger and 
bigger

Requirements simple/
moderate

Requirements difficult Requirements 
moderate/hard

Requirements more 
difficult

Automation moderate Automation moderate Automation gets 
higher

Automation gets 
higher

3rd and 4th GEN 
languages

Ada dies.  Return to 
C/C++

4th and 5th GEN 
languages

3rd and 4th GEN 
languages

Rate of progress 
reporting

Metrics-based 
management

Agile metrics Earned value 
reporting

Interdisciplinary teams Integrated product 
teams

Social networking Integrated product 
teams

Reliability expectations Low to moderate Moderate to very high Low to moderate Moderate to very high

Product complexity Low to moderate Moderate to very high Low to moderate Moderate to very high

Client-server 
architecture

Real-time processing Broadcast-subscriber Real-time processing

Mega data centers Mega data centers Movement to clouds Movement to clouds

Distributed systems Distributed systems Net-centric systems Systems of systems

Workforce influences Turnover high Turnover moderate Turnover high Turnover moderate

Young workforce Middle aged 
workforce

Young workforce Aged workforce

Internet revolution Internet revolution Internet a way of life Internet a security 
worry

Shops mostly 
centralized 

Shops mostly 
centralized

Shops mostly 
decentralized 

Shops mostly 
centralized

Starting to outsource Starting to insource Outsourcing normal Insourcing normal
Table 5 - Factors that Influence Productivity by Sector by Year

As shown in Table 5, the continued advance of technology 
has had a profound impact on how we get the work associated 
with software projects done during the past decade.  For 
example, the use of the Internet has facilitated the ability of 
geographically-dispersed teams to work together in virtual 
space to build products.  Along with the good, the use of 
such technology also created problems.  For example, working 
in virtual space has amplified the need for new forms of 
collaboration and tighter network security.  In contrast, the 
advent of the use of social networking altered how our teams 
communicate with each other, clients and collaborators, both 
actual and potential.  Finally, security in general has become 
a bigger issue as we store information in the clouds and share 
it across virtual space.

6 D ata Validation

Many people have questioned the validity of my databases 
over the years mainly because they could not independently 
review the data entries.  As anyone who has dealt with data 
knows, firms treat their productivity, cost and quality actuals 
as proprietary.  Any leakage could create damage especially if 
they fell into the hands of competitors who used them to win 
competitive bids.  As a consequence, those who receive data 
must protect it.  To release it requires supplier approval.  In our 
case, this is an almost impossible task because it means that we 
would need to solicit the approval of as many 93 organizations 
before we could make it made public.

Of course, we validate the data as we receive it to ensure 
that it conforms to the conventions that we have set for its 
definition.  If there are holes or inconsistencies in the data, we 
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interact with the supplier to resolve the issues we have found 
prior to entering it into our databases.  Once a new dataset 
is formed, we look for outliers and test it statistically.  We 
also perform hypothesis testing and look to determine the 
statistical errors.

With the data tightly held, how would you go about 
validating our conclusions?  The easiest answer to these 
questions is by comparison against your and others’ results.  
While some productivity data has been made available by 
others like Capers Jones [22], the only productivity databases 
that I know that are maintained and kept up-to-date are those 
sold by the DACS (Data & Analysis Center for Software) [23] 
and International Software Benchmarking Standards Group 
(ISBSG) [24].  The DACS database has recently been upgraded 
by the University of Southern California to contain more 
current results.  Figure 7 illustrates how the results reported 
in this paper compare to similar findings taken from these two 
sources.  Again, the individual data are not available because 
of the need to maintain privacy.  As the Figure illustrates, our 
findings seem reasonable when you make the effort to compare 
like data with like data.

Figure 7 - Comparison of Productivity (SLOC/SM) Findings 
with DACS and ISBSG Benchmarks

Figure 7 Notes
•	 Because each of the benchmarks has different scopes, we 

had to normalize the life cycle phases and labor categories 
included.

•	 We made some assumptions about what to include because 
application domains were defined differently in each of the 
databases.

•	 We also converted function point size to source lines of code 
(SLOC) to ensure all size entries used the same basis.

7 Summary and Conclusions

In summary, the past decade has seen considerable 
improvements in the technology that most software 
organizations use to architect, develop, test, manage and 
maintain their products, both in the defense and commercial 
sectors.   These improvements have in turn sparked software 
productivity increases that I believe are considerable.  While 
some would be disappointed and say that the magnitude of 
these increases is not high enough for them, such gains are 
sufficient for anyone to use to justify major investments in 
new software techniques, tools and technology.  For example, 
a mere 2 percent gain each year in productivity improvements 
in a firm that employs 1,000 software engineers justifies 
millions of dollars in expenditures.  I am personally excited 
about the results and am hopeful that they will continue 
and accelerate.

I would like to take this opportunity to thank those in the 
community who have supported my productivity, cost and 
quality benchmarking activities over the years.  They have 
provided the funding and data that have made it possible for 
me to be able to provide these results over the years.  I would 
specifically like to thank Mr. Peter McLoone of Lockheed 
Martin and the DACS staff for their insightful inputs and 
suggestions for improving this manuscript.  

Finally, in conclusion, I believe that putting these 
productivity results in the public domain is important because 
they provide the community with an empirical basis for 
comparison.  Such comparisons will in turn help those running 
software organizations and projects to set realistic expectations.  
I encourage others who have such empirical results to make 
it public as well.  This would enable the community to agree 
on numbers that everyone could and should use for the 
community’s benefit.
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