


Our Mission 
CSIAC is chartered to leverage the best practices 
and expertise from government, industry, and 
academia in order to promote technology 
domain awareness and solve the most critically 
challenging scientific and technical (S&T) 
problems in the following areas: 

 ▶ Cybersecurity and Information Assurance
 ▶ So� ware Engineering 
 ▶ Modeling and Simulation
 ▶ Knowledge Management/Information Sharing

The primary activities focus on the collection, 
analysis, synthesis, processing, production 
and dissemination of Scientific and Technical 
Information (STI).

Our Vision
The goal of CSIAC is to facilitate the 
advancement of technological innovations 
and developments. This is achieved by 
conducting gap analyses and proactively 
performing research e� orts to fill the voids 
in the knowledge bases that are vital to our 
nation.  CSIAC provides access to a wealth 
of STI along with expert guidance in order to 
improve our strategic capabilities.

CSIAC is operated by Quanterion Solutions Inc and sponsored by the Defense Technical Information Center (DTIC)
266 Genesee Street Utica, NY 13502  | 1 (800) 214-7921 | info@csiac.org | https://www.csiac.org

WHAT WE OFFER
We provide expert technical advice and 
assistance to our user community. CSIAC is a 
competitively procured, single award contract. 
The CSIAC contract vehicle has Indefinite 
Delivery/Indefinite Quantity (ID/IQ) provisions 
that allow us to rapidly respond to our users’ 
most important needs and requirements.

Custom solutions are delivered by executing 
user defined and funded CAT projects.

Core Services
 ▶ Technical Inquiries:  up to 4 hours free
 ▶ Extended Inquiries: 5 - 24 hours 
 ▶ Search and Summary Inquiries
 ▶ STI Searches of DTIC and other repositories
 ▶ Workshops and Training Classes
 ▶ Subject Matter Expert (SME) 

Registry and Referrals
 ▶ Risk Management Framework 
(RMF) Assessment & Authorization 
(A&A) Assistance and Training

 ▶ Community of Interest (COI) 
and Practice Support

 ▶ Document Hosting and Blog Spaces
 ▶ Agile & Responsive Solutions to 

emerging trends/threats

As one of three DoD Information Analysis Centers (IACs), sponsored by the Defense Technical Information Center 
(DTIC), CSIAC is the Center of Excellence in Cyber Security and Information Systems. CSIAC fulfills the Scientific 
and Technical Information (STI) needs of the Research and Development (R&D) and acquisition communities. This 
is accomplished by providing access to the vast knowledge repositories of existing STI as well as conducting novel 
core analysis tasks (CATs) to address current, customer focused technological shortfalls.

Products
 ▶ State-of-the-Art Reports (SOARs)
 ▶ Technical Journals (Quarterly)
 ▶ Cybersecurity Digest (Semimonthly)
 ▶ RMF A&A Information
 ▶ Critical Reviews and Technology 

Assessments (CR/TAs)
 ▶ Analytical Tools and Techniques
 ▶ Webinars & Podcasts
 ▶ Handbooks and Data Books
 ▶ DoD Cybersecurity Policy Chart

Core Analysis Tasks (CATs) 
 ▶ Customer tailored R&D e� orts performed 

to solve specific user defined problems
 ▶ Funded Studies - $1M ceiling
 ▶ Duration - 12 month maximum
 ▶ Lead time - on contract within 

as few as 6-8 weeks

Contact Information
266 Genesee Street
Utica, NY 13502

1 (800) 214-7921

info@csiac.org

About the CSIAC

  /DoD_CSIAC

  /CSIAC
Facebook “f ” Logo CMYK / .eps Facebook “f ” Logo CMYK / .eps

  /CSIAC



WWW.CSIAC.ORG  |  3

Our Mission 
CSIAC is chartered to leverage the best practices 
and expertise from government, industry, and 
academia in order to promote technology 
domain awareness and solve the most critically 
challenging scientific and technical (S&T) 
problems in the following areas: 

 ▶ Cybersecurity and Information Assurance
 ▶ So� ware Engineering 
 ▶ Modeling and Simulation
 ▶ Knowledge Management/Information Sharing

The primary activities focus on the collection, 
analysis, synthesis, processing, production 
and dissemination of Scientific and Technical 
Information (STI).

Our Vision
The goal of CSIAC is to facilitate the 
advancement of technological innovations 
and developments. This is achieved by 
conducting gap analyses and proactively 
performing research e� orts to fill the voids 
in the knowledge bases that are vital to our 
nation.  CSIAC provides access to a wealth 
of STI along with expert guidance in order to 
improve our strategic capabilities.

CSIAC is operated by Quanterion Solutions Inc and sponsored by the Defense Technical Information Center (DTIC)
266 Genesee Street Utica, NY 13502  | 1 (800) 214-7921 | info@csiac.org | https://www.csiac.org

WHAT WE OFFER
We provide expert technical advice and 
assistance to our user community. CSIAC is a 
competitively procured, single award contract. 
The CSIAC contract vehicle has Indefinite 
Delivery/Indefinite Quantity (ID/IQ) provisions 
that allow us to rapidly respond to our users’ 
most important needs and requirements.

Custom solutions are delivered by executing 
user defined and funded CAT projects.

Core Services
 ▶ Technical Inquiries:  up to 4 hours free
 ▶ Extended Inquiries: 5 - 24 hours 
 ▶ Search and Summary Inquiries
 ▶ STI Searches of DTIC and other repositories
 ▶ Workshops and Training Classes
 ▶ Subject Matter Expert (SME) 

Registry and Referrals
 ▶ Risk Management Framework 
(RMF) Assessment & Authorization 
(A&A) Assistance and Training

 ▶ Community of Interest (COI) 
and Practice Support

 ▶ Document Hosting and Blog Spaces
 ▶ Agile & Responsive Solutions to 

emerging trends/threats

As one of three DoD Information Analysis Centers (IACs), sponsored by the Defense Technical Information Center 
(DTIC), CSIAC is the Center of Excellence in Cyber Security and Information Systems. CSIAC fulfills the Scientific 
and Technical Information (STI) needs of the Research and Development (R&D) and acquisition communities. This 
is accomplished by providing access to the vast knowledge repositories of existing STI as well as conducting novel 
core analysis tasks (CATs) to address current, customer focused technological shortfalls.

Products
 ▶ State-of-the-Art Reports (SOARs)
 ▶ Technical Journals (Quarterly)
 ▶ Cybersecurity Digest (Semimonthly)
 ▶ RMF A&A Information
 ▶ Critical Reviews and Technology 

Assessments (CR/TAs)
 ▶ Analytical Tools and Techniques
 ▶ Webinars & Podcasts
 ▶ Handbooks and Data Books
 ▶ DoD Cybersecurity Policy Chart

Core Analysis Tasks (CATs) 
 ▶ Customer tailored R&D e� orts performed 

to solve specific user defined problems
 ▶ Funded Studies - $1M ceiling
 ▶ Duration - 12 month maximum
 ▶ Lead time - on contract within 

as few as 6-8 weeks

Contact Information
266 Genesee Street
Utica, NY 13502

1 (800) 214-7921

info@csiac.org

About the CSIAC

  /DoD_CSIAC

  /CSIAC
Facebook “f ” Logo CMYK / .eps Facebook “f ” Logo CMYK / .eps

  /CSIAC

ABOUT THIS PUBLICATION
The Journal of Cyber Security and Information Systems is published quarterly by the Cyber 

Security and Information Systems Information Analysis Center (CSIAC). The CSIAC is a Department 

of Defense (DoD) Information Analysis Center (IAC) sponsored by the Defense Technical Information 

Center (DTIC) and operated by Quanterion Solutions Incorporated in Utica, NY.

Reference herein to any specific commercial products, process, or service by trade name, 

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States Government or the CSIAC. The views and 

opinions of authors expressed herein do not necessarily state or reflect those of the United 

States Government or the CSIAC, and shall not be used for advertising or product endorsement 

purposes.

ARTICLE REPRODUCTION
Images and information presented in these articles may be reproduced as long as the following 
message is noted:

“This article was originally published in the CSIAC Journal of Cyber Security and 
Information Systems Vol.5, No 3”

In addition to this print message, we ask that you notify CSIAC regarding any document that 
references any article appearing in the CSIAC Journal.

Requests for copies of the referenced journal may be submitted to the following address:

Cyber Security and Information Systems
266 Genesee Street 

Utica, NY 13502

Phone: 800-214-7921 
Fax: 315-732-3261 

E-mail: info@csiac.org

An archive of past newsletters is available at https://www.csiac.org/journal/. 

To unsubscribe from CSIAC Journal Mailings please email us at info@csiac.org and request that 
your address be removed from our distribution mailing database.

ABOUT THE JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

Distribution Statement 
Unclassified and Unlimited

 Journal of Cyber Security and Information Systems
Design and Development Process for Assured Software - Volume 1I 

JOURNAL EDITORIAL BOARD

Joint Federated Assurance Board (JFAC) 
CSIAC Editorial Board Member

RODERICK A. NETTLES
Managing Editor

Quanterion Solutions Inc., CSIAC

MICHAEL WEIR
CSIAC Director

Quanterion Solutions Inc., CSIAC

R. KRIS BRITTON
Chief, Software and Security Assurance

Director, NSA Center for Assured Software
National Security Agency

DONALD L. COULTER, CISSP
Lead, Trusted Systems & Networks
US Army CERDEC S&TCD CSIA

CAROL A. LEE
DASN Navy Software Assurance Lead for the 
Joint Federated Assurance Center Technical 

Working Group
Naval Surface Warfare Center, Dahlgren, 

Virginia

WILLIAM E. MCKEEVER
Senior Computer Scientist

Air Force Research Laboratory

DR. THOMAS P. SCANLON
Cybersecurity Researcher

Software Engineering Institute
Carnegie Mellon University

DR. DAVID A. WHEELER,
Research Staff Member

Institute for Defense Analyses (IDA)

CHARLES MESSENGER
Strategic Programs

Quanterion Solutions Inc., CSIAC

SHELLEY HOWARD
Graphic Designer

Quanterion Solutions Inc., CSIAC

Introduction������������������������������������������������������������������������������������������������������������������������������4

SARD: Thousands of Reference Programs for Software Assurance�����������������������������6

Improving Software Assurance through Static Analysis Tool Expositions������������������14

Software Assurance Adoption through Open Source Tools�����������������������������������������23

Software Assurance Measurement -  
establishing a confidence that security is sufficient��������������������������������������������������������28

DoD Cybersecurity Policy Chart���������������������������������������������������������������������������������������30

Engineering Software Assurance into Weapons Systems 
During the DoD Acquisition Life Cycle����������������������������������������������������������������������������38

The Software Assurance State-of-the-Art Resource�����������������������������������������������������48

Piloting Software Assurance Tools in the Department of Defense ���������������������������54

https://www.csiac.org
mailto:info%40csiac.org?subject=
https://www.csiac.org/journal/
mailto:info%40csiac.org?subject=Unsubscribe%20from%20CSIAC%20Journal%20Mailing


4

INTRODUCTION 
DESIGN AND DEVELOPMENT PROCESS FOR ASSURED SOFTWARE - VOLUME 2 

By: Robert Gold, 
Director, Engineering Enterprise in the Office of the Deputy Assistant Secretary of Defense for Systems Engineering, ODASD(SE)

Greetings,

It is my honor to introduce the second of two special software 
assurance (SwA) editions of the Journal of Cyber Security 
& Information Systems, published by the Cyber Security & 
Information Systems Information Analysis Center (CSIAC).

ur systems continue to increase their reliance on software – software was 66% of 
total system cost in 2010, software is projected to be 88% of system cost by 2024. 
Simultaneously, Department of Defense (DoD) systems have become progressively 

more networked, and dependent on a complicated global supply chain. Securing 
software through assurance tools, methods, and practices has correspondingly become 
increasingly necessary to ensure we field systems free from vulnerabilities and malware.  
To make assurance an integral part of DoD software development, the DoD has established 
program protection and system security engineering (SSE) as key disciplines to assure 
technology, components, and information against compromise and exfiltration. SSE is, in 
part, accomplished through the cost-effective application of protection measures to mitigate 
risks from vulnerabilities and attacks. The mission of software assurance, in support of 
SSE, is to remediate all detectable vulnerabilities, defects, and weaknesses as early in 
program system engineering as technically feasible, for critical functions and components. 

DoD acquisition Program Managers (PMs) and their staff are at the front lines for implementing 
these assurance measures throughout acquisition, sustainment, and operation.  For example, 
PMs will implement the use of automated software vulnerability detection and analysis tools 
and ensure risk-based remediation of software vulnerabilities is planned and resourced in 
Program Protection Plans, included in contract requirements, and verified through iterative 
assessments.  We provide guidance for programs describing how to tailor software assurance 
to requirements according to characteristics of their developmental systems.

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS



WWW.CSIAC.ORG  |  5

Assurance capabilities brought together by the Joint 
Federated Assurance Center (JFAC) support the planning, 
contracting, operation, measurement, and reporting of 
SwA work, including what a program must provide in 
its Program Protection Plan. Through JFAC, world-class 
engineering and acquisition professionals are working 
together in a broad range of initiatives that develop and 
implement best-practices to help programs engineer-
in software assurance from the earliest activities in 
acquisition. These JFAC initiatives continue to develop and 
update artifacts, methodologies, guidance, contracting 
language, visibility, metrics, assessments, S&T focus, 
and initiatives that engineer assurance into SE activities 
across the life cycle. JFAC is planning further results that 
will provide automated SwA tool to enhance those efforts.  

The JFAC SwA Technical Working Group has been 
meeting at least biweekly for about 3 years and includes 
participation beyond the stakeholder Services and 
agencies to include other parts of Government. For 
DoD programs, this group helped develop the JFAC 
Charter, JFAC Congressional Report, the JFAC Concept 

INTRODUCTION 
DESIGN AND DEVELOPMENT PROCESS FOR ASSURED SOFTWARE - VOLUME 2 

of Operations, standardized operating procedures for 
assurance provider and program relationship, metrics for 
use by programs to show progress implementing SwA, 
and more. Recently, the Group published the DoD SwA 
Capability Gap Analysis that applies Service-wide and 
that brings the Services and several agencies together 
on definitions, language, operation, and thinking for how 
best to implement future innovation in assurance tools 
and technology for the benefit of programs. Next initiatives 
include the first DoD-wide SwA Guidebook and the JFAC 
Outreach Plan.

My personal thanks to the authors and teams who 
contributed to these SwA special editions and to the 
CSIAC for working with JFAC to make it possible. I hope 
you find the articles informative and useful, and that you 
will take advantage of the critical thought, methodology 
development, and practical improvements we have made 
in software assurance. We would like your feedback. If you 
have comments or questions please contact the DASD(SE) 
JFAC team at osd.atl.asd-re.se@mail.mil. Or, why not go to 
the JFAC website and write us a ticket! 

https://www.csiac.org


6

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

SARD: THOUSANDS OF REFERENCE 
PROGRAMS FOR SOFTWARE ASSURANCE
By: Paul E. Black, National Institute of Standards and Technology, Gaithersburg, MD

Certain trade names and company products are mentioned in the text or identified. In no case does such identification imply 
recommendation or endorsement by the National Institute of Standards and Technology (NIST), nor does it imply that the products are 
necessarily the best available for the purpose.

O ne way to understand the strengths and limitations of software assurance tools 
is to use a corpus of programs with known bugs. The software developer can run 
a candidate tool on programs in the corpus to get an idea of the kinds of bugs 

that the tool finds (and does not find) and the false positive rate.  The Software Assurance 
Reference Dataset (SARD) [16] at the National Institute of Standards and Technology 
(NIST) is a public repository of hundreds of thousands of programs with known bugs. This 
article describes the content of SARD, how to find specific material, and ways to use it.



WWW.CSIAC.ORG  |  7

SARD: Thousands of Reference Programs for Software Assurance

SARD has over 170,000 programs in C, C++, Java, PHP, and C# 
covering more than 150 classes of weaknesses. Most of the test cases 
are synthetic programs of a page or two of code, but there are over 
7,000 full size applications derived from a dozen base applications. 
Although not every vulnerability is indicated in every program, the 
vast majority of weaknesses are noted in metadata, which can be 
processed automatically. Users can search for test cases by language, 
weakness type, and many other criteria and can then browse, select, 
and download them.

The term “bug” is ambiguous. “A vulnerability is a property of system 
security requirements, design, implementation, or operation that 
could be accidentally triggered or intentionally exploited and result 
in a security failure. A vulnerability is the result 
of one or more weaknesses in requirements, 
design, implementation, or operation.” [14, 
page 4]  In isolation, a piece of code may have a 
buffer overflow or command injection weakness, 
but because the input is filtered or only comes 
from a trusted source, it may not constitute a 
vulnerability, which is exploitable. In fact, it 
may be difficult to determine if a particular 
piece of code may be reachable at all. It may, in 
practice, even be dead code. Hence, we usually 
talk about weaknesses and leave larger, system 
level concerns for another discussion.

We first explain the goals and organization of 
SARD, then describe the very diverse content. 
After that, we give advice on how to find and use 
SARD cases, related work and collections, and 
future plans for SARD.

SARD Philosophy and Organization

The SARD consists of test cases, which 
are individual programs. Each test case has 
“metadata” to label and describe it. Many test cases are organized 
into test suites. Some test cases share common files with other cases.

The code is typical quality. It is not necessarily pristine or exemplary, 
nor is it horrible. SARD is not a compiler test. For now, we ignore 
the question of language version, e.g., C99 vs. C11.

Users can search for test cases by programming language, weakness 
type, size, and several other criteria and can then browse, select, and 
download them. Users can access test suites, which are collections 
of test cases. We explain more in the section explaining how to use 
SARD content.

Many synthetic programs represent thousands of variations for 
different weakness classes. In theory only the code pertaining to 
the weakness need be examined to determine that it is, indeed, 
a weakness. However, analysis tools must handle an unbounded 
amount of surrounding code to find sources of sinks, determine 

conditions when the piece of code may be executed, etc. Many sets 
of synthetic programs have the same base weakness wrapped in 
different code complexities. For instance, an uninitialized variable 
may be declared in one function and a reference passed to another 
function, where it is used. Other code complexities are when the 
weakness is wrapped in various types of loops or conditionals or 
uses different data types.

Test cases are labeled “good,” “bad,” or “mixed.” A “bad” test case 
contains one or more specific weaknesses. A “good” test case is 
associated with bad cases, but the weaknesses are fixed. Good cases 
can be used to check false positives. A “mixed” test case has both, 
for instance, code with a weakness and the same code with the 

weakness fixed. Weaknesses are classified using 
the Common Weakness Enumeration (CWE) 
[7] ID and name. We plan to also list their Bugs 
Framework (BF) [3] class. Fig. 1 shows the result 
of searching for test cases. Clicking on 199265 
displays that case, as shown in Fig. 2.

SARD is archival. That is, once a test case is 
deposited, it will not be removed or changed. 
That way, if research uses a test case, later 
researchers can access that exact test case, byte 
for byte, to replicate the results. This is important 
to determine if, say, a new technique is more 
powerful than a previous technique.

If problems are later found with a test case, 
a new version may be added. For instance, if 
an extraneous error is found in a test case or 
the test case uses an obsolete language feature, 
an alternate may be added that corrects the 
problem. The original can still be accessed, but 
its status is deprecated.

A test case is deprecated if it should not be used 
for new work. If a test case does not yet meet our 

documentation, correctness, and quality requirements, its status is 
candidate. When it does, its status is accepted. A user can expect that 
the documentation of an accepted test case contains:

ii A description of the purpose of the test case.
ii An indication that it is good (false alarm), 

bad (true positive), or mixed.
ii Links to any associated test cases, e.g. the 

other half of a bad/good test case pair.
ii The source code language, e.g. C, Java, or PHP.
ii Instructions to compile, analyze, or execute the test, 

if needed. This may include compiler name/version, 
compiler directives, environment variable definitions, 
execution instructions, or other test context information.

ii The weakness(es) class(es).
ii If this is a “bad” or “mixed” test, the location of 

known weaknesses, e.g. file name and line number.

A vulnerability 
is a property of 
system security 
requirements, 

design, 
implementation, 

or operation 
that could be 
accidentally 
triggered or 
intentionally 

exploited 

https://www.csiac.org


8

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

Source code for an accepted test case will:

ii Compile (for compilable languages).
ii Run without fatal error, other than those expected for an incomplete program.
ii Not generate any warnings, unless the warnings are expected as part of the test.
ii Contain the documented weakness if the test case is a bad or mixed test case.
ii Contain no weaknesses at all if it is a good case.

Figure 1. A screen shot of test cases found for a search. It shows that cases have “metadata” or information such as, test case ID, source code 
language, status, description, weaknesses included, and an indication of whether it has weaknesses (bad), no weaknesses (good), or mixed.

Figure 2. Screen shot of code from case 199625. The NULL pointer dereference weakness shows up on lines 101, 103, and other lines. Each 
case has such “metadata” available for for automatic processing.



WWW.CSIAC.ORG  |  9

SARD: Thousands of Reference Programs for Software Assurance  –  CON'T

We have permission to publicly furnish the SARD test cases. In fact, 
many test cases are in the public domain. We are working to attach 
explicit usage rights to each case and each suite.

SARD was designed to support almost one billion test cases. Cases are 
organized in directories of one thousand. For instance, when downloaded, 
the path to case 1320984 is testcases/001/320/984. That 
subdirectory may contain a single file, or it may contain many files 
and subdirectories for a large, complex case.

SARD Content

Since it is not clear what the perfect test suite would be (or if there 
is one!), we gathered many different  test case collections from many 
sources. This section describes the collections to provide an idea of 
the kinds of cases that are currently available. First we describe the 
large collections of synthetic cases generated by programs. Next we 
describe the collections of cases written by hand. Finally we describe 
cases from production code. Table 1 gives a very general idea of all 
SARD cases listing the number of cases in each language. (The 
counts in the table do not include deprecated cases.) Fig. 3 gives a 
better idea of the quantity, size, and source of cases in each language.

Table 1. Number of SARD test cases in each programming language as of 
30 July 2017.

Language Number of Cases
C 46,846
C++ 21,138
Java 28,828
PHP 42,248
C# 32,018

Figure 3. Number of test cases by language, clustered by lines of code. 
The Y axis is the mean lines of code of test cases in the cluster. Synthetic 
cases (SYN), in which all weaknesses are known, are yellow circles. Cases 
with weaknesses injected (INJ) into production code are orange triangles. 
Production code (PRO), which have some weaknesses identified, are green 
squares. The size of circles, triangles, and squares is the logarithm of 
number of test cases of that cluster; larger is more test cases.

By far the largest number of test cases are synthetic. One of our first 
collections came from MIT Lincoln Laboratory. They developed 
a taxonomy of code complexities and 291 basic C programs 
representing this taxonomy to investigate static analysis and 
dynamic detection methods for buffer overflows. Each program has 
four versions: a “good” version, accessing within bounds, and three 
“bad” versions, accessing just outside, moderately outside, and far 
outside the boundary of the buffer. These 1164 cases are explained 
in Kratkiewicz and Lippmann [11] and are designated test suite 89.

In 2011, the National Security Agency’s Center for Assured Software 
(CAS) generated thousands of test cases in C/C++ and Java covering 
over 100 CWEs, called Juliet 1.0. (This was the tenth major SARD 
contribution and was named for the tenth letter of the International 
Radiotelephony Spelling Alphabet, which is “Juliet.”) They can be 
compiled individually, in groups, or all together. Each case is one or 
two pages of code. They are grouped by language, then by CWE. In 
each CWE, base programs, using versions of printf() or different 
data types, are elaborated with up to 30 variants having complexities 
added. The following year they extended the collection with version 
1.1, described in Boland and Black [4]. The latest version is Juliet 1.2, 
which comprises 61 387 C/C++ programs and 25 477 Java programs 
for almost two hundred weakness classes. They are test suites 86 (C/
C++) and 87 ( Java). The Juliet 1.0 and 1.2 suites are further described 
in documents at https://samate.nist.gov/SARD/around.php.

Following an architecture developed by NIST personnel and 
under their direction, a team of students at TELECOM Nancy, 
a computer engineering school of the Université de Lorraine, 
Nancy, France, implemented a generator that created many PHP 
cases. After that, other students rewrote the generator to be more 
modular and extensible, under guidance of members of the NIST 
Software Assurance Metrics And Tool Evaluation (SAMATE) 
team. They created a suite of 42 212 test cases in PHP covering 
the most common security weakness categories, including XSS, 
SQL injection, URL redirection, etc. These are suite 103 and are 
documented in Stivalet and Fong [20]. In 2016, SAMATE members 
oversaw additional work, again by TELECOM Nancy students, 
who created a suite of 32 003 cases in C#. These cases are suite 105.

Manually Written Cases

Many companies donated synthetic benchmarks that they developed 
manually. Fortify Software Inc., now HP Fortify, contributed a 
collection of C programs that manifest various software security 
flaws. They updated the collection as ABM 1.0.1. These 112 cases 
cover various software security flaws, along with associated “good” 
versions. These are test suite 6. In 2006, Klocwork Inc. shared 41 C 
and C++ cases from their regression suite. These are all a few lines of 
code to demonstrate use after free, memory leak, use of uninitialized 
variables, etc. Toyota InfoTechnology Center (ITC), U.S.A. Inc. 
created a benchmark in C and C++ for undefined behavior and 
concurrency weaknesses. The test suite, 104, has 100 test cases 
containing a total of 685 pairs of weaknesses. Each pair has a version 
of a function with a weakness and a fixed version of the function. 
For more details see [18]. The test cases are © 2012-2014 Toyota 

https://www.csiac.org
https://samate.nist.gov/SARD/around.php


10

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

InfoTechnology Center, U.S.A. Inc., distributed under the “BSD 
License,” and added to SARD by permission. The SAMATE team 
noted coincidental weaknesses.

SARD also includes 329 cases from our static analyzer test suites 
[1]. These have suites for weaknesses, false positives, and weakness 
suppression in C (test suites 100 and 101), C++ (57, 58, and 59), 
and Java (63, 64, and 65).

SARD includes many small collections of synthetic test cases from 
various sources. Frédéric Michaud and Frédéric Painchaud, Defence 
R&D Canada, created and shared 25 C++ test cases. These test cases 
cover string and allocation problems, memory leaks, divide by zero, 
infinite loop, incorrect use of iterator, etc. These are test suite 62. 
Robert C. Seacord contributed 69 examples from “Secure Coding 
in C and C++” [17]. John Viega wrote “The CLASP Application 
Security Process” [22] as a training reference for the Comprehensive, 
Lightweight Application Security Process (CLASP) of Secure 
Software, Inc. SARD initially included 36 cases with examples 
of software vulnerabilities from use of hard-coded password and 
unchecked error condition to race conditions and buffer overflow. 
Many of the original cases have been improved and replaced. 
Hamda Hasan contributed 15 cases in C#, including ASP.NET, 
with XSS, SQL injection, command injection, and hard coded 
password weaknesses.

Cases From Production Software

All the cases described to this point were a few pages of code at 
most and were written specifically to serve as focused tests. Small 
synthetic cases may not show if a technique scales or if an algorithm 
can handle production code with complicated, interconnected data 
structures over thousands of files and variables. To fill this gap, 
SARD has cases that came from operational code.

MIT Lincoln Laboratory extracted 14 program slices from popular 
Internet applications (BIND, Sendmail, WU-FTP, etc.) with known, 
exploitable buffer overflows [23]. That is, they removed all but a 
relatively few functions, data structures, files, etc. so the remaining 
code (“the slice”) has the overflow. They also made “good” (patched) 
versions of each slice. These 28 test cases are in SARD as test suite 88.

The Intelligence Advanced Research Projects Activity (IARPA) 
Securely Taking On New Executable Software Of Uncertain 
Provenance (STONESOUP) program created test suites in three 
phases. The goal of STONESOUP was to fuse static analysis, 
dynamic analysis, execution monitoring, and other techniques to 
achieve orders of magnitude greater assurance. For Phase 1 they 
developed five collections of small C and Java programs covering 
five vulnerabilities: memory corruption and null pointer dereference 
for C, and injection, numeric handling, and tainted data for Java. 
Each collection may be downloaded from the SARD Test Suites 
page and includes directions on how to compile and execute them 
and inputs that trigger the vulnerability. The test cases for Phase 2 
were not particularly different from the Phase 1 cases.

For Phase 3, STONESOUP injected thousands of weakness variants 
into 16 widely-used web applications, resulting in 3188 Java cases 
and 4582 C cases. The weaknesses covered 25 classes such as integer 
overflow, tainted data, command injection, buffer overflow, and 
null pointer. Each case is accompanied with inputs triggering the 
vulnerability, as well as “safe” inputs. Because the cases represent 
thousands of copies of full-sized applications, IARPA STONESOUP 
Phase 3 is distributed as a virtual machine with a complete testing 
environment: the base applications, all libraries needed to compile 
them, difference (delta) files with flaws, and a Test and Evaluation 
eXecution and Analysis System (TEXAS) to compile an executable 
from a difference file and the base app, binaries to monitor the 
execution, triggering and safe inputs, and expected outputs. This 
material, as well as results of STONESOUP, are described in 
documents available at https://samate.nist.gov/SARD/around.php.

The STONESOUP base applications are significant enough by 
themselves that we describe them here. They are available from 
the Test Suite page as Standalone apps. These 15 apps are GNU 
grep, OpenSSL, PostgreSQL, Tree (a directory listing command), 
wireshark, Coffee MUD (Multi-User Dungeon game), Elastic 
Search, Apache Subversion, Apache Jena, Apache JMeter, Apache 
Lucene, POI (Apache Java libraries for reading and writing files in 
Microsoft Office formats), FFmpeg (a program to record, convert, 
and stream audio and video), and Gimp (GNU Image Manipulation 
editor). Application ID 16, JTree, is different from the others. It is 
a smaller form of STONESOUP, that is, a single base case injected 
with weaknesses. The base case is a Java version of Tree. When 
processed with unzip, ID 16 produces 34 subdirectories, each with 
difference files to create a version of JTree with an injected weakness. 
Running the included generate_application_testcases.py creates 
different versions of JTree, along with test material.

For Static Analysis Tool Expositions (SATE) [14], SAMATE 
members tracked vulnerabilities reported through Common 
Vulnerability and Exposures (CVE) [6] to source code changes. This 
resulted in 228 CVEs in WordPress, Openfire, JSPWiki, Jetty, Apache 
Tomcat, Wireshark (1.2 and 1.8), Dovecot, Chrome, and Asterisk. 
Each of these programs has its own test suite. Each CVE has one test 
case that contains the file or files with the vulnerabilities. The first test 
case in each suite has all the CVEs, files, and identified vulnerabilities 
for that program. These 10 test suites represent hundreds of reported, 
known vulnerabilities and the corresponding source code.

How to Use SARD Test Cases and Test Suites

The first step is to decide what test case properties are important 
to your situation. Programming language is the most obvious 
characteristic. Clicking on the “Search” tab, you may search SARD 
by many criteria, such as programming language, type of weakness, 
words in the description, type (bad, good, or mixed), status, and 
test case IDs, as shown in Fig. 4. Test case IDs may be ranges or 
lists. The type of weakness is matched to CWE descriptions as you 
type. You can search for and select those weaknesses that are most 
crucial in your situation.

https://samate.nist.gov/SARD/around.php


WWW.CSIAC.ORG  |  11

SARD: Thousands of Reference Programs for Software Assurance  –  CON'T

Matching test cases are displayed as in Fig. 1. You may browse, 
select, and download any or all of the resulting cases. The download 
is a zip file containing a manifest (an XML listing of test cases and 
weakness locations) and the cases in a hierarchical directory structure 
of thousands described earlier.

In the File Search page, you can search for cases having files with 
certain names, sizes, or numbers of files, as shown in Fig. 5. This 
kind of search is useful if you are trying to find, say, very large test 
cases. We search by file name to find where test files come from 
or to find related cases, which often have files with similar names.

The SARD Test Suites page lists stand-alone suites, which are 
very large, test suites that are collections of  test cases, and web 
and mobile applications. The web and mobile sections are for 
large (full-sized) applications that we will host in those domains. 
Standalone apps currently consists of STONESOUP base cases, 
described previously. The test suites page also has links to old 
collections that have been superseded.

Figure 5. SARD file search page. User may search for test cases having 
files with particular names, files of particular sizes (minimum, maximum, 
or both), and particular numbers of files. User may give a regular 
expression to match file names, but a regex search is far slower. Source: 
https://samate.nist.gov/SARD/index.php

Paraphrasing Boland et. al. [4], many test suites, such as Juliet, are 
structured so that all the small test cases can be analyzed or compiled 
as a single, large program. This helps assess how a software-assurance 

Figure 4. SARD search page. User may search for test cases meeting any combination of these criteria. Source: https://samate.nist.gov/SARD/index.php

https://www.csiac.org


12

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

tool performs on larger programs. Because of the number of files 
and size of code, some tools might not be able to analyze all these 
test cases as a single program. Another use is to analyze separate 
test cases individually or in groups.

Because the manifest indicates where flaws occur, users can evaluate 
tool reports semiautomatically. When users run a source code 
analysis tool on a test case, the desired result is for the tool to report 
one or more flaws of the target type. A report of this type might 
be considered a true positive. If the tool doesn’t report a flaw of the 
target type in a bad method, it might be considered a false negative. 
Ideally, the tool won’t report flaws of the target type in a “good” test 
case or function; a report of this type might be considered a false 
positive. Because flawed and similar unflawed code might be in 
infeasible or “dead” code, users’ policies on warnings about infeasible 
code must be taken into account.

As an illustration of using SARD, we offer our development of a 
small number of cases to show that a tool is effective at finding stack-
based buffer overflows. First, we downloaded all buffer overflow test 
cases from SARD. To expedite analysis, we split every Juliet test case 
into two cases: one with only the bad code and one with only the 
good code. We also removed some unreachable code and conditional 
compilation commands. This resulted in 7338 test cases. We ran five 
tools on those cases. We compared, discussed, and grouped results 
until we came up with seven principles for selecting test cases [2]. 
This would have been far harder without the resources of SARD.

Related Work

We know of several other fixed collections of software assurance 
test cases. Some include tools to run experiments and compute 
results. After we itemize those collections, we list work to generate 
sets as needed.

The Software-artifact Infrastructure Repository (SIR) is “meant 
to support rigorous controlled experimentation with program 
analysis and software testing techniques, and education in controlled 
experimentation.” [19] It provides Java, C, C++, and C# programs in 
multiple versions, along with testing tools, documentation, and other 
material. We found 85 objects, the most recent updated in 2015.

FaultBench “is a set of real, subject Java programs for comparison 
and evaluation of actionable alert identification techniques (AAITs) 
that supplement automated static analysis.” [10] FaultBench has 780 
bugs across six programs.

The OWASP Benchmark for Security Automation “is a free and 
open test suite designed to evaluate the speed, coverage, and accuracy 
of automated software vulnerability detection tools and services” 
[13]. It has 2740 small test cases, both with weaknesses and without 
weaknesses, in Java. It includes programs and scripts to run a tool 
and compute some results.

The Software Assurance Marketplace (SWAMP) provides more 
than 270 packages, in addition to the Juliet test suite, which is 
described above. “Packages are collections of files containing code 
to be assessed along with information about how to build the 
software package, if necessary.” [21] There are packages in Java, 
Python, Ruby, C, C++, and web scripting languages. Each package 
may have multiple versions.

SARD approaches the problem of test cases by collecting a static set. 
An alternative is to generate sets of cases on demand. In theory, one 
could specify the language, weaknesses, code complexities, and other 
facets, and get a—potentially unique—set as needed. Generating 
sets on demand would be one way to address the concern that tool 
makers might add bits of code just to get a high score on a static 
benchmark. Generated cases could be automatically obfuscated, 
too. The disadvantage is that each generated set would have to be 
examined to be sure that the cases serve their purpose (or else the 
generator itself would have to be qualified, which is much harder). 
In practice, code generators or bug injectors are enormously difficult. 
Nevertheless, there is some work.

Large-Scale Automated Vulnerability Addition (LAVA) creates 
corpora by injecting large numbers of bugs into existing source 
code [9]. EvilCoder also injects bugs into existing code, although 
it injects bugs by locating guard or checking code and selectively 
disabling it [15].

The test generators implemented by TELECOM Nancy students 
are the source of large SARD test suites in PHP and C# [20]. 
The Department of Homeland Security’s Static Tool Analysis 
Modernization Project (STAMP) recently awarded a contract to 
GrammaTech that includes development of a test case generator, 
Bug Injector [8]. KDM Analytics Inc. is enhancing their test case 
generator, TCG, for CAS. The latest version, TCG 3.2, produces 
both “bad” (flawed) and “good” (false positive) cases in C, C++, 
Java, and C# with control, data, and scope complexities [5]. TCG 
can generate millions of cases covering some three dozen Software 
Fault Pattern (SFP) clusters [12] and many CWEs for either or 
both Linux and Microsoft Windows platforms. Generated cases 
don’t have a main() function, which allows cases to be compiled 
individually or as one large program.

Future of SARD

SARD began in 2006 in order to collect test cases for the NIST 
SAMATE. We had planned to collect artifacts from all phases of 
the software development life cycle, including designs, source code, 
and binaries, in order to evaluate assurance tools for all of those. We 
still leave that option open, but have not yet found many tools and 
pressing needs for other phases.

We plan to add cases in more languages, such as JavaScript, 
Ruby, Swift, Objective-C, Python, or Haskell. Which language 



WWW.CSIAC.ORG  |  13

SARD: Thousands of Reference Programs for Software Assurance  –  CON'T

depends on the availability of test cases and the need. We are also 
adding thousands of mobile app test cases, since their architecture, 
implementation languages, and major threats are so different from 
typical applications.

We invite developers and researchers to donate their collections 
to SARD. It is a loss to the community when someone puts a lot 
of effort into developing a collection, then, after several years and 
project changes, the collection is lost.

Currently weaknesses are labeled by CWE. We will add labels of 
Bugs Framework (BF) classes [3] when it is more complete.

Conclusion

Analysts, users, and developers have cut months off the time needed 
to evaluate a tool or technique using test cases from SARD. SARD 
has been used by tool implementers, software testers, security 
analysts, and four SATEs to expand awareness of static analysis 
tools. Educators can refer students to SARD to find examples of 
weaknesses. Having a reliable and growing body of code with known 
weaknesses helps the community improve software assurance tools 
themselves and encourage their appropriate use. 

Acknowledgements

We thank David Flater for making the chart in Fig. 3 and Charles 
de Oliveira for elucidating much of the SARD content.

REFERENCES
[1]	 Paul E. Black, Michael Kass, Hsiao-Ming (Michael) Koo, and 

Elizabeth Fong, “Source Code Security Analysis Tool Functional 
Specification Version 1.1,” NIST Special Publication 500-268 v1.1, 
February 2011. DOI 10.6028/NIST.SP.500-268v1.1

[2]	 Paul E. Black, Hsiao-Ming (Michael) Koo, and Thomas Irish, “A 
Basic CWE-121 Buffer Overflow Effectiveness Test Suite,” Proc. 
Sixth Latin-America Symposium on Dependable Computing (LADC 
2013),  April 2013.

[3]	 Irena Bojanova, Paul E. Black, Yaacov Yesha, and Yan Wu, “The 
Bugs Framework (BF): A Structured Approach to Express Bugs,” 
August 2016, 2016 IEEE Int’l Conference on Software Quality, 
Reliability, and Security (QRS 2016), Vienna, Austria. DOI 10.1109/
QRS.2016.29

[4]	 Tim Boland and Paul E. Black, “Juliet 1.1 C/C++ and Java Test 
Suite,” October 2012, IEEE Computer, 45(10):88-90. DOI 10.1109/
MC.2012.345

[5]	 Djenana Campara, private communication, 20 March 2017.

[6]	 “Common Vulnerabilities and Exposures: The Standard for Informa-
tion Security Vulnerability Names,” https://cve.mitre.org/, accessed 
15 March 2017.

[7]	 “Common Weakness Enumeration: A Community-Developed List 
of Software Weakness Types,” https://cwe.mitre.org/, accessed 10 
March 2017.

[8]	 “DHS S&T Awards ITHACA, NY, Company $8M to Modernize 
Open-Source Software Static Analysis Tools,” https://www.dhs.
gov/science-and-technology/news/2017/03/07/st-awards-ithaca-
ny-company-8m, accessed 15 March 2017.

[9]	 Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea 
Mambretti, Wil Robertson, Frederick Ulrich, and Ryan Whelan, 
“LAVA: Large-Scale Automated Vulnerability Addition,” 2016 IEEE 
Symposium on Security and Privacy, San Jose, CA, 2016, pp. 110-
121. DOI: 10.1109/SP.2016.15

[10]	 “FaultBench,” http://www.realsearchgroup.org/faultbench/, ac-
cessed 16 March 2017.

[11]	 Kendra Kratkiewicz and Richard Lippmann, “A Taxonomy of Buffer 
Overflows for Evaluating Static and Dynamic Software Testing 
Tools,” Proc. Workshop on Software Security Assurance Tools, 
Techniques, and Metrics, Elizabeth Fong, ed., NIST Special Publi-
cation 500-265, February 2006. DOI 10.6028/NIST.SP.500-265

[12]	 Nikolai Mansourov and Djenana Campara, “System Assurance: 
Beyond Detecting Vulnerabilities,” Morgan Kaufmann, 2010, pp. 
176–188.

[13]	 “OWASP Benchmark Project,” https://www.owasp.org/index.php/
Benchmark, accessed 16 March 2017.

[14]	 Vadim Okun, Aurelien Delaitre, and Paul E. Black, “Report on the 
Static Analysis Tool Exposition (SATE) IV,” NIST Special Publication 
500-297, January 2013. DOI 10.6028/NIST.SP.500-297

[15]	 Jannik Pewny and Thorsten Holz, “EvilCoder: Automated Bug 
Insertion,” Proc. 32nd Annual Conference on Computer Security Ap-
plications (ACSAC ‘16), Los Angeles, CA, December, 2016, Pages 
214-225. DOI: 10.1145/2991079.2991103

[16]	 “Software Assurance Reference Dataset,” https://samate.nist.gov/
SARD/, accessed 3 March 2017.

[17]	 Robert C. Seacord, “Secure Coding in C and C++,” Addison-Wes-
ley, 2005.

[18]	 Shinichi Shiraishi, Veena Mohan, and Hemalatha Marimuthu, “Test 
Suites for Benchmarks of Static Analysis Tools,” IEEE Int’l Sympo-
sium on Software Reliability Engineering (ISSRE ‘15), DOI: 10.1109/
ISSREW.2015.7392027

[19]	 “Software-artifact Infrastructure Repository,” http://sir.unl.edu/, 
accessed 16 March 2017.

[20]	 Bertrand Stivalet and Elizabeth Fong, “Large Scale Generation of 
Complex and Faulty PHP Test Cases,” April 2016, 2016 IEEE Int’l 
Conference on Software Testing, Verification and Validation (ICST), 
Chicago, IL. DOI: 10.1109/ICST.2016.43

[21]	 “SWAMP Packages,” https://www.mir-swamp.org/#packages/pub-
lic, accessed 16 March 2017.

[22]	 John Viega, “The CLASP Application Security Process,” Security 
Software, Inc., 2005.

[23]	 Misha Zitser, Richard Lippmann, and Tim Leek, “Testing Stat-
ic Analysis Tools Using Exploitable Buffer Overflows From 
Open Source Code,” October/November 2004, Proc. SIGSOFT 
‘04/12th Int’l Symposium on Foundations of Software Engineer-
ing  (SIGSOFT ‘04/FSE-12), Newport Beach, CA, pp 97-106. DOI 
10.1145/1029894.1029911

https://www.csiac.org
https://cve.mitre.org/
https://cwe.mitre.org/
https://www.dhs.gov/science-and-technology/news/2017/03/07/st-awards-ithaca-ny-company-8m
https://www.dhs.gov/science-and-technology/news/2017/03/07/st-awards-ithaca-ny-company-8m
https://www.dhs.gov/science-and-technology/news/2017/03/07/st-awards-ithaca-ny-company-8m
http://www.realsearchgroup.org/faultbench/
https://www.owasp.org/index.php/Benchmark
https://www.owasp.org/index.php/Benchmark
https://samate.nist.gov/SARD/
https://samate.nist.gov/SARD/
http://sir.unl.edu/


14

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

14

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

DISCLAIMER: Certain trade names and company products are mentioned in the text or identified. In no case 
does such identification imply recommendation or endorsement by the National Institute of Standards and 
Technology (NIST), nor does it imply that the products are necessarily the best available for the purpose.

IMPROVING SOFTWARE 
ASSURANCE THROUGH STATIC 
ANALYSIS TOOL EXPOSITIONS
By: Terry S. Cohen, Damien Cupif, Aurelien Delaitre, Charles D. De Oliveira, and Elizabeth Fong, Vadim Okun, 
National Institute of Standards and Technology, Gaithersburg, MD

The National Institute of Standards and Technology Software Assurance Metrics 
and Tool Evaluation team conducts research in static analysis tools that 
find security-relevant weaknesses in source code. This article discusses our 

experiences with Static Analysis Tool Expositions (SATEs) and how we are using that 
experience to plan SATE VI. Specifically, we address challenges in the development 
of adequate test cases, the metrics to evaluate tool performance, and the interplay 
between the test cases and the metrics. SATE V used three types of test cases directed 
towards realism, statistical significance, and ground truth. SATE VI will use a different 
approach for producing test cases to get us closer to our goals.



WWW.CSIAC.ORG  |  15

Improving Software Assurance through Static Analysis Tool Expositions

WWW.CSIAC.ORG  |  15

Improving Software Assurance through Static Analysis Tool Expositions

I. Introduction

Software assurance is a set of methods and processes to prevent, 
mitigate or remove vulnerabilities and ensure that the software 
functions as intended. Multiple techniques and tools should be 
used for software assurance [1]. One technique that has grown 
in acceptance is static analysis, which examines software for 
weaknesses without executing it [2]. The National Institute of 
Standards and Technology (NIST) Software Assurance Metrics 
and Tool Evaluation (SAMATE) project has organized five Static 
Analysis Tool Expositions (SATEs), designed to advance research 
in static analysis tools that find security-relevant weaknesses in 
source code. An analysis of SATE V in preparation of the upcoming 
SATE VI is reported here.

We first discuss our experiences with SATE V, including the selection 
of test cases, how to analyze the warnings from static analysis tools, 
and our results. Three selection criteria for the test cases were used: 
1) code realism, 2) statistical significance, and 3) knowledge of the 
weakness locations in code (ground truth). SATE V used test cases 
satisfying any two out of the three criteria: 1) production test cases 
with real code and statistical significance, 2) CVE-selected test 
cases, with real code and ground truth, and 3) synthetic test cases 
with ground truth and statistical significance. We describe metrics 
that can be used for evaluating tool effectiveness. Metrics, such as 
precision, recall, discrimination, coverage and overlap, are discussed 
in the context of the three types of test cases.

Although our results from the different types of test cases in SATE 
V bring different perspectives on static analysis tool performance, 
this article shows that combining such perspectives does not 
adequately describe real-world use of such tools. Therefore, in 
SATE VI, we plan to produce test cases incorporating all three 
criteria, so the results will better reflect real-world use of tools. We 
discuss the approach we will use: injecting a large number of known, 
realistic vulnerabilities into real production software. Thus, we will 
have statistical significance, real code, and ground truth.

Background

Providing metrics and large amounts of test material to help 
address the need for static analysis tool evaluation is a goal of the 
National Institute of Standards and Technology (NIST) Software 
Assurance Metrics and Tool Evaluation (SAMATE) project’s 
Static Analysis Tool Exposition (SATE). Starting in 2008, we 
have conducted five SATEs.

SATE, as well as this article, is focused on static analysis tools 
that find security-relevant weaknesses in source code. These 
weaknesses, unless avoided or removed early, could lead to security 
vulnerabilities in the executable software.

SATE is designed for sharing, rather than competing, to advance 
research in static analysis tools. Briefly, a team led by NIST 
researchers provides a test set to toolmakers, invites them to run 
their tools, and they return the tool outputs to us. We then perform 
partial analysis of tool outputs. Participating toolmakers and 
organizers share their experiences and observations at a workshop.

The first SATE used open source, production programs as test 
cases. We learned that not knowing the locations of weaknesses 
in the programs complicates the analysis task. Over the years, we 
added other types of test cases.

One type, CVE-selected test cases, is based on the Common 
Vulnerabilities and Exposures (CVE) [3], a database of publicly 
reported security vulnerabilities. The CVE-selected test cases are 
pairs of programs: an older bad version with publicly reported 
vulnerabilities (CVEs) and a good version, that is, a newer version 
where the CVEs were fixed. For the CVE-selected test cases, we 
focused on tool warnings that correspond to the CVEs.

A different approach is computer-assisted generation of test cases. 
In SATE IV and V, we used the Juliet test suite [4], which contains 
tens of thousands of synthetic test cases with precisely characterized 

https://www.csiac.org


16

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

weaknesses. This makes tool warnings amenable to mechanical 
analysis. Like the CVE-selected test cases, there are both a bad 
version (code that should contain a weakness) and a good version 
(code that should not contain any weakness).

Initially, we had two language tracks: C/C++ and Java. We added the 
PHP track for SATE IV. In SATE V, we introduced the Ockham 
Criteria [5] to exhibit sound static analysis tools. Table 1 presents 
toolmaker participation over the years. The PHP track and the 
Ockham Criteria had one participant each in SATE V. Note, because 
SATE analyses grew in complexity and length, we changed from 
yearly SATEs (2008, 2009, and 2010) to the current nomenclature 
(IV, V, and VI). 

Table 1: Number of tools participating per track over SATEs

Total C/C+ Java
2008 9 4 7
2009 8 5 5
2010 10 8 4
IV 8 7 3
V 14 11 6

Related Work 

Software weaknesses can lead to vulnerabilities, which can be 
exploited by hackers. Definition and classification of security 
weaknesses in software is necessary to communicate and analyze 
tool findings. While many classifications have been proposed, 
Common Weakness Enumeration (CWE) is the most prominent 
effort [6, 7]. The Common Vulnerabilities and Exposures (CVE) 
database, comprised of publicly reported security vulnerabilities, 
was discussed in the Background section. While the CVE database 
includes specific vulnerabilities in production software, the CWE 
classification system lists software weakness types, providing a 
common nomenclature for describing the type and functionality 
of CVEs to the IT and security communities.

For example, CVE-2009-2559 is a buffer overflow vulnerability in 
Wireshark, which can be used by hackers to cause denial of service 
(DoS) [8]. CVE-2009-2559 is associated with two CWEs: CWE-
126: Buffer Over-read [9], which is caused by CWE-834: Excessive 
Iteration [10]. The NIST National Vulnerability Database (NVD) 
described it using CWE-119: Improper Restriction of Operations 
within the Bounds of a Memory Buffer [11, 12], which is a parent 
of CWE-126. We describe our use of CVEs and CWEs in our 
Methodology section.

Researchers have collected test suites and evaluated static analysis 
tools. Far from attempting a comprehensive review, we list some of 
the relevant studies here.

Kratkiewicz and Lippmann developed a comprehensive taxonomy 
of buffer overflows and created 291 test cases - small C programs - 
to evaluate tools for detecting buffer overflows [13]. Each test case 

has three vulnerable versions with buffer overflows just outside, 
moderately outside, and far outside the buffer, and a fourth, fixed, 
version. Their taxonomy lists different attributes, or code complexities, 
including aliasing, control flow, and loops, which may complicate 
analysis by the tools.

The largest synthetic test suite in the NIST Software Assurance 
Reference Dataset (SARD) [14] was created by the U.S. National 
Security Agency’s (NSA) Center for Assured Software (CAS). Juliet 
1.0 consists of about 60 000 synthetic test cases, covering 177 CWEs 
and a wide range of code complexities [4]. CAS ran nine tools on the 
test suite and found that static analysis tools differed significantly 
with respect to precision and recall. Also, tools’ precision and recall 
ordering varied for different weaknesses. CAS concluded that 
sophisticated use of multiple tools would increase the rate of finding 
weaknesses and decrease the false positive rate. A newer version 
of the test suite, Juliet 1.2, correcting several errors and covering a 
wider range of CWEs and code constructs, was used in SATE V.

Rutar et al. ran five static analysis tools on five open source 
Java programs, including Apache Tomcat, of varying size and 
functionality [15]. Due to many tool warnings, they did not 
categorize every false positive and false negative reported by the 
tools. Instead, the tool outputs were cross-checked with each other. 
Additionally, a subset of warnings was examined manually. One 
of the conclusions by Rutar et al. was that there was little overlap 
among warnings from different tools. Another conclusion was that 
a meta-tool combining and cross-referencing output from multiple 
tools could be used to prioritize warnings [15].

Kupsch and Miller evaluated the effectiveness of static analysis tools 
by comparing their results with the results of an in-depth manual 
vulnerability assessment [16]. Of the vulnerabilities found by manual 
assessment, the tools found simple implementation bugs, but did 
not find any of the vulnerabilities requiring a deep understanding 
of the code or design.

Developing test cases is difficult. There have been many approaches. 
Zhen Li et al. developed VulPecker, an automated vulnerability 
detection system, based on code similarity analysis [17]. Their recent 
study focused on the creation of a Vulnerability Patch Database 
(VPD), comprised of over 1700 CVEs from nineteen C/C++ open 
source software. Their CVE-IDs are mapped to diff hunks, which 
are small files tracking the location of a given weakness and changes 
in source code across versions.

Instead of extracting CVEs from programs, some studies have 
looked at injecting vulnerabilities for static analysis tool studies. 
The Intelligence Advanced Research Projects Activity (IARPA) 
developed the Securely Taking On New Executable Software of 
Uncertain Provenance (STONESOUP) program [18] to inject 
realistic bugs into production software. The injected vulnerabilities 
were embedded in real control flow and data flow [19]. These 
seeded vulnerabilities were snippets of code showcasing a specific 
vulnerability. However, these embedded snippets were unrelated to 



WWW.CSIAC.ORG  |  17

Improving Software Assurance through Static Analysis Tool Expositions  –  CON'T

the original source program, limiting realism in injected weaknesses. 
These test cases can be downloaded from the SARD [14].

In preparation for SATE VI, the SATE team 
looked extensively at related approaches. One 
important project was from the MIT Lincoln 
Laboratory, which developed a large-scale 
automated vulnerability (LAVA) technique to 
automatically inject bugs into real programs 
[20]. The program uses a “taint analysis-based 
technique” to dynamically identify sites that 
can potentially hold a bug, and user-controlled 
data that can be used at those vulnerable 
locations to trigger the weakness. Thus, the 
triggering input and the vulnerability are 
both known. LAVA can inject thousands of 
bugs in minutes. However, the tool alters the 
program data flow and only supports a small subset of CWE 
classes related to buffer overflow, therefore, limiting the realism 
of the injected weaknesses.

Another automated bug insertion technique is EvilCoder, 
developed by the Horst Görtz Institut, Germany [21]. Using 
a static approach, EvilCoder computes code property graphs 
from C/C++ programs to create a graph database, containing 
information about types, control flows and data flows. The 
program identifies paths that could be vulnerable, but are 
currently safe. Bug insertion is accomplished by breaking or 
removing security checks, making a path insecure. The limitation 
of this static analysis-based approach is that it does not produce 
triggering inputs to demonstrate the injected bugs.

II Test cases

Tool users want to understand how effective tools are in finding 
weaknesses in source code. Based on our SATE experiences, a perfect 
test case satisfies three criteria.

First, for tool results to be generally applicable, test cases should be 
representative of real, existing software. In other words, they should 
be similar in complexity to real software.

Second, for tool results to be statistically significant, the test 
cases must contain many different weakness instances of various 
weakness types. Since CWE has hundreds of weakness classes and 
the weaknesses can occur in a wide variety of code constructs, large 
numbers of test cases are needed. 

Finally, to recognize tools’ blind spots, we need the ground truth 
– knowledge of all weakness locations in the software. In other 
words, without the ground truth we cannot know which weaknesses 
remain undetected by tools. Additionally, it greatly simplifies 
analysis of tool outputs by enabling mechanical matching, based 
on code locations and weakness types.

In summary, the three selection criteria for test cases are 1) 
realistic, existing code, 2) large amounts of test data to yield 

statistical significance, and 3) ground truth. 
Figure 1 illustrates these criteria. So far, we do 
not have test cases that satisfy all three criteria 
simultaneously. For SATE V, we have produced 
test cases satisfying any two out of the three 
criteria (Figure 1). We chose the following three 
types of test cases: 

First, production software large enough for 
statistical significance and, by definition, 
representative of real software. However, the 
weaknesses in it are at best only partially known.

Second, a set of test cases (i.e., a test suite) 
mechanically generated, so that each test 

case contains one weakness instance embedded in a set of code 
complexities. We used the Juliet test suite, a diverse set of clearly 
identified weakness instances, for this set. This approach has ground 
truth and produces statistically significant results. However, the 
synthetic test cases may not be representative of real code.

Finally, CVE-selected test cases that contain vulnerabilities that 
were deemed important to be included in the CVE database. These 
test cases are real software and have ground truth. However, the 
determination of CVE locations in code is a time-consuming task, 
which makes it hard to achieve statistical significance.

Figure 1: Types of test cases

III Metrics

To measure the value of static analysis tools, we need to define 
metrics to decide which attributes and characteristics should be 
considered. For SATE analyses, we established a universal way of 
measuring the tools’ output objectively. The following metrics address 
several questions about tool performance. 

First, what types of weaknesses can a tool find? Coverage is measured 
by the number of unique weakness types reported over the total 
number of weakness types included in the test set.

The program uses 
a “taint analysis-
based technique” 

to dynamically 
identify sites that 

can potentially 
hold a bug

https://www.csiac.org


18

selected test cases have realism and ground truth, but no statistical 
significance. Synthetic test cases have statistical significance and 
ground truth, but no realism.

Precision and overlap can be calculated for production software 
test cases. However, due to the lack of ground truths, recall and 
discrimination cannot be determined, and only limited results for 
coverage can be obtained. In contrast, because the CVE-selected 
test cases are real software with ground truth, both recall and 
overlap can be calculated. However, because locating vulnerabilities 
is both difficult and time-consuming, precision cannot be 
determined, and limited results can be obtained for coverage and 
discrimination. Although these metrics are applicable to synthetic 
test cases (i.e., can be calculated), these cases may not generalize 
to real-world software.

IV Test Case Results

Methodology

This section focuses on SATE V test case results from the C/C++ 
track. For this track, we had selected two common open source 
software programs for the production software analyses: Asterisk 
version 10.2.0, an IP PBX platform2, and Wireshark version 1.8.0, 
a network traffic analyzer. Asterisk comprises over 500,000 lines of 
code; Wireshark contains more than 2 million lines of code. These 
test cases can be downloaded from the NIST Software Assurance 
Reference Dataset (SARD) [14]. For the CVE-selected test cases, 
we also asked toolmakers to run their tools on later, fixed versions 
of these test cases, using Asterisk version 10.12.2 and Wireshark 
version 1.8.7. We used the NSA CAS Juliet test set for the synthetic 
test cases [4]. 

Different methods were used to evaluate tool warnings depending 
upon the type of test case. As we discussed in Section II, synthetic 
test cases contain precisely characterized weaknesses. Metadata 
includes the locations where vulnerabilities occur, good and bad 
blocks of code, and CWEs. Consequently, the analysis of all warnings 
generated by tools is possible. For each test case, we selected tool 
findings if its CWE matched the corresponding test case’s CWE 
group.

As pointed out in Section II, finding the locations of CVEs in pairs 
of good and bad code was a time-consuming process. The metadata 
from production software is rich enough to demonstrate whether 
a tool found a CVE through automatic analysis. However, because 
CVEs were few in number and tools did not uniformly report 
vulnerabilities, we also conducted manual analyses. For each CVE, 
we selected the tool finding reported at the corresponding lines of 
code, only considering the finding if its CWE and the CVE’s CWE 
belonged to the same CWE group. Once found, an expert would 
confirm whether the automated analysis was correct. In addition to 
extracting CVE test cases this way, our experts also manually checked 
the code for matches missed by the algorithm. Our experts would 

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

Second, what proportion of weaknesses can a tool find? Recall is 
calculated by dividing the number of correct findings (true positives) 
by the total number of weaknesses present in the test set, i.e., the 
sum of the number of true positives (TP) and the number of false 
negatives (FN). Recall = TP / (TP + FN) 5 .

Third, what proportion of covered flaws can a tool find? Applicable 
recall (App.Recall) is recall reduced to the types of weaknesses a tool 
can find. It is calculated by dividing the number of true positives 
(TP) by the number of weaknesses in the test set, which are covered 
by a tool. In other words, a tool’s performance is not penalized if it 
does not report weaknesses that it does not look for (App.FN). App.
Recall = TP / (TP + App.FN)

Fourth, how much can I trust a tool? Precision is the proportion of 
correct warnings produced by a tool and is calculated by dividing the 
number of true positives by the total number of warnings. The total 
number of warnings is the sum of the number of true positives (TP) 
and the number of false positives (FP). Precision = TP / (TP + FP)

Fifth, how smart is a tool? Bad and good code often look similar. It 
is useful to determine whether the tools can differentiate between 
the two. Although precision captures that aspect of tool efficiency, it 
is relevant only when good sites are prevalent over bad sites. When 
there is parity in the number of good and bad sites, e.g., in some 
synthetic test suites, a tool could indiscriminately flag both good 
and bad test cases as having a weakness and still achieve a precision 
of 50 %. Discrimination, however, recognizes a true positive on a 
particular bad test case only if a tool did not report a false positive 
on the corresponding good test case. A tool that flags every test case 
as flawed would achieve a discrimination rate of 0 %.

Finally, can tool findings be confirmed by other tools? Overlap 
represents the proportion of weaknesses found by more than one 
tool. The use of independent tools would find more weaknesses 
(higher recall), whereas the use of similar tools would provide a 
better confidence in the common warnings’ accuracy.

Table 2 summarizes the applicability of the metrics on the three 
types of test cases.

Table 2: Mapping metrics to test case types

Production 
Software

Software w/ 
CVEs

Synthetic Test 
Cases

Coverage Limited Limited Applicable

Recall N/A Applicable Applicable

Precision Applicable N/A Applicable

Discrimination N/A Limited Applicable

Overlap Applicable Applicable Applicable

Figure 1 summarizes the types of test cases. The mapping of their 
metrics is clearly delineated in Table 2. Production software has 
realism and statistical significance, but no ground truth. CVE-



WWW.CSIAC.ORG  |  19

Improving Software Assurance through Static Analysis Tool Expositions  –  CON'T

rate the CVEs as having been precisely identified or coincidentally 
(indirectly) identified.

The analysis of production test cases was different. Analyses 
of tool warnings and reporting were often labor-intensive and 
required a high level of expertise. A simple binary true/false 
positive verdict on tool warnings did not provide adequate 
resolution to communicate the relationship of the warning to 
the underlying weakness [22]. Because of the large number 
of tool warnings and the lack of ground truth, we randomly 
selected warnings from each tool report, based on the weakness 
category and the security rating. After sampling 879 warnings 
and manually reviewing their correctness, we assigned each 
warning to a warning category. A security warning was related 
to an exploitable security vulnerability. A quality warning 
was not directly related to security, but it required a software 
developer’s attention. An insignificant classification referred to 
a true warning, but insignificant claim. A false warning rating 
corresponded to a false positive, and an unknown rating was one 
whose correctness could not be determined.

Results

SATE is not a competition. To prevent endorsement of the 
participating toolmakers, we anonymized data. The results generated 
from Tools A through H are reported here.

Figure 2 shows the precision vs. discrimination tool results for the 
synthetic test cases. The precision results are similar across all tools, 
whereas discrimination results are not. This is because the number 
of buggy sites is similar to the number of safe sites, as is the case 
for synthetic and CVE-selected test cases. Thus, discrimination is 
a better metric to differentiate tools. Note that for real software, 
most sites are safe and only a small proportion of sites are buggy, 
so precision would be very low if a tool reports a warning for every 
site, flawed or not.

Figure 2: Precision vs. discrimination tool results for the Synthetic test cases 
- Source: Author(s)

The synthetic test cases offer an excellent demonstration of tool 
efficiency. Table 3 combines metric results from testing of the Juliet 

synthetic test suite. Tool F demonstrated the highest applicable 
recall and discrimination, but displayed the lowest coverage. Tool 
B, on the other hand, exhibited the broadest coverage and lower 
discrimination than that of Tool F.

Table 3: Applicable recall, coverage, and discrimination for the Synthetic 
test cases - Source: Author(s)

Tool App. Recall Coverage Discrimination

Tool A 21% 29% 74%

Tool B 25% 42% 86%

Tool C 18% 22% 70%

Tool D 8% 19% 47%

Tool E 19% 15% 92%

Tool F 56% 9% 93%

Tool G 2% 35% 45%

Tool H 25% 31% 64%

Overlap identifies similar and independent tools. For example, if a 
vulnerability is reported by three tools, it is under “3 tools”. There is 
an overlap when more than one tool correctly reports a weakness. 
Theoretically, the use of independent tools would find more weakness 
(higher recall), whereas the use of similar tools would provide better 
precision. Figure 3 shows the overlap distribution for synthetic test 
cases. Clearly, tools do not report the same weaknesses. 

 

Figure 3: Overlap distribution for Synthetic test cases - Source: Author(s)

Because CWEs are broad in range and number, the SATE team 
grouped CWEs to analyze the SATE V results. Table 4 displays 
the nine CWE groups most represented in the CVE and synthetic 
test cases. Buffer operations, input validation, and numeric errors 
dominated the results. It should be noted that some of the weakness 
types under the loop and recursion CWE group could be very easy 
to detect, while others may be very difficult to detect, so results for 
these synthetic cases are lower than for other CWE groups.

https://www.csiac.org


20

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

Table 4: CWE Groups most represented in the CVE and Synthetic test cases 
- Source: Author(s)

CWE Group CVE Count Synthetic Count

Loop and recursion 42 488

Post buffer operation 39 13170

Numeric errors 27 7992

Ante buffer operation 21 4276

Input validation 11 9216

Invalid pointer 8 1406

Type-related 8 1384

Initialization 6 1141

Memory allocation 6 960

Figures 4 to 6 display the results for two metrics: recall and precision. 
The figures on the left provide a comparison of synthetic and CVE-
selected test cases. The figures on the right provide a comparison of 

synthetic and production test cases. As examples, we use Tools B, 
H, and A to demonstrate the discrepancies between the results on 
different types of test cases. Recall was generally higher on synthetic 
test cases than in the CVE-related test cases. However, Tool A 
performed better with respect to CVEs in this case. Similarly, a 
comparison of the precision results indicates that the tools generated 
fewer false positives on the synthetic test cases than on the production 
test cases, leading to higher precision. Lower code complexity may 
account for the better recall and precision on the synthetic test cases 
compared to the CVE-related and production test cases.

Recall was generally higher on synthetic test cases than in the 
CVE-selected test cases. However, Tool A performed better with 
respect to CVEs in this case. Similarly, a comparison of the precision 
results indicates that the tools generated fewer false positives on 
the synthetic test cases than on the production test cases, leading 
to higher precision. Lower code complexity may account for the 
better recall and precision on the synthetic test cases compared to 
the CVE-selected and production test cases.

Figure 4: Recall for Synthetic vs. CVE test cases and precision for Synthetic vs. Production test cases - Source: Author(s)

Figure 5: Recall for Synthetic vs. CVE test cases and precision for Synthetic vs. Production test cases - Source: Author(s)



WWW.CSIAC.ORG  |  21

Improving Software Assurance through Static Analysis Tool Expositions  –  CON'T

Our examples illustrate the differences between the three types of 
test cases, making generalization challenging. For the production 
test cases, there was no ground truth, so tool recall could not be 
determined. Tools mostly reported different 
defects, so there was low overlap. Also, the 
results from synthetic cases may not generalize 
to real-world software. Clearly, characterizing a 
large set of CVE-selected test cases is very time 
consuming, so there was not enough test data 
collected for statistical significance. We will 
discuss a different approach in the context of our 
next SATE, SATE 

VI Future SATE VI Plans

The lack of vulnerability corpora has always hampered researchers’ 
work in software assurance, because high quality test data is essential 
to achieve meaningful studies applicable to real-world software 
development. The real challenge does not solely lie in having test 
cases at our disposal, but rather to have them display specific criteria: 
ground truth, bug realism, and statistical significance.

Our main goal for SATE VI is to improve the quality of our test 
suites by producing test cases satisfying these three criteria. Time 
is a critical factor in the development or selection of new test cases, 
their use by toolmakers, and the subsequent analysis and reporting 
of results. CVE extraction yields real bugs, however there are too few 
CVEs to showcase numerous bugs in a single version of software. 
Having to run tools on multiple versions of large test cases is time 
consuming and can be problematic for SATE. 

Manual bug injection enables a greater number and diversity in real 
bugs, but also takes time and effort. To prepare test cases for SATE 
VI, our team is using a semi-automated process. For each class of 
weaknesses that we want to insert, the first step is to automatically 
identify sites that are currently safe, but could become vulnerable 
with manual transformation, as in EvilCoder [21]. A site is a 
conceptual place in a program where an operation is performed and 

a weakness might occur. For example, for C programs, every buffer 
access is a site where a buffer overflow might occur.

The next step is to find execution paths leading 
to those sites. We will use guided fuzzing 
techniques to produce user inputs. Then, we will 
perform manual source code transformations, 
where the injected (or seeded) vulnerabilities will 
use the data flow and control flow of the original 
program. Finally, we will implement triggering 
and regression tests to demonstrate the injected 
bugs and check for conflicts between different 
injected bugs. 

It is essential to understand that finding safe 
sites is much easier than finding vulnerable sites. 

Missing a safe site only represents the loss of one potential injected 
bug. To identify those sites, we must analyze our program the way a 
compiler does. To achieve this, we are analyzing the abstract syntax 
tree (AST) and extracting specific patterns. Ultimately, we want to 
use those sites to guide manual bug injection.

Identifying a site does not provide the input leading to it. We plan 
to use fuzzing tools to determine such input. 

Our team will gather a set of CVEs and extract real-world insecure 
patterns to mimic production software vulnerabilities. Source 
transformations will be performed manually to reproduce common 
industry practices and yield realistic injected bugs. To achieve this, 
we will verify that the seeded vulnerabilities do not significantly 
alter the original data flow and control flow of the target program.

We must demonstrate that a given input leads to a real vulnerability. 
Manual bug injection requires much effort and high-level analysis 
to produce exploits. In fact, demonstrating exploitability is very 
challenging for static analyzers. Therefore, it is sufficient to 
demonstrate that our program exhibits abnormal behavior due to 
injected bugs. Consider this: an off-by-one buffer overflow will not 
always result in a program crashing, however, it can be validated 
using an assert statement.

Figure 6: Recall for Synthetic vs. CVE test cases and precision for Synthetic vs. Production test cases - Source: Author(s)

It is essential to 
understand that 

finding safe sites is 
much easier than 
finding vulnerable 

sites

https://www.csiac.org


22

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

VI Conclusion

In this article, we have discussed our experiences with SATE that 
can be useful for the software assurance community. Specifically, 
the article focused on the selection of test cases and how to analyze 
the output warnings from tools. We described metrics that could be 
used for evaluating tool effectiveness. Because tools report different 
weaknesses, there is little overlap in results.

SATE V covered three types of test cases: 1) production test cases, 
which had real code and statistical significance, 2) CVE-selected test 
cases, which had real code and ground truth, and 3) synthetic test cases, 
which had both ground truth and statistical significance. Although 
synthetic test cases cover a broad range of weaknesses, such test cases 
cannot be generalized to real-world software, like production cases. 
CVE extraction yields real bugs in production software, but it is both 
time-consuming and generates no statistical significance. Finally, static 
analysis tools can identify a large number of warnings in production 
software, which is real code. However, we do not know the location 
of all vulnerabilities, i.e., ground truth. Therefore, we require a better 
test suite, covering all three criteria for test cases.

Our main goal for future SATEs is to improve the quality of our 
analyses by producing test cases satisfying all three criteria. We 
believe inserting security-relevant vulnerabilities into real-world 
software can help us achieve this goal.

We learned through the study of three sophisticated and fully-
automated injection techniques that the injected bugs are either 
insufficiently realistic [18, 20] or lack triggering inputs [21]. Purely 
manual injection has the benefit of yielding more realistic bugs, 
however it is time-consuming. Our team is considering a semi-
automated process, speeding the discovery of potential sites, so we 
can perform manual source code transformations. In particular, we 
want to make sure that the seeded vulnerabilities do not significantly 
alter the data flow and control flow of the original program, and 
programming follows common development practices. Since 
demonstrating the injected bugs is essential, we will ensure that the 
injected bugs trigger abnormal program behavior.

REFERENCES
[1]	 Larsen, G., Fong, E. K. H., Wheeler, D. A., & Moorthy, R. S. (2014, 

July). State-of-the-art resources (SOAR) for software vulnerability 
detection, test, and evaluation. Institute for Defense Analyses IDA 
Paper P-5061. Retrieved from http://www.acq.osd.mil/se/docs/P-
5061-software-soar-mobility-Final-Full-Doc-20140716.pdf

[2]	 SAMATE. (2017). Source code security analyzers (SAMATE list of 
static analysis tools). Retrieved from https://samate.nist.gov/index.
php/Source_Code_Security_Analyzers.html

[3]	 MITRE. (2017, July 20). Common vulnerabilities and exposures. 
Retrieved from https://cve.mitre.org/

[4]	 Center for Assured Software, U.S. National Security Agency (2011, 
December). CAS static analysis tool study - Methodology. Retrieved 
from http://samate.nist.gov/docs/ CAS_2011_SA_Tool_Method.pdf

[5]	 Black, P. E., & Ribeiro, A. (2016, March). SATE V Ockham sound 
analysis criteria. NISTIR 8113. https://dx.doi.org/10.6028/NIST.

IR.8113. Retrieved from http://nvlpubs.nist.gov/nistpubs/ir/2016/
NIST.IR.8113.pdf

[6]	 MITRE. (2017, June 6). Common weakness enumeration: Process: 
Approach. Retrieved from https://cwe.mitre.org/about/process.
html#approach

[7]	 MITRE. (2017, June 7). Common weakness enumeration: About 
CWE. Retrieved from https://cwe.mitre.org/about/index.html

[8]	 MITRE. (2017). CVE-2009-2559. Retrieved from http://cve.mitre.
org/cgi-bin/cvename.cgi?name=cve-2009-2559

[9]	 MITRE. (2017, May 5). CWE-126: Buffer over-read. Retrieved from 
http://cwe.mitre.org/data/definitions/126.html

[10]	 MITRE. (2017, May 5). CWE- CWE-834: Excessive iteration. Re-
trieved from http://cwe.mitre.org/data/definitions/834.html

[11]	 MITRE. (2017). CWE-119: Improper Restriction of Operations within 
the Bounds of a Memory Buffer. Retrieved from http://cwe.mitre.
org/data/definitions/119.html

[12]	 National Vulnerability Database, National Institute of Standards and 
Technology. (2010, August 21). CVE-2009-2559 Detail. Retrieved 
from https://nvd.nist.gov/vuln/detail/CVE-2009-2559

[13]	 Kratkiewicz, K., & Lippmann, R. (2005). Using a diagnostic corpus 
of C programs to evaluate buffer overflow detection by static 
analysis tools. Proceedings of the Workshop on the Evaluation of 
Software Defect Detection Tools, 2005. Retrieved from https://www.
ll.mit.edu/ mission/cybersec/publications/publication-files/full_pa-
pers/050610_Kratkiewicz.pdf

[14]	 SAMATE, National Institute of Standards and Technology. (2017). 
Software Assurance Reference Dataset. Retrieved from https://
samate.nist.gov/SARD/

[15]	 Rutar, N., Almazan, C. B., & Foster, J. S. (2004). A comparison of 
bug finding tools for Java. Proceedings of the 15th IEEE Interna-
tional Symposium on Software Reliability Engineering (ISSRE’04), 
France, November 2004. https://dx.doi.org/10.1109/ISSRE.2004.1

[16]	 Kupsch, J. A., & Miller, B. P. (2009). Manual vs. automated vulnera-
bility assessment: A case study. In Proceedings of the 1st Interna-
tional Workshop on Managing Insider Security Threats (MIST-2009), 
Purdue University, West Lafayette, IN, June 15-19, 2009.

[17]	 Li, Z., Zou, D., Xu, S, Jin, H., Qi, H., & Hu, J. (2016). VulPecker: An 
automated vulnerability detection system based on code sim-
ilarity analysis. In Proceedings of the 32nd Annual Conference 
on Computer Security Applications, pp. 201-213. https://dx.doi.
org/10.1145/2991079.2991102

[18]	 De Oliveira, C., & Boland, F. (2015). Real world software assurance 
test suite: STONESOUP (Presentation). IEEE 27th Software Tech-
nology Conference (STC ‘2015) October 12-15, 2015.

[19]	 De Oliveira, C. D., Fong, E., & Black, P. E. (2017, February). Impact 
of code complexity on software analysis. NISTIR 8165. https://dx.
doi.org/10.6028/NIST.IR.8165. Retrieved from http://nvlpubs.nist.
gov/nistpubs/ir/2017/NIST.IR.8165.pdf

[20]	 Dolan-Gavitt, B., Hulin, P., Kirda, E., Leek, T., Mambretti, A., 
Robertson, W., Ulrich, F., & Whelan, R. (2016). LAVA: Large-scale 
automated vulnerability addition. In Proceedings of the 2016 IEEE 
Symposium on Security and Privacy, pp. 110-121. https://dx.doi.
org/10.1109/SP.2016.15 

[21]	 Pewny J., & Holz, T. (2016). EvilCoder: Automated bug insertion. 
In Proceedings of the 32nd Annual Conference on Computer 
Security Applications (ACSAC’16), pp. 214-255. https://dx.doi.
org/10.1145/2991079.2991103

[22]	 Black, P. E. (2012). Static analyzers: Seat belts for your code. 
IEEE Security & Privacy, 10(2), 48-52. https://dx.doi.org/10.1109/
MSP.2012.2



Software Assurance Adoption through Open Source Tools

SOFTWARE ASSURANCE ADOPTION THROUGH 
OPEN SOURCE TOOLS

By: Corbin Moyer and Patrick Hart

S oftware and Security engineering as a discipline is getting increased 
attention across the Department of Defense (DoD) as a mission 
enabler. Historically the DoD used an engineering approach that 

is independent from the type of product. Hardware and software then 
followed the same generic engineering principles. These principles focused 
on areas such as systems integration, reliability, maintainability, and test. 
Aspects such as lifecycle cost have risen in recent years, but awareness 
of secure software development as a component of that cost has yet to 
reach mainstream Program Management Offices (PMOs) operations. It’s 
important to not only test functionality. Security is now a critical enabler of 
success. Change needs to happen.

WWW.CSIAC.ORG  |  23



24

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

During the early-to-mid 2000s, the industry at large was 
experiencing a shift in maturation of software security processes and 
tools. The open community saw the foundation of the non-profit 
Open Web Application Security Project (OWASP) Foundation 
in 2004 after beginning work in 2001 (1). OWASP creates and 
espouses freely and widely-available documents, references, tools, 
and general knowledge for the sake of more secure software. In the 
Government space, the Information Assurance Technology Analysis 
Center (IATAC) and the Data and Analysis Center for Software 
(DACS) published a Software Security Assurance State-of-the-
Art Report (SOAR) in 2007 (2). This SOAR discusses definitions 
of secure software along with advice for development lifecycles, 
secure coding recommendation, metrics, and design patterns for 
secure software. Also in 2007, the Air Force Application Software 
Assurance Center of Excellence (ASACoE) was beginning to assist 
programs with hands-on support (3). The message was clear: secure 
software matters to Industry and Government. 

The implication from over 10 years of think tanks and gap analysis 
was that change does not happen with multi-hundred-page 
documents of policy and governance. Change happens at the 
program level with actionable, reasonable, achievable steps. Many 
legacy software acquisitions are already on multi-year contracts 
where expectations are firmly established. Specialized tools are 
everywhere, but getting tens-of-thousands or hundreds-of-
thousands of dollars for commercial tools or expert personnel has 
huge programmatic overhead. PMOs are frequently hard-pressed 
for this extra room in the budget. While these commercial solutions 
may be high-quality, adoption has been slow due to barriers of cost, 
training, and lifecycle restrictions.

Adoption of Open Solutions

The Air Force Lifecycle Management Center (AFLCMC) Cyber 
Systems Engineering Division (EZC) has started using and 
advocating for free or open source tools. EZC is the home of the Air 
Force Command and Control (C2) and Rapid Cyber Acquisition 
(RCA) Security Controls Assessor (SCA). This SCA is responsible 
for security assessments of all Air Force developed C2 systems and 
software, along with cyber-related urgent operational needs. From 
years of prior assessments, there was a clear pattern that PMOs had 
accounted for and practiced system security but had not applied that 
same rigor and discipline to software.  

EZC has advocated the philosophy of software security as a discipline 
of proper engineering rigor. Engineering principles and open source 
tools allow for productive and collaborative conversations with 
existing PMO resources. Program managers resonate with using 
existing and readily-available resources to leverage new processes. 
This removes barriers and such as purchase orders and contract 
negotiations. It is unsurprising that PMOs start to consider adoption 
of open source tools as an overnight opportunity. While this a logical, 
pragmatic approach, it is not without special considerations. The 
remainder of this article will discuss EZC’s recommended tools 

and lessons as a case study in potential benefits to existing software 
acquisitions.

Lessons from the Lab

A handful of open source tools have been identified and used 
successfully in various stages of the software development lifecycle 
(SDLC). These include FindBugs, OWASP Dependency Check, 
OWASP Zed Attack Proxy (ZAP), cppcheck, WireShark, and 
SonarQube. These were eventually chosen as go-to recommendations 
for programs in the SCA’s C2 and RCA portfolios.  These tools 
have strong organizations, transparent management, welcoming 
communities, and are actively updated for new threats and 
vulnerabilities. While the SCA’s engineering team recognizes special 
considerations for utilizing open source tools on classified networks, 
these warrant a separate discussion. 

It is first worth examining the licenses of these applications to make 
sure there are no restrictions for Government use. Most of the open 
source licenses examined are concerned with a single user profiting 
from the use of the community’s tool. Using it to make one’s own 
application better is well within scope of common licenses, with a 
general expectation that any improvements will propagate back to 
the community. A summary of the licenses for these applications 
can be seen in the following table. It is important to note that 
there are specific questions an organization may want to ask. “Can 
the Government contribute back?” “Can the Government make 
private modifications?” These are not covered here. This applies 
specifically to unmodified use in a development environment or 
lab environment. 

Table 1: Tools and Licenses 

Name License Government 
Restriction?

Available?

FindBugs (Univ of Maryland) GNU GPL 3.0 No gnu.org

Dependency Check (OWASP) Apache 2.0 No github (DC)

ZAP (OWASP) Apache 2.0 No apache.org

Cppcheck GNU GPL 3.0 No github.org

WireShark GNU GPL 2.0 No wireshark.org

SonarQube GNU GPL 3.0 sonarqube.org

FindBugs is an application developed by the University of Maryland. 
Its primary purpose is finding bugs via “bug patterns” in Java 
applications. It breaks these down into categories like “Bad Practice”, 
“Correctness”, “Malicious Code Vulnerability”, and “Dodgy Code” 
(4). Unlike typical static analysis tools, it analyzes Java bytecode 
instead of raw source code. This has the benefit of not needing the 
raw source code, but means that it has a higher potential for false 
positives. In practice, this tool is effective at noticing potentially 
bad patterns. However, it does require more manual curation to 
become truly useful. Contractors have shown minimal resistance to 
implementing it, but it often requires tight collaboration between 

http://www.gnu.org/licenses/lgpl.html
https://jeremylong.github.io/DependencyCheck/license.html
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/danmar/cppcheck/blob/master/COPYING
https://www.wireshark.org/docs/wsdg_html_chunked/AppGPL.html
https://www.sonarqube.org/downloads/license/


WWW.CSIAC.ORG  |  25

Software Assurance Adoption through Open Source Tools  –  CON'T

Contractor and PMO (or EZC) engineers. There are cases where 
this tight relationship is difficult to achieve. 

As of this writing the most recent version of the tool was released 
in March of 2015. While the project has official sponsorship, it is 
not focused on regular updates. The focus is on supporting new 
technologies as they develop (e.g., Java 8) rather than constant 
patching. It has Apache Ant support for build integration and an 
Eclipse plugin for individual developers. This points the application 
once again towards the side of manual integration for a large subset 
of contractors. 

Overall, FindBugs has had very successful use across the SCA’s 
portfolios. Its strongest use case comes with post-
development scanning rather than continuous 
integration. Only Ant is officially supported. 
Developers trying to build with tools like Maven 
or Gradle will require more work. However, 
some community support exists for these build 
environments. The interface of the default 
application is bare-bones but functional. PMO 
and developer engineers typically pick the basics 
up without a lot of explanation, provided they 
understand software development. For PMOs 
struggling to implement static analysis, FindBugs 
has been a considerable success. With proper 
expectation management, the tool performs well 
and has helped identify many major flaws across 
the portfolios. 

OWASP Dependency Check (OWASP DC) is 
a tool promoted as a mature flagship product by OWASP. It serves 
a simple but important function. It analyzes the dependencies (such 
as third-party libraries) in an application to see if there are any 
publicly-known vulnerabilities. It currently supports Java and .NET 
with limited support for Python, Ruby, and Note.js (5). Dependency 
Check collects build information to see if there is a Common Platform 
Enumeration (CPE) for the dependency. If so, associated Common 
Vulnerability and Exposure (CVE) information is listed in an 
HTML-based report (5). It is still actively and frequently maintained.

The primary drawback of OWASP DC is its dependency on an 
Internet connection. Upon running, the machine will attempt to 
access the National Vulnerability Database (NVD) to download 
NVD data feeds (6). For applications requiring classified 
environments, the application cannot connect. If it’s the first time 
the application has been run, the application cannot establish its 
NVD information. This means it cannot complete a scan. This 
creates hurdles for Government applications on a secure network 
such as SIPRNet. The OWASP DC documentation provides some 
possible workarounds such as mirroring the NVD locally. Another 
drawback is its interface is through the command line. It has some 
limited integration options, but may require manual tweaking. These 
problems must be solved on a case-by-case basis and may create 
burden for the PMO or the developer.

OWASP DC has nonetheless proven very valuable for EZC 
engineers, especially among older or less actively developed projects. 
It is surprisingly common for developers of legacy applications to 
not fully understand their dependencies. This is especially true of 
research projects that have evolved into “full” applications in the 
field. OWASP DC has on several occasions provided EZC with 
necessary information to make sure databases, frameworks, and even 
cryptography libraries are tracked and updated. EZC continues to 
use and recommend it. 

OWASP ZAP is an application security scanner and penetration 
tester. It is a powerful tool capable of providing proxy interception, 
web spidering and exploration, fuzz testing, and passive scanning 

(7). OWASP ZAP provides results tailored 
for keeping web-based applications safe from 
attack. It is another mature flagship product 
for the OWASP Foundation, and it is actively 
maintained and developed with a strong 
community. It has many build integration 
opportunities and has a relatively clean user 
interface. However, new users unfamiliar with 
the concepts of web application vulnerabilities 
may find its results confusing.

In this sense the application isn’t limited by 
features in the normal sense. It is limited 
in the audience that can adequately and 
accurately interpret and use the results. Web 
application vulnerability and penetration tests 
are traditionally led by “red teams” of specialized 
individuals. As web application development 

is less common in government systems, there are fewer software 
engineers that are specialized in this area of knowledge. This may 
mean that an attempt to run ZAP or integrate it into the software 
development process may still miss problems due to misconfiguration 
or improper understanding of the results.

With these limitations in mind, EZC has only had one 
developer actively insert ZAP into the development process. 
This implementation was specific to penetration testing, and was 
inserted after the build process itself. This process has proven to 
be a mixed blessing. Raw results couldn’t be fed back to every 
developer. Some didn’t quite understand the impact or dismissed 
valid results as a false positive. Careful review with EZC uncovered 
the need to start slowly. This means that the need for a red team 
may not be eliminated. Dedicated penetration testers are still 
valuable. However, every small step forward in cybersecurity is 
important. This is especially true in automated build environments. 
EZC continues to work with the PMO to define a good process 
to best utilize the results.

The fourth tool recommended by EZC is cppcheck, a static analysis 
tool for C and C++ code. It features many integrations including 
Eclipse, Jenkins, and several pre-commit hooks for version control 
(8). It specifically addresses errors and does not point out all bad 

It is a powerful 
tool capable of 
providing proxy 

interception, 
web spidering 

and exploration, 
fuzz testing, and 
passive scanning 

https://www.csiac.org


26

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

practices or style deviations. This has implications regarding its 
findings. Whereas a typical security application may over-report 
things that are not issues, cppcheck’s “zero false positive” mentality 
means in practice it’s more likely to not flag a real issue than to flag 
a non-issue. This is a good example illustrating why using two static 
analysis tools whenever possible is the better solution.

Cppcheck is also in large part developed by one person, with 
a handful of volunteers following in support. This creates an 
interesting point of contention for government use. While it 
has built a strong reputation for reliable results, there is a known 
single point of failure. According to public Github commits, 
from February 09, 2016 through Feb 11, 2017, 55.9% of all 
commits were from this same one individual (10). As of this 
writing it is still actively developed on Github. The codebase 
also gets automatically scanned by Coverity with all results 
published online publicly (9). The combination of public source 
code and public code analysis helps instill confidence. EZC has 
recommended it with no ill effect, but this is a point of contention 
that any potential customer should know.

Even with this knowledge available, EZC has 
recommended cppcheck to several applications 
with positive feedback. One contractor even 
integrated it into their build environment to 
continue scanning with every build, pushing 
results back to individual developers. The 
standalone interface is spartan but has a low 
learning curve. Result files are also easily 
exportable for sharing with other engineers or 
organizations. While cppcheck may work best 
in conjunction with a second tool, its results 
have proven reliable and useful.

With so much attention being focused on code 
scanning and analysis, it is easy to overlook 
tools like Wireshark. Wireshark is a widely-
adopted packet analyzer for network capture and diagnostics. It has 
been a stalwart application remaining under the leadership of its 
original developer, Gerald Combs (11). It is currently sponsored by 
Riverbed, an American Networking IT company. Wireshark is in 
such widespread use in the security community that it has become 
a de facto standard for learning packet analysis.

Wireshark’s strengths and weaknesses are well documented and 
well understood. It is primarily useful after development, during 
application testing. EZC has successfully used it to analyze network 
activity in a lab environment. This is useful for determining 
unwanted connections and verifying functionality. However, 
its user interface does heavily rely on the user understanding 
networking or packet analysis. As such, it has a limited use case in 
the software development lifecycle. While EZC is very comfortable 
using and recommending it, its scope of appropriate use must be 
determined beforehand. 

The final tool for consideration is SonarQube. This is perhaps the 
most suited for continuous integration. SonarQube is an analyzer 
for finding bugs, but also provides overall “health” checks and a 
centralized source of security-related information for developers 
and managers to see and collaborate on information. It has support 
for several build systems like Ant and Maven, as well as continuous 
integration engines like Jenkins and Bamboo. SonarQube bills itself 
as more of a security management tool, and should be used alongside 
tools like cppcheck or ZAP.

SonarQube has the most modern user interface of the tools discussed 
so far, but it does so with relatively plain design. It performs best 
when used as a part of a continuous integration platform (12). 
However, not all DoD acquisition developers are set up to operate 
this way. Many developers on existing programs are still using 
waterfall development, or utilizing a hybrid agile-waterfall approach. 
They do not have continuous integration engines like Jenkins set 
up, nor do they have a culture of continuous fixing and patching. 
This, in fact, makes SonarQube difficult for adoption in this style 

of development. Additionally, any developer 
wishing to share results with a PMO may 
require giving a PMO Virtual Private Network 
(VPN) access, or save and email reports. This 
eliminates some of the benefits of SonarQube, 
and provides the PMO with no strong benefit 
over a program like Dependency Check. 

With these expectations in mind, EZC 
frequently recommends new projects insert 
continuous test integration into software and 
security engineering from the start. SonarQube 
is one reliable free tool to accomplish this 
goal and has robust support. While it may 
be difficult to incorporate after, it is useful 
for tracking security metrics throughout 
development. This is an incredibly important 
function for modern application development 

regardless of what tool is used. Education is an important step in 
the current state of security, and EZC works closely with programs 
to establish security from the very start. 

Recommendations

Each of these tools has a specific place in the software development 
lifecycle. The choice of what type of tool to use is almost as important 
as the choice of the tool itself. To this end, PMOs need to take a 
proactive approach to software security engineering based on where 
they are in application development. Table 2 below shows where 
in the development lifecycle a developer is most likely to discuss 
and utilize the tools outlined above. Note that a good software 
development lifecycle is cyclical and continuous, not linear as 
depicted in the table.

Many developers 
on existing 

programs are still 
using waterfall 
development, or 
utilizing a hybrid 
agile-waterfall 

approach



WWW.CSIAC.ORG  |  27

Software Assurance Adoption through Open Source Tools  –  CON'T

Table 2: Software Development Lifecycle Applications

Planning Analyzing Designing Implementing Testing Maintaining

FindBugs X X X

OWASP DC X X X

ZAP X X X

Cppcheck X X X

WireShark X X

SonarQube X X X X X

The tools discussed in this article are heavily skewed towards the 
implementing, testing, and maintaining portion of the software 
development lifecycle. This appears to be the area in which 
developers traditionally receive the least amount of security training. 
It is also the part of the lifecycle where problems are hardest to spot 
by manual review. There is a trade-off between human review and 
automatic review, and the open source community seems to have 
tackled the implementation and maintenance stages first.

FindBugs, cppcheck, and SonarQube are especially useful when 
trying to map to the Software Engineering Institute (SEI) Secure 
Coding standards for the C, C++, and Java languages. These 
tools have many of their unique finding identifiers mapped to 
the recommendations and rules that comprise the SEI standards. 
The SEI website provides this mapping (13). EZC has found this 
valuable in mapping to the Risk Management Framework (RMF) 
and the Defense Information Systems Agency (DISA) Security 
Technical Implementation Guide (STIG) for Application Security 
and Development.  

Conclusion

PMOs must use increasingly limited resources to solve security 
engineering problems. As such, open source tools can readily be used 
as a part of the development process. They are a reliable, actionable 
way PMOs can make their systems more secure in the short term. 
They can be an incredibly important piece of a robust application 
security program in the long run. Smart organizations recognize 
these tools cannot be a substitute for software security engineering. 
Software should still abide by principles such as following open 
standards, using standard interfaces, and avoiding tight coupling. 
Once applications have a well-thought-out design and their usage 
has been accounted for, these automated tools can assist developers 
find and fix bugs early. 

Secure software development is about culture, drive, and expectation. 
EZC encourages the DoD at large to examine open source tools, 
embrace the secure software community, and share best practices. 
Open source tools are a great start and can be a catalyst or building 

block of a strong software security engineering program. Given the 
DoD’s advanced threat landscape and large software acquisition 
community, we hope to see broader embracing and adoption of 
open source software security tools and practices. 

REFERENCES
[1]	 About The Open Web Application Security Project. (2017, March 

16). Retrieved April 04, 2017, from https://www.owasp.org/index.
php/About_The_Open_Web_Application_Security_Project#The_
OWASP_FoundationThe SOAR itself, use the pdf to generate a 
citation

[2]	 Goertzel, K. M., et al. (2007). ITAC DACS State-of-the-Art Report. 
Software Security Assurance. Retrieved April 03, 2017, from http://
www.dtic.mil/dtic/tr/fulltext/u2/a472363.pdf 

[3]	 Kleffman, M., Maj. (2008). Application Software Assurance Center 
of Excellence (ASACOE). Retrieved April 04, 2017 from https://
www.acsac.org/2008/program/case-studies/Kleffman.pdf

[4]	 FindBugs Bug Descriptions. (2015, March 06). Retrieved April 04 , 
2017, from http://findbugs.sourceforge.net/bugDescriptions.html 

[5]	 OWASP Dependency Check. (2017, January 23). Retrieved April 04, 
2017, from https://www.owasp.org/index.php/OWASP_Dependen-
cy_Check

[6]	 Dependency Check. (2017, January 22). Retrieved April 04, 2017, 
from http://jeremylong.github.io/DependencyCheck/data/index.html 

[7]	 OWASP Zed Attack Proxy Project. (2017, April 04). Retrieved April 
04, 2017, from https://www.owasp.org/index.php/OWASP_Zed_At-
tack_Proxy_Project 

[8]	 	Cppcheck. (2017, April 01). Retrieved April 04, 2017, from http://
cppcheck.sourceforge.net/ 

[9]	 	Coverity Scan: cppcheck. (2017, January 17). Retrieved April 04, 
2017, from https://scan.coverity.com/projects/512 

[10]	 	Contributors to danmar/cppcheck. (n.d.). Retrieved April 04, 2017, 
from https://github.com/danmar/cppcheck/graphs/contributors?fro
m=2016-02-09&to=2017-02-11&type=c

[11]	 	Wireshark. (2017, March 03). Retrieved April 04, 2017, from https://
www.wireshark.org/

[12]	 	Features. (n.d.). Retrieved April 04, 2017, from https://www.so-
narqube.org/features/

[13]	 	SEI CERT Coding Standards. (2017, March 28). Retrieved April 07, 
2017, from https://www.securecoding.cert.org/confluence/display/
seccode/SEI CERT Coding Standards

https://www.csiac.org


28

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

Software Assurance Measurement 
- establishing a confidence that 
security is sufficient

Establishing a Confidence that 
Security is Sufficient

By Dr. Carol C. Woody (SEI) and Dr. Robert J. Ellison (SEI)

M easuring the software assurance of a product as it functions within a specific system 
context involves assembling carefully chosen metrics that demonstrate a range of 
behaviors to establish confidence that the product functions as intended and is free 

of vulnerabilities. The first challenge is to establish that the requirements define the appropriate 
security behavior and the design addresses these security concerns. The second challenge is 
to establish that the completed product, as built, fully satisfies the specifications. Measures 
to provide assurance must, therefore, address requirements, design, construction, and test. 
We know that software is never defect free. According to Jones and Bonsignour, the average 
defect level in the U.S. is 0.75 defects per function point or 6,000 per million lines of code 
(MLOC) for a high-level language (1). Very good levels would be 600 to 1,000 defects per MLOC, 
and exceptional levels would be below 600 defects per MLOC. Thus, software cannot always 
function perfectly as intended. Additionally, we cannot establish that software is completely 
free from vulnerabilities based on our research, which indicates that 5% of defects should 
be categorized as vulnerabilities. However, we can provide sufficient measures to establish 
reasonable confidence that security is sufficient. Security measures are not absolutes, but 
we can collect information indicating that security has been appropriately addressed in 
requirements, design, construction, and test to establish confidence that security is sufficient.



WWW.CSIAC.ORG  |  29

Software Assurance Measurement - establishing a confidence that security is sufficient

Introduction

There is always uncertainty about a software system’s behavior. 
Rather than performing exactly the same steps repeatedly, 
most software components function within a highly complex 
networked and interconnected system of systems that changes 
constantly. A measure of the design and implementation is the 
confidence we have that the delivered system will behave as 
specified. Determining that level of confidence is an objective 
of software assurance, which is defined by the Committee on 
National Security Systems (2) as

Software Assurance: Implementing software with a level of 
confidence that the software functions as intended and is free of 
vulnerabilities, either intentionally or unintentionally designed or 
inserted as part of the software, throughout the lifecycle.

At the start of development, we have a very general knowledge of 
the operational and security risks that might arise as well as the 
security behavior that is desired when the system is deployed, and 
we have a limited basis for establishing confidence in the behavior of 
the delivered system. Over the development lifecycle, as the details 
of the software incrementally take shape, we need to incrementally 
increase our confidence level to eventually confirm that the system 
will achieve the level of software assurance desired for the delivered 
system. For example, an objective of the Department of Defense 
(DoD) milestones reviews is to identify issues that represent risks 
that could adversely affect our confidence that the deployed system 
will function as intended. 

One practice that can be performed is to analyze 
the software using a series of vulnerability 
analysis tools and remove detected vulnerabilities 
from the code. We know from experience that 
the tools will only show a small portion of the 
existing vulnerabilities, so how do we measure the 
improved confidence?

A comparison of software and hardware reliability 
provides some insight into challenges for managing 
software assurance. For hardware reliability, we can 
use statistical measures, such as the mean time 
between failures (MTBF), since hardware failures 
are often associated with wear and other errors 
that are frequently eliminated over time. The lack 
of hardware failures increases our confidence in a 
device’s reliability. 

As noted by the 2005 Department of Defense 
Guide for Achieving Reliability, Availability, and Maintainability 
(RAM)  a lack of software defects is not necessarily a predictor 
for improved software reliability. The software defect exists 

when the software is deployed, and the failure is the result 
of the occurrence of an unexpected operating condition. Too 
little reliability engineering was given as a key reason for the 
reliability failures by the DoD RAM guide. This lack of reliability 
engineering was exhibited by 

ii failure to design-in reliability early 
in the development process

ii reliance on predictions (use of relia-bility defect models) 
instead of con-ducting engineering design analysis

The same reasoning applies to software assurance. We need 
to engineer software assurance into the design of a software 
system. We have to go beyond just identifying defects and 
vulnerabilities towards the end of the lifecycle and evaluate how 
the engineering decisions made during design and requirements 
affect the injection or removal of security defects. For example, 
the Common Weakness Enumeration  (CWE) is a list of over 
900 software weaknesses that resulted in software vulnerabilities 
exploited by attackers. Many of them can be associated with poor 
acquisition or development practices.

Define the Software Assurance Target

All good engineering and acquisition starts with defined 
requirements, and software assurance is no different. We must 
define the specific software goal for the system. From the goal we 

can identify ways in which the engineering 
and acquisition will ensure, through policy, 
practices, verification, and validation, that the 
goal is addressed.

If the system we are delivering is a plane, then 
our stated software assurance goal might be 
“mission-critical and flight-critical applications 
executing on the plane or used to interact with 
the plane from ground stations will have low 
cybersecurity risk.” 

To establish that we are meeting this goal, a range 
of evidence can be collected from the following: 
milestone reviews, engineering design reviews, 
architecture evaluations, component acquisition 
reviews, code inspections, code analysis and 
testing, and certification and accreditation. Is 
what we have always been doing sufficient or 

do we need to expand current practice? We can use the Software 
Assurance Framework (SAF), a baseline of good software assurance 
practice for government engineers assembled by the SEI, to confirm 
completeness and identify gaps in current practices (3). 

A comparison 
of software 

and hardware 
reliability provides 

some insight 
into challenges 
for managing 

software 
assurance

Contuined on Page 32

https://www.csiac.org


SEPTEMBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS



Software Assurance Measurement - establishing a confidence that security is sufficient  –  CON'TCSIAC’s DoD Cybersecurity Policy Chart (Pinup) 
Visit CSIAC.org to download or subscribe to receive update alerts



32

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

Software Assurance Framework (SAF)

The SAF defines important cybersecurity practices for the following 
four categories: process management, project management, 
engineering, and support. Each category comprises multiple areas 
of cybersecurity practice. In the SAF, a set of cybersecurity practices 
is defined for each area and relevant acquisition and engineering 
artifacts are documented for each of these cybersecurity practices. 
An evaluator can look for evidence that a cybersecurity practice has 
been implemented by examining the artifacts related to that practice. 
In the next section of this article, we will show how measurements 
can be linked to these cybersecurity practices. While the same 
approach can be applied to all four practice categories, we will focus 
the remainder of our efforts in this article on engineering. 

Improving Assurance

As noted in the introduction, we have to go beyond just identifying 
defects and vulnerabilities towards the end of the lifecycle and 
evaluate how the engineering decisions made during design and 
requirements affect the injection or removal of security defects. 

Justifying Sufficient Cybersecurity Using 
Measurement

Measurement is a mechanism for understanding and control of 
software processes and products and the relationships between them. 
It helps in making intelligent decisions that lead to improvement over 
time and is essential for acquisition and development management.

A formal engineering review requires more than a description of a 
design. Security depends on identifying and mitigating potential faults, 
and a design review should verify that faults associated with important 
operational risks have been identified and mitigated by specific design 
features. We need to document the rationale behind system design 
decisions and provide evidence that supports that rationale. Such 
documentation is called an assurance case. It does not imply any kind 
of guarantee or certification. It is simply a way to document rationale 
behind system design decisions. Metrics can provide evidence that 
justifies the assurance associated with design decisions. 

Assurance case:3 a documented body of evidence that provides a 
convincing and valid argument that a specified set of critical claims 
about a system’s properties are adequately justified for a given 
application in a given environment.

If something is important, it warrants figuring out a way to measure 
it. Effective measurements require planning to determine what 
to measure and what the measures reveal. Tracking results aids 
understanding of whether efforts are achieving intended outcomes.

Software assurance metrics have to evaluate the engineering practices 
as well as the security of the product. Answers to the questions 
shown in Table 1 provide evidence that the engineering applied 
improved security.

Table 1: Engineering Questions

Effectiveness Was applicable engineering analysis incorporated in 
the development practices?

Trade-offs When multiple practices are available, have realistic 
trade-offs been made between the effort associated 
with applying a technique and the improved quality 
or security that is achieved (i.e., the efficiency and 
effectiveness of the techniques relative to the type 
of defect).

Execution How well was the engineering done?

Results applied Was engineering analysis effectively incorporated 
into lifecycle development?

It is essential to link a measure to a development practice. For 
example, product measures such as the number of defects per million 
lines of code (MLOC) or the output of static analysis of the source 
code. How should a program respond if the number of defects per 
MLOC appears to be too high or there is a significant number of 
static analysis warnings or errors reported?

We use the Goal/Question/Metric (GQM) paradigm4  to 
establish a link among mission goals and engineering practices. 
The GQM approach was developed in the 1980’s as a structuring 
mechanism and is a well-recognized and widely used metrics 
approach. For example, a top-level goal shared among all efforts 
to build security into software development is to identify 
and mitigate the ways that a software component could be 
compromised. Such a goal cuts across all phases of the acquisition 
and development lifecycles. The first challenge is to establish 
that the requiremen¬¬ts define the appropriate security behavior 
and the design addresses these security concerns. The second 
challenge is to establish that the completed product, as built, 
fully satisfies the specifications. Measures to provide assurance 
must, therefore, address requirements, design, construction, and 
test. We can identify supporting sub-goals associated with these 
primary acquisition/development lifecycle activities, which may 
be repeated at various phases across the lifecycle. 

ii Requirements: Manage requirements 
for software security risks.

ii Architecture through design: Incorpo-rate security 
controls and mitigations to reduce security risks 
for design of all software components.

ii Implementation: Minimize the number of 
vulnerabilities inserted during coding.

ii Testing, validation, and verification: Test, validate, 
and verify software se-curity risk mitigations.

For each of these engineering sub-goals we will explore relevant 
practices, outputs, and metrics that could be used to establish, 
collect, and verify evidence. Since each project is different in 
scope, schedule, and target assurance, actual implemented choices 
will need to vary.



WWW.CSIAC.ORG  |  33

Software Assurance Measurement - establishing a confidence that security is sufficient  –  CON'T

Sub-Goal: Requirement management sufficiently 
incorporates security analysis. 

We should consider if we can demonstrate sufficient assurance for 
a requirement as we write it. For example, consider requirements 
that address adverse security events for an unmanned aerial vehicle 
(UAV). Could a non-authorized actor take control of that device 
or could communications with that device be disrupted? The 
requirement that a UAV only acts on unmodified commands received 
from the group station addresses the first event, and using security 
controls such as encryption, we can demonstrate full assurance 
for that requirement. We do not have engineering techniques to 
guarantee continued operation during a wireless network denial of 
service (DNS), but we can demonstrate assurance for a requirement 
that specifies the actions a UAV should take to protect itself during 
a DNS attack (4).

Practice: Security risk assessment: Conduct an engineering-based 
security risk analysis that includes the attack surface (those aspects 
of the system that are exposed to an external agent) and abuse/
misuse cases (potential weaknesses associated with the attack surface 
that could lead to a compromise). Following Microsoft’s naming 
convention in (5), this activity is often referred to as threat modeling.

Outputs: Output specificity depends on the lifecycle phase. An 
initial risk assessment might only note that the planned use of a 
commercial database manager raises a specific vulnerability risk 
that should be addressed during detailed design. Whereas the risk 
assessment associated with that detailed design should recommend 
specific mitigations to the development team. Testing plans should 
cover high-priority weaknesses and proposed mitigations.

GQM outputs represent what an acquisition wants to learn. 
Examples of useful outputs appear in Table 2.

Table 2: Outputs

recommended reductions in the attack surface to simplify development and 
reduce security risks

prioritized list of software security risks

prioritized list of design weaknesses

prioritized list of controls/mitigations

mapping of controls/mitigations to design weaknesses

prioritized list of issues to be addressed in testing, validation, and verification

We need to evaluate the output of the engineering practices. The 
outputs of a security risk assessment are very dependent on the 
experience of the participants as well as on constraints imposed by 
costs and schedule. Missing likely security faults or poor mitigation 
analysis increases operational risks and future expenses. The rework 
effort to correct requirement and design problems in later phases can 
be as high as 300 to 1,000 times the cost of in-phase correction, and 
undiscovered errors likely remain after that rework [10]. 

Practice: Conduct reviews (e.g., peer reviews, inspections, and 
independent reviews) of software security requirements.

Output: Issues raised in internal reviews

The analysis of the differences arising in the outputs should answer 
the questions shown in Table 3.

Table 3: Technical Review Analysis

What has not been done: number, difficulty, and criticality of “to be determined” 
(TBD) and “to be added” (TBA) items for software security requirements
Where there are essential inconsistencies in the analysis and/or mitigation 
recommendations: number/percentage, difficulty, and criticality of the 
differences
Where insufficient information exists for a proper security risk analysis. 
Examples include emerging technologies and/or functionality where there is 
limited history of security exploits and mitigation.

The Heartbleed vulnerability is an example of a design flaw (6). The 
assert function accepts two parameters: a string S and an integer 
N and returns a substring of S of length N. For example, assert 
(“that”,3) returns “tha”. The vulnerability occurs with calls where 
N is greater than then length of S such as assert(“that”,500) which 
returns a string starting with “that” followed by 496 bytes of memory 
data stored adjacent to the string “that”. Such calls would enable an 
attacker to view what should be inaccessible memory locations. The 
input data specification that the value of N was less than or equal 
to the length of the string was never verified. This is CWE-135, 
one of the SANS Top 25 vulnerabilities5  and should be discovered 
during design reviews. 

Practices that support answers to the engineering questions in Table 
1 (examples shown in Table 1a below) should provide sufficient 
evidence to justify the claim that the Heartbleed vulnerability has 
been eliminated.

Table 1a: Practices/Outputs for Evidence Supporting Table 1 Questions

Practice Output

Threat modeling Software risk analysis identifies input data risks with 
input verification as mitigation.

Design includes  
mitigation

Input data verification is a design requirement.

Software inspections 
show implementation

Confirms the verification of input data.

Testing Testing plans include invalid input data.
Test results show mitigation is effective for supplied 
inputs.

https://www.csiac.org


34

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

Sub-goal (Architecture through design): Incorporate 
security controls and mitigations to reduce security 
risks for design of all software components.

This sub-goal describes the security objective for the architectural 
and design phases of a development lifecycle. The outputs of this 
phase of development are shown in Table 4.

Practice: Security risk assessment as applied to the architecture 
and design.

Table 4: Architectural and Design Outputs

prioritized list of design weaknesses

prioritized list of controls/mitigations

mapping of controls/mitigations to design weaknesses

The assurance question is whether an acquisition should accept a 
developer’s claim that these outputs provide sufficient security. 

Potential security defects can arise with any of the decisions for 
how software is structured, how the software components interact, 
and how those components are integrated. An identification of 
such weaknesses has to consider both the security and functional 
architectures and designs. The security architecture provides security 
controls such as authentication, authorization, auditing, and data 
encryption, and the functional/system architecture describes the 
structure of the software that provides the desired functionality. 

The functional rather than the security architecture is the more 
likely source of security defects. The security architecture is 
typically designed as an integrated unit with well-defined external 
interfaces. The functional architecture is increasingly likely to 
include commercial software with vague or unknown assurance 
characteristics. Commercial product upgrades can significantly 
change assurance requirements, interfaces, and functionality. 
Systems are rarely self-contained and by design accept input from 
independently developed and managed external systems. Such 
diversity increases the difficulty of identifying and prioritizing 
security risks and increases the importance of independent reviews. 

Identifying and mitigating architectural and design weaknesses 
depends on a developer not only using good engineering practices 
and strong tools but also on that developer’s understanding of the 
attack patterns that could be used to exploit design, architecture, 
and features incorporated in the proposed system. 

SQL (Structured Query Language) injections provide a good 
instance of where attack-pattern analysis is required to mitigate 
exploits and how proactive application of resulting knowledge can 
reduce the opportunities for design vulnerabilities. Choice of a 
mitigation depends on the nature of required queries. Mitigation 
for open-ended queries likely require the use of a vetted query 
library. Where we have a set of well-specified queries, such as with 
the account-balance example, a mitigation using a parameterized 

query can be effective6. Such a mitigation would verify that the 
value constructed for the variable customer_name meets the database 
specification for a name.

Evidence: Many of the secure design metrics shown in Table 
5 assess how well attack knowledge was incorporated in the 
architectural and design activities. For a security assessment to 
be effective, the results have to be documented and disseminated 
across a development team. Outputs from the developer’s 
design activities should include reports on security risk analysis, 
mitigation analysis and selection, design inspections, and 
implementation and testing guidance. An acquisition should be 
able find the evidence determining assurance from that collection 
of development documentation. 

The question for an acquirer is whether the assembled evidence 
demonstrates that an assurance case for a claim that SQL injections 
have been sufficiently mitigated could be constructed at the 
completion of development. 

Table 5a: Practices/Outputs for Evidence Supporting Table 5 Secure De-
sign Measures

Practice Output

Threat modeling Software risk analysis identifies input data risks with 
input verification as mitigation.

Design Vetted library and parameterized queries are widely 
used and effective mitigations.

Implementation Coding guidance is provided for chosen mitigation.
Vetted library: A software scan is proposed to verify 
that the library has been correctly installed and used 
(7).
Parameterized queries: Guidance to verify usage is 
provided for source code inspections. 

Testing Testing plans incorporate dynamic testing for SQL 
injections. .

Metrics: Some measures for incorporating security into the 
architecture and design practices are shown in Table 5.

Table 5: Secure Design Measures

Has appropriate security experience been in-corporated into design 
development and re-views?
Have security risks associated with security assumptions been analyzed and 
mitigated?
Has attack knowledge identified the threats that the software is likely to face 
and thereby determined which architectural and design features to avoid or to 
specifically incorporate?
Have mitigations for the incorporated architec-tural and design features been 
guided by at-tack knowledge?
Have security functionality and mitigations been incorporated into the 
application devel-opment guidance?
Has guidance been provided for coding and testing? 



WWW.CSIAC.ORG  |  35

Software Assurance Measurement - establishing a confidence that security is sufficient  –  CON'T

Sub-Goal: Minimize the number of vulnerabilities 
inserted during coding.

Practices: Differences in efficiency and effectiveness encourage 
the use of a combination of inspections, static analysis, and testing 
to remove defects from existing code (8). Testing is covered in the 
following section. The effectiveness of inspections is very dependent 
on the experience of the participants, while the effectiveness for 
static analysis depends on the quality of the rules that are applied 
and the interpretation of the output.

The choice of a practice can depend on the type of vulnerability. The 
design flaws should be identified during design and inspections and 
not by static analysis applied to the implementation. Static analysis 
tools can be more effective than inspections for identifying potential 
weaknesses in data flows that involve multiple software components 
for use at integration.

Outputs: 

Table 6: Coding Outputs

prioritized list of coding weaknesses associated with programming languages 
used and application domain

static analysis associated with coding identified weaknesses

mitigation of identified coding weaknesses 
code inspection results 

Improving security for design concentrates on proactively 
analyzing compromises as the design was created rather than at 
its completion. A developer can be more proactive with coding by 
creating and enforcing guidelines to eliminate a number of coding 
vulnerabilities. For example, buffer overflows too often occur with a 
subset of the text string processing functions in the C programming 
language. Coding guidelines can prohibit the use of that subset of 
functions, and C compilers can enforce those guidelines to reject 
code use of those functions. 

Metrics: The effectiveness for static analysis is also affected by the 
trade-offs made by the tool designer regarding  the time required for 
the analysis, the expert help required to support the tool’s analysis, 
and the completeness of the analysis. Most static analysis tools use 
heuristics to identify likely vulnerabilities and to allow completion 
of their analysis within useful times. Thus static analysis is almost 
always incomplete and rather than showing flaws automatically, the 
output of such tools frequently serve as aids for an analyst to help 
them zero in on security-relevant portions of code so they can find 
flaws more efficiently.

Table 7: Static Analysis Measures

If coding guidelines are used, has static analysis that enforces those guidelines 
been universally applied?
Are the tools used and the rules applied appropriate for the coding risks 
identified during the security risk analysis?
If formal inspections and in-depth static analysis have been applied to only a 
subset of the components, does that coverage include the code that manages 
the critical risks identified by security risk analysis? 
Have the cross-component data flows with security risks been subject to static 
and dynamic analysis?

Sub-Goal: Test, validate, and verify software security 
risk mitigations.

Practice: In some instances testing is the only time that dynamic 
analysis applied. Some kinds of security problems are easier to 
detect dynamically than statically, especially problems with remote 
data and control flow. Testing can also supplement static analysis 
in confirming that the developers did not overlook some insecure 
programming practices. 

Outputs: Output includes testing plans, outputs of tests, and 
analysis of the results. For example, distinguishing true vulnerabilities 
from those that cannot be exploited can be easier when dynamic 
analysis and static analysis are combined.

Security requirements can be positive in terms of what a system 
should do or negative in terms of what it should not do. The 
requirements for authentication, authorization, encryption, and 
logging are positive requirements and can be verified by creating 
the conditions in which those requirement are intended to hold true 
and confirming from the test results that the software meets them. 
A negative requirement states that something should never occur. 
To apply the standard testing approach to negative requirements, 
one would need to create every possible set of conditions, which is 
infeasible. Risk-based tests target the weaknesses and mitigations 
identified by the security risk analysis and can confirm the level 
of confidence we should have that the security risks have been 
sufficiently mitigated. Testing metrics are shown in Table 8.

Table 8: Testing Measures

What percentage of software security requirements are covered by testing?
What percentage of the security risk mitigations are covered by testing?
Does security testing include attack patterns that have been used to 
compromise systems with similar designs, functionality, and attack surfaces? 
Tests should have developed based threats, vulnerabilities, and assumptions 
uncovered by the security analysis. For example, tests could be developed to 
validate specific design assumptions or the interfaces with external software 
components. 
Have dynamic security analysis and security testing been applied to mitigations?
Has test coverage increased in risky areas identified by the analysis? For 
example, a specific component, data flow, or functionality may be more exposed 
to untrusted inputs, or the component may be highly complex, warranting extra 
attention.

https://www.csiac.org


36

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

Assembling the Software Assurance Case

Using the Software Assurance Framework (SAF), which provides 
a structure of best practices, we have created a line of site from the 
software assurance goal to potential metrics that would provide 
evidence about how the goal is addressed through good software 
engineering practices. Each organization will need to select a starting 
set of evidence in which there is justification to invest time and 
effort, and these may vary by the type of technology product to be 
acquired or developed, since concerns for software assurance will 
vary depending on usage. 

At each technical review throughout the acquisition and development 
lifecycle, activity progress, outputs, and metrics should be reviewed 
and evaluated to confirm that progress is being made to address the 
sufficiency for software assurance. Each review should consider the 
security aspects of the solution as well as the functional capabilities 
of the target outcome. For each engineering review, the following 
result should be supported by the gathered evidence:

ii Initial Technical Review (ITR). As-sess 
the capability needs (including security) 
of the materiel solution ap-proach.

ii Alternative Systems Review (ASR). Ensure that 
solutions will be cost ef-fective, affordable, operationally 
ef-fective, and can be developed in a timely manner 
at an acceptable level of software security risk.

ii System Requirements Review (SRR). Ensure 
that all system re-quirements (including security) 
are defined and testable, and consistent with cost, 
schedule, risk (including software security risk), 
technology readiness, and other system con-straints.

ii Preliminary Design Review (PDR). Evaluate progress 
and technical ade-quacy of the selected design approach.

ii Critical Design Review (CDR). De-termine 
that detail designs satisfy the design requirements 
(including soft-ware security) established in the spec-
ification and establish the interface re-lationships.

REFERENCES
[1]	 Jones, Caper and Bonssignour, Oliver. The Economics of Software 

Quality. s.l. : Addison-Wesley Professional, 2011.

[2]	 Committee on National Security Systems. National Information 
Assurance (IA) Glossary CNSS Instruction (CNSS Instruction No. 
4009). Fort George G. Meade, MD : s.n., 2010.

[3]	 Alberts, Christopher J. and Woody, Carol C. Prototype Software 
Assurance Framework (SAF): Introduction and Overview. [Online] 
2017. http://resources.sei.cmu.edu/library/. CMU/SEI-2017-
TN-001.

[4]	 Andrew Requirements and Architectures for Secure Vehicles. Wha-
len, Michael W., Cofer, Darren and Gacek, Andrew. 4, 2016, IEEE 
Software, Vol. 33.

[5]	 Howard, Michael and Lipner, Steve. The Security Development 
Lifecycle. s.l. : Microsoft Press, 2006.

[6]	 Heartbleed 101. Carvalho, Marco, et al. 4, s.l. : IEEE, July-August 
2014, Security & Privacy, Vol. 12, pp. 63-67.

[7]	 Consortium for IT Software Quality. CISQ Specifications for 
Automated Quality Characteristic Measures. Consortium for IT 
Software Quality. [Online] 2012. http://it-cisq.org/wp-content/up-
loads/2012/09/CISQ-Specification-for-Automated-Quality-Charac-
teristic-Measures.pdf.

[8]	 Jones, Capers. Software Quality in 2012: A Survey of the State of 
the Art. Nancook Analytics LLC. [Online] 2012. http://sqgne.org/
presentations/2012-13/Jones-Sep-2012.pdf.

[9]	 Kelly, Tim P. Arguing Safety - A Systematic Approach to Safety 
Case Management. Department of Computer Science Report 
YCST, York University. May 1999. DPhil Thesis.

[10]	 Davis, Noopur & Mullaney, Julia. The Team Software Process (TSP) 
in Practice: A Summary of Recent Results (CMU/SEI-2003-TR-014). 
Software Engineering Institute, Carnegie Mellon University, 2003. 
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6675

Like and Follow us 
On Social Media!  

Search: CSIAC

https://twitter.com/DoD_CSIAC
https://www.facebook.com/CSIAC/
https://www.youtube.com/channel/UCKHwOTkjLAV9VgiecyEUzgg
https://www.linkedin.com/groups/3406862
https://vimeo.com/csiac


HOW CAN CSIAC HELP?
In a time of shrinking budgets and increasing 
responsibility, CSIAC is a valuable resource for accessing 
evaluated Scienti�c and Technical Information (STI) culled 
from e�orts to solve new and historic challenges. Our 
CSIAC SME network includes experienced engineers and 
technical scientists, retired military leaders, information 
specialists, leading academic researchers, and industry 
experts who are readily available to help prepare timely 
and authoritative answers to complex technical inquiries.

Once submitted, the inquiry is sent directly to an analyst 
who then identi�es the sta� member, CSIAC team 
member, or SME that is best suited to answer the 
question. The completed response is then compiled and 
sent to the user. Responses can take up to 10 working 
days, though they are typically delivered sooner.

CALL NOW!  800-214-7921

EMAIL AT:  info@csiac.org

WANT TO SUBMIT  A  
TECHNICAL INQUIRY?
The CSIAC provides up to 4 hours of Free 
Technical Inquiry research to answer users’ 
most pressing technical questions. Our 
subject matter experts can help �nd answers 
to even your most di�cult questions.

Technical inquiries can be submitted to CSIAC 
via our csiac.org, or by email, phone or fax. 

FOR MORE INFO, GO TO: 
https://www.csiac.org/free-inquiries/

HERE TO SUPPORT YOUR MISSION.
Is your organization currently facing a challenging Information 

Technology oriented research and development problem that you need 

to have addressed in a timely, efficient and cost effective manner?



38

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

S oftware assurance (SwA) is the “level of confidence that software functions 
as intended and is free of vulnerabilities, either intentionally or unintentionally 
designed or inserted as part of the software, throughout the life cycle.” [4] The 

latest change to Department of Defense (DoD) Instruction (DoDI) 5000.02, Operation 
of the Defense Acquisition System [1], includes a new enclosure on cybersecurity 
(Enclosure 14) that outlines several required actions DoD acquisition Program 
Managers (PMs) must implement to ensure system security and related program 
security across the acquisition, sustainment, and operation life cycle. 

ENGINEERING SOFTWARE ASSURANCE 
INTO WEAPONS SYSTEMS DURING THE 
DOD ACQUISITION LIFE CYCLE
By:  Dr. Scott M. Brown, Engility Corporation

38

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS



WWW.CSIAC.ORG  |  39

Engineering Software Assurance into Weapons Systems During the DoD Acquisition Life CycleEngineering Software Assurance into Weapons Systems During the DoD Acquisition Life Cycle

This article provides the start of a SwA user’s 
guide, a set of recommended and tailorable “best 
practice” SwA activities a PM can take during 
development and sustainment of weapon and 
other systems. These best practices are based in 
software and systems engineering with suggested 
activities; expectations for conduct of Systems 
Engineering Technical Reviews (SETRs) with 
entrance and exit criteria; Program Protection 
Planning (PPP) considerations; and specific 
application of SwA tools and methods during 
the DoD acquisition life cycle phases. The intent is to “engineer-in” 
SwA into the system up front, including to system requirements 
using existing methods, tools, and processes and avoid attempting 
to “bolt on” SwA at the end of system implementation. PMs have 
greatly reduced latitude working with risks and vulnerabilities after 
system development without dramatically impacting cost, schedule 
and/or performance of the weapon system. 

Background

In February 2017 a Defense Science Board Task Force on Cyber 
Supply Chain summarized the need for a full life cycle approach 
to SwA, stating “[b]ecause system configurations typically 
remain unchanged for very long periods of time, compromising 
microelectronics can create persistent vulnerabilities. Exploitation 
of vulnerabilities in microelectronics and embedded software can 
cause mission failure in modern weapon systems.... Cyber supply 
chain vulnerabilities may be inserted or discovered throughout the 
life cycle of a system. Of particular concern are the weapons the 

nation depends upon today; almost all were 
developed, acquired, and fielded without 
formal protection plans.” [2]

The Office of the Deputy Assistant Secretary 
for Defense for Systems Engineering 
(ODASD(SE)) leads DoD in key areas of 
cyber resilient systems, program protection, 
system security engineering (SSE), and 
system assurance to better understand and 
promote how the defense portfolio should 

handle evolving engineering and security challenges. The need for 
this focus is also reflected in National Defense Authorization Acts 
in recent years [3, 4, and 5] as well as in observations of programs 
by the Office of the Secretary of Defense (OSD), the Military 
Services, and defense agencies (e.g., National Security Agency, 
National Reconnaissance Office, and Missile Defense Agency).

Public Law 111–383, National Defense Authorization Act (NDAA) 
for Fiscal Year 2013, Section 932, STRATEGY ON COMPUTER 
SOFTWARE ASSURANCE, required the Secretary of Defense 
to submit a DoD strategy for assuring the security of software and 
software-based applications of critical systems.  A key element of 
the strategy was to develop “[m]echanisms for protection against 
compromise of information systems through the supply chain or 
cyberattack by acquiring and improving automated tools for—
(A) assuring the security of software and software applications 
during software development; (B) detecting vulnerabilities during 
testing of software; and (C) detecting intrusions during real-time 
monitoring of software applications.”  The mandated report to 
Congress provided the strategy, which focused on information 

The intent is to 
“bake in” and 

engineer SwA into 
the system “up 
front and early”

WWW.CSIAC.ORG  |  39

https://www.csiac.org


40

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

assurance and cybersecurity policy and guidance. The strategy 
included tools and techniques for test and evaluation (T&E) and 
for detecting and monitoring software vulnerabilities.  

Public Law 112-239, NDAA for Fiscal Year 2013, Section 933, 
IMPROVEMENTS IN ASSURANCE OF COMPUTER 
SOFTWARE PROCURED BY THE DEPARTMENT OF 
DEFENSE, directed USD(AT&L) to develop 
policy that “requires use of appropriate automated 
vulnerability analysis tools in computer software 
code during the entire life cycle of a covered 
system, including during development, 
operational testing, operations and sustainment 
phases, and retirement.” 

Public Law 113-66, the NDAA for Fiscal Year 
2014, Section 937, JOINT FEDERATED 
CENTERS FOR TRUSTED DEFENSE 
SYSTEMS FOR THE DEPARTMENT 
OF DEFENSE, directed DoD establish and 
charter a federation of capabilities to support 
trusted defense systems and ensure the security 
of software and hardware developed, acquired, 
maintained, and used by the Department. The 
statute stated a key charter responsibility of the 
federation was to set forth “the requirements for 
the federation to procure, manage, and distribute 
enterprise licenses for automated software vulnerability analysis 
tools.” The resulting Joint Federated Assurance Center ( JFAC), 
chartered by the Deputy Secretary of Defense, declared Initial 
Operational Capability (IOC) in 2016. The JFAC is a federation of 
DoD organizations with a shared interest in promoting software and 
hardware assurance in defense acquisition programs, systems, and 
supporting activities. The JFAC has sought to:

ii Operationalize and institutionalize assurance 
capabilities and expert support to programs

ii Organize to better leverage the DoD, interagency, and 
public/private sector assurance-related capabilities, and 

ii Influence research and development investments 
and activities to improve assurance technology, 
methodology, workforce training, and more.

In early 2017, the Under Secretary of Defense 
for Acquisition, Technology, and Logistics 
(USD(AT&L)) updated DoDI 5000.02 to 
include a new Enclosure 14, “Cybersecurity in 
the Defense Acquisition System.” The policy 
states in part, “Program managers, assisted by 
supporting organizations to the acquisition 
community, are responsible for the cybersecurity 
of their programs, systems, and information. This 
responsibility starts from the earliest exploratory 
phases of a program, with supporting technology 
maturation, through all phases of the acquisition. 
Acquisition activities include system concept 
trades, design, development, T&E, production, 
fielding, sustainment, and disposal.” PMs request 
assistance from the JFAC such as subject matter 
expertise; tools, and capabilities to support 
program software and hardware assurance needs; 
knowledge; supporting software and hardware 

assurance contract requirements; access to state-of-the-art T&E;  
training; and  licenses to a suite of software vulnerability analysis tools.

Technical risk management is a fundamental program management 
and engineering process that should be used to detect and mitigate 
vulnerabilities, defects, and weaknesses in SW and HW so they do 
not become breachable cyber vulnerabilities in deployed systems. 
Cyber vulnerabilities provide potential exploitation points for 

lack of software 
assurance policy, 

guidance and 
practice within 

the Department 
results in 

disorganized and/
or inadequate 

efforts

 Figure 1: Software Assurance spans the entire DoD Acquisition life cycle. 



WWW.CSIAC.ORG  |  41

Engineering Software Assurance into Weapons Systems During the DoD Acquisition Life Cycle  –  CON'T

adversaries to disrupt mission success by stealing, altering, or 
destroying system functionality, information, or technology. PMs 
describe in their PPPs the program’s critical program information 
and mission-critical functions and components; the threats to and 
vulnerabilities of these items; and the plan to apply countermeasures 
to mitigate or remediate associated risks. Software is typically 
predominate in system functionality and SwA is one of several 
countermeasures that should be used in an integrated approach 
that also includes information safeguarding, designed-in system 
protections, “defense-in-depth” and layered security, supply chain 
risk management (SCRM) and assurance, hardware assurance, 
anti-counterfeit practices, anti-tamper, and program security-related 
activities such as information security, operations security (OPSEC), 
personnel security, physical security, and industrial security. SwA 
vulnerabilities and risk-based remediation strategies are assessed, 
planned for, and included in the PPP from a time frame early enough 
that resources can be planned and obtained. 

Based on the recent DoDI 5000.02 update on cybersecurity, DoD 
is leading development and implementation of the supporting 
practices, guidance, tools and workforce competencies to ensure PMs 
have the ability to mitigate cybersecurity risk or vulnerabilities. Key 
assurance gaps exist regarding Program Management Office (PMO) 
activities to implement SwA within their programs as defined in the 
JFAC SwA Capability Gap Analysis, recently approved by the JFAC 
Steering Committee. This gap analysis is required by Public Law 
113-66, National Defense Authorization Act (NDAA) for Fiscal 
Year 2014, Section 937. Where policy provides for the assessment 
of planning activities during development (e.g., DoDI 5000.02 
mentions program support assessments and Preliminary Design 
Review (PDR) and Critical Design Review (CDR) assessments), 
software assurance should be an explicit consideration of those 
execution assessments. 

Following are recommended SwA execution actions a PM can take 
during development, sustainment, and operation of weapon systems. 
These activities may be considered by DoD for inclusion in future 
policy and guidance. 

Software Assurance in the DoD Acquisition Life Cycle

The Defense Acquisition Process, as provided in DoDI 5000.02, is 
a tailorable multi-phased development and sustainment process for 
all DoD programs, using six acquisition models.  The phases, from 
Materiel Solution Analysis to Operations and Support, contain 
multiple milestones, decision points and technical reviews.  Within 
this process, program management, systems engineering, T&E, 
and other acquisition disciplines execute their own individual but 
interrelated processes, and include SwA.  

The development and sustainment of software is a major portion 
of the total system life-cycle cost, and software assurance should be 
considered at every phase, milestone, decision point and technical 
review in the acquisition life cycle both to reduce cost and to repel 

cyberattacks. A range of SwA activities must be planned and 
executed to gain assurance that any system containing software 
will perform operationally as expected, and only as expected. These 
activities blend into the entire life cycle, from requirements, to 
design, to implementation, to testing, to fielding, and to operation of 
the software. Figure 1 shows the DoD acquisition life cycle, and the 
tables below describe activities that should be tailored and employed 
among the phases and technical reviews in its process. Some of these 
assurance activities are also applied iteratively during the software 
development life cycle (not shown) whenever and wherever those 
software development activities occur during the DoD acquisition 
life cycle, such as in block, agile, or DevOps approaches. 

Neglecting SwA in early life cycle activities (such as development 
planning, requirements, architecture assessment, design, and 
code development) will increase the cost of achieving assurance 
during later life cycle activities (such as operational testing and 
sustainment). But all life cycle phases require attention in the 
implementation of SwA. For example, thorough design and code 
review, use of static and origin analysis SwA tools, and follow-on 
remediation of findings, will both complement testing and reduce 
the resources expended during testing.  Some flaws are more 
readily found through SwA tools used during review and analysis, 
others through dynamic analysis in testing, and certain software 
vulnerabilities are only detectable through manual analysis.  Also 
the costs and benefits of specific assurance activities (e.g., code 
review, static code analysis, fuzz testing, and penetration testing) 
vary depending on the programming language, development 
environment, the availability of source code, the attack surface, the 
characteristics of the program, interoperability with other systems, 
and the criticality of the software in the context of the system. 

Table 1 through Table 5 identify SwA considerations and specific 
activities associated with each phase of the acquisition life cycle. If a 
program is initiated later in the life cycle, for example at Milestone 
B, select activities from earlier phases may still be appropriate for 
consideration in later phases as determined by assessment of the 
tactical or operational use of the system compared with mission 
threads and system requirements.  If a program is using an iterative 
development approach, SwA tools and methodology should 
be applied to individual software module development, then to 
integration testing and software builds so that vulnerabilities in 
software code are detected when they are generated, and remediated 
according to likelihood and consequence of adversarial attack. 

The Joint Federated Assurance Center ( JFAC) website (https://
JFAC.army.mil), accessible by Common Access Card, provides a 
broad spectrum of assistance in planning and operation of assurance 
as an underpinning SSE activity. It also provides tools-as-a-service 
for all DoD programs and organizations in support of the listed 
activities. Four examples are assurance service providers, access to 
subject matter expertise, the Assessment Knowledge Base, and SwA 
engineering tools. The JFAC community spans DoD and can be of 
help at any point in the acquisition life cycle. Consider how JFAC 
might support a program’s needs in each of the tables below. 

https://www.csiac.org


42

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

Table 1: Software Assurance Considerations During the Materiel Solution Analysis Phase - Source: Author

SOFTWARE ASSURANCE CONSIDERATIONS (MSA Phase)

•	 Identify SwA roles, responsibilities, and assurance needs for the program (i.e., staffing, tools, training, etc.); plan for SwA training and resourcing.
•	 For the risk management process, develop understanding of how the deployed system may be attacked via software and use that understanding to scope 

criticality and threat analyses that are summarized in the PPP.
•	 Plan assessments and map tactical use threads, mission threads, system requirements, system interoperability, and functionality upgrades from the existing 

deployed system, and maintain the mapping as metadata through the last upgrade in sustainment.
•	 Identify system requirements that may map to software and SwA requirements to facilitate trade-offs and studies to optimize functional architecture and system 

design, and planning and resourcing to mitigate software vulnerabilities, risks, and life cycle cost. For an integration-intensive system that relies substantially 
on non-development/commercial off-the-shelf (COTS)/government off-the-shelf (GOTS) items, trade space analysis can provide important information to 
understand the feasibility of capability and mission requirements as well as assurance of the non-developmental software supply chain. Consider alternatives to 
refine the system concept of implementation and optimize for modularity and digital engineering; ensure contract language for assurance reduces technical and 
programmatic risk.  Support contracts should be part of this early solution analysis, to articulate/manage government technical data rights that later impact SwA.

•	 Select secure design and coding standards for the program based on system functionality.
•	 Plan and resource for the use of automated tools that determine assurance for or that detect vulnerabilities, defects, and weaknesses in requirements, allocation 

of requirements to functional architecture, functional architecture, allocation of functions to system design, system design, allocation of design modules to 
software design, coding and unit testing, and integration testing. Identify JFAC SwA service providers to assist with SwA planning and services and engage as 
necessary.

•	 Develop SwA activities interconnected across the system life cycle and document in the program software engineering planning document and in the program 
Integrated Master Schedule (IMS).

Table 2: Software Assurance Considerations During the Technology Maturation and Risk Reduction Phase - Source: Author

SOFTWARE ASSURANCE CONSIDERATIONS (TMRR Phase)

•	 Incorporate SwA requirements, tool use, metrics, and assurance thresholds into solicitations. Architectures, designs, and code developed for prototyping are 
frequently reused later in development.

•	 Assess system functional requirements and verification methods for inclusion of SwA tools, methodologies, and remediation across the development life cycle.
•	 Assess requirements for SwA are correct and complete regarding assurance. Consider means of attack such as insiders and adversaries using malicious inserts; 

system characteristics; interoperability with other systems; mission threads; and other factors. Assure that mapping and traceability are maintained as metadata 
for use in all downstream assessments.

•	 Establish baseline architecture and review for weaknesses (e.g., use of Common Weakness Enumeration (CWE)) and susceptibility to attack (e.g., use of Common 
Attack Pattern Enumeration and Classification (CAPEC)), and likelihood of attack success considering each detected weakness; identify potential attack entry 
points and mission impacts. Consider which families of automated SwA engineering tools are needed for vulnerability or weakness detection. 

•	 Review architecture and design for adherence to secure design principles and assess soundness of architectural decisions considering likely means of attack; 
programming language choices; development environments; frameworks; and use of open source software, etc.

•	 Identify and mitigate technical risks through competitive prototyping while engineering in assurance. System prototypes may be physical or math models 
and simulations that emulate expected performance. High-risk concepts may require scaled models to reduce uncertainty too difficult to resolve purely by 
mathematical emulation. SW prototypes that reflect the results of key trade-off analyses should be demonstrated during the TMRR phase.  These demonstrations 
will provide SW performance data (e.g., latency, security architecture, integration of legacy services, graceful function degradation and re-initiation, and 
scalability) to inform decisions as to maturity; further, EMD estimates (schedule and life cycle cost) often depend on reuse of SW components developed in TMRR; 
therefore to prevent technical debt, SwA considerations must have been taken into account.

•	 Develop a comprehensive system-level architecture, then design (address function integrity, assurance of the functional breakout, function interoperation, and 
separation of function) that covers the full scope of the system in order to maintain capabilities across multiple releases and provide the fundamental basis to 
fight through cyberattack.  The program focused on a given SW build/release/increment may only produce artifacts for that limited scope; however, vulnerability 
assessments often interact so apply system-wide and across all build/release/increment and interfaces to interoperating systems and must be maintained 
through development and sustainment. A PDR, for example, must maintain this system-level and longer-term, end-state perspective, as one of its functions is to 
provide an assessment of system maturity for the Milestone Decision Authority to assess prior to Milestone B.

•	 Involve non-developmental item vendors in system design in order to assure functional integration addresses actual vendor product capabilities.  In an 
integration-intensive environment, system models may be difficult to develop and fully exploit if many system components come from proprietary sources or 
commercial vendors with restrictions on data rights. Explore alternatives early and consider model-based systems engineering (MBSE) as the means to engineer-
in assurance. Validating system performance and security assumptions may be difficult or even impossible.  Proactive work with the vendor community to support 
model development and support informs downstream assessments including in sustainment. 

•	 Establish and manage entry and exit criteria for SwA at each SETR in order to properly focus the scope of the reviews and achieve usable assessment results and 
thresholds.  Increasing knowledge / definition of elements of the integrated system design should include details of support and data rights.



WWW.CSIAC.ORG  |  43

Engineering Software Assurance into Weapons Systems During the DoD Acquisition Life Cycle  –  CON'T

Table 3: Software Assurance Considerations During the Engineering and Manufacturing Development Phase - Source: Author

SOFTWARE ASSURANCE CONSIDERATIONS (EMD Phase)

•	 Review architecture and design to assess against secure design principles; including system element / function isolation, least common mechanism, least 
privilege, fault isolation, graceful degradation, function re-initialization, input checking, and validation. These are the engineering basis that enable system 
resilience.

•	 Enforce secure coding practices through code inspection augmented by automated static and origin analysis tools, and secure code standards for the languages 
used. 

•	 Detect vulnerabilities, weaknesses and defects in the software as close to the point of generation as possible, prioritize according to likelihood and consequence 
of use by an adversary, remediate, and regression test.

•	 Confirm SwA requirements, vulnerability remediations, and unresolved vulnerabilities are mapped to module test cases and to the final acceptance test cases. 
This provides a basis for assurance that will be used in downstream assessments and system changes in sustainment. Ensure program critical function software 
and critical components receive rigorous automated SwA tool assessment including static code analysis (SCA), origin analysis, and penetration and fuzz testing 
including application of test coverage analyzers. Multiple SCA tools should be used.

•	 Ensure CDR software documentation represents the design, performance, and test requirements, and includes development and software/systems integration 
facilities for coding and integrating the deliverable software and assurance operations on the integrated development environment. Software and systems used 
for computer software configuration item (CSCI) development (e.g., simulations and emulations) should be assured whenever possible. Problem report metadata 
should include assurance factors such as CWE and Common Vulnerabilities and Exposure (CVE) numbers wherever relevant so that data is usable for tracking, 
reporting, and assurance assessments. Legacy problem report tracking information can be used to profile and predict which types of software functions may 
accrue what levels of problem reports. Assessments of patterns of problem reports, or vulnerabilities among software components of the system can provide 
valuable information to support program resource and progress decisions. 

•	 Address systems assurance (SW, HW, FW, function, interoperability) up front and early vs. delay until later software builds. For a program using an incremental 
software development approach, technical debt may accrue within a given build, and across multiple builds without a plan or resources to remediate code 
vulnerabilities as they are generated. Technical reviews, both at the system and build levels, should have a minimum viable requirements and architecture 
baseline that includes SwA requirements and assured design architecture considerations, as well as ensuring fulfillment of a build-centric set of incremental 
review criteria and requirements that include assurance. This baseline should be retained for use through the last upgrade in sustainment. For build content 
that needs to evolve across builds, the PM and the systems engineer should ensure that system-level vulnerabilities, defects, and weaknesses are recorded and 
mitigated as soon as practical to ensure any related development or risk reduction activities occur in a timely manner.  Configuration management and associated 
change control/review boards can facilitate the recording and management of build information and mapped assurance metadata.

•	 Ensure all detectable vulnerabilities, defects, and weaknesses are remediated before each developmental module is checked into CM.
•	 Install system components in a System Integration Lab (SIL) and assess continuously for assurance considerations throughout EMD. Assurance considerations 

include version update and CM of all COTS in the IDE, including assurance tools, operational assurance tools for the IDE, techniques using operational assurance 
tools to detect insider threats and malicious activity, and configuration control of the installed software and files. Details of the use of developmental system 
interfaces should be assessed and validated to ensure their scalability, suitability, and security for use.  The emphasis in an integration-intensive system 
environment may be less on development and more on implementation and test. Progressive levels of integration, composition, and use should be obtained in 
order to evaluate ever higher levels of system performance, conducting automated penetration and fuzz testing, ultimately encompassing end-to-end testing 
based on user requirements and expectations. Assessment and test results should be maintained for downstream test activities and system changes. If the 
system is later breached, assurance metadata generated during EMD will be a basis to determine behavior, impacts, and remediations. “Glue” code and other 
scripted extensions to the system operational environment to enable capability should be handled in as rigorous a manner for assurance as any developed 
software, i.e., kept under strong configuration management, scanned with multiple SwA tools, and inspected; updates should be properly regression-tested and 
progressively integrated/tested 

Table 4: Software Assurance Considerations During the Production and Deployment Phase - Source: Author

SOFTWARE ASSURANCE CONSIDERATIONS (P&D Phase)

•	 Continue to enforce secure design and coding practices for all SW changes, such as for installation modifications, through inspections and automated scans for 
vulnerabilities and weaknesses and maintain assessment results.

•	 Conduct automated code vulnerability scans using SCA and origin assessment tools, reporting, and prioritization, and execute defect remediation consistent with 
program policy as system changes occur. Tool updates can detect additional vulnerabilities, and installations in deployment can change SW characteristics or 
code. 

•	 Conduct penetration testing using retained red-team or other automated test cases to detect any variations from expected system behavior.
•	 Maintain and enhance added automated regression tests for remediated vulnerabilities, and employ test coverage analyzers to ensure sufficient test coverage for 

remediations.
•	 Progressive deployment of an integration-intensive system provides infrastructure and services and higher-level capabilities as each release is verified and 

validated. A rigorous release process includes configuration management and the use of regression test suites that include SwA tools. The PM, systems engineer, 
software engineer and systems security engineer should ensure user involvement in gaining understanding and approval of changes to design, functions, or 
operation that may result from vulnerability remediations.

•	 Synchronize and time block builds as much as possible to avoid forced upgrades or other problems at end-user sites. End user sites that perform their own 
customization or tailoring of the system installation should ensure that changes are mapped from the standard configuration, recorded, and shared with the PMO 
or the integrator/developer so that problem reporting and resolution activities account for any operational and performance implications, and so vulnerability 
assessment data are updated. Any changes should be scanned at the deployment site with multiple SwA tools to assure that no detectable vulnerabilities were 
inserted. This information will be necessary for assessments in detecting breaches, and for remediation of breaches.

https://www.csiac.org


44

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

Systems Engineering Technical Reviews (SETRs). Three reviews 
are particularly important to the development of all systems: the 
System Requirements Review (SRR), the Preliminary Design 
Review (PDR), and the Critical Design Review (CDR): 

ii The SRR ensures the system under review is ready to 
proceed into initial system design. It ensures all system 
requirements and performance requirements derived from 
the Initial Capabilities Document or draft Capability 
Development Document are defined and testable 
and that they are consistent with cost, schedule, risk, 
technology readiness, and other system constraints. 

ii The PDR assesses the maturity of the preliminary 
design supported by the results of requirements trades, 
prototyping, and critical technology demonstrations 
during the TMRR phase. The PDR establishes the 
allocated baseline and confirms the system under review 
is ready to proceed into detailed design (development of 
build-to drawings, software code-to documentation, and 
other fabrication documentation) with acceptable risk. 

ii The CDR assesses design maturity, design build-
to or code-to documentation, and remaining risks, 
and establishes the initial product baseline. 

Table 6 proposes success criteria for selected SETRs. These 
criteria have been developed through assessment of the SwA 

Table 5: Software Assurance Considerations During the Operations and Support Phase - Source: Author

SOFTWARE ASSURANCE CONSIDERATIONS (O&S Phase)

•	 The SW sustainment activity should take ownership of all assurance-related metadata and results in support of the PMO and system operation.
•	 Continue to enforce secure design and coding practices during sustainment through inspections and automated scans for vulnerabilities and weaknesses during 

sustainment system upgrades, revisions, Engineering Change Proposals, patches, and builds. System changes in sustainment can be as significant as new 
acquisitions. 

•	 Continue to conduct automated code vulnerability scans, reporting, and prioritization, and execute defect remediation.
•	 Maintain and enhance automated regression tests for remediated vulnerabilities, and employ test coverage analyzers to assure sufficient test coverage. 
•	 Continue to conduct penetration testing using retained red-team or other automated test cases to detect any variations from expected system behavior
•	 Develop and use procedures to facilitate/ensure effective software configuration management and control. For example, require static and origin analysis 

scans for any changes to executable scripts or code, with all detected vulnerabilities remediated before the changes are approved. A defined block change or 
follow-on incremental development which delivers new or evolved capability, maintenance, security, safety, or urgent builds and upgrades to the field should 
be accomplished using this best practice. Procedures for updating and maintaining software on fielded systems often requires individual user action, and may 
require specific training. There are inherent security risks involved in installing or modifying software on fielded weapon systems used in tactical activities. This 
should be anticipated and remediated during the MSA phase. For example, the software would have been designed so that device update in tactical situations 
can be assured in-situ to reduce or eliminate the opportunities for malicious insertion, corruption, or loss of software or data. Software updates to business and 
IT systems can also pose risks to operational availability through insider threats that should be anticipated and mitigated during the MSA phase. For example, 
scan glue code periodically and assess any unknown changes for malicious insertions, and scan all executable SW or scripts whenever changes are applied. 
For any changes that impact system function, assess the design to maintain separation of function. PMs and systems and software engineers should implement 
procedures and tools to assure the supply chain in order to reduce risk and prevent malicious insertions. The supply chain includes sources for COTS, GOTS, and 
open source libraries.

•	 Maintain test cases previously developed for automated penetration and fuzz testing tools used during operational testing or red-team operations during system 
maintenance and asynchronously conduct them to detect changes in system function, operation, or timing from the baseline. Changes can be the result of 
undetected and operational malicious inserts by insiders. 

•	 Plan for system upgrades/updates timed to limit the proliferation of releases and therefore focus available maintenance, assurance, and support resources.  In 
an integration-intensive environment, security upgrades, technical refreshes, and maintenance releases can proliferate, causing loss of situational awareness 
of assurance posture at end-user sites. Configuration management and regression testing should be used to ensure system integrity and to maintain detailed 
situational awareness.

•	 Use SwA tools such as origin analysis and penetration testing to detect changes in operational configuration between the deployed site and the tested baseline. 

content in numerous PPPs, in feedback through JFAC from the 
Services and agencies, and they continue to be improved. The 
guidance presented in Table 6 should be tailored to the specific 
SETRs employed for a given acquisition program, and for the 
characteristics of the program.

Initiatives

Software Assurance Capability Gap Analysis: In July 2016, the DoD 
JFAC SwA Technical Working Group identified 63 assurance-
related DoD software and systems engineering gaps that impair 
the effective planning and execution of SwA within the DoD 
acquisition and sustainment process. The gaps are organized into 
seven categories: 

1.	 Life Cycle Planning and Execution; 
2.	 SwA Technology; 
3.	 Policy, Guidance, and Processes; 
4.	 Resources; 
5.	 Contracting and Legal; 
6.	 Metrics; and 
7.	 Federated Coordination. 

The JFAC Steering Committee recently approved the 
congressionally mandated analysis document, published on the 



WWW.CSIAC.ORG  |  45

Engineering Software Assurance into Weapons Systems During the DoD Acquisition Life Cycle  –  CON'T

Table 6: Software Assurance Success Criteria for Conduct of Technical Reviews - Source: Author

Objective SwA Success Criteria

System Requirements Review (SRR)

Recommendation to proceed into development with acceptable 
risk. 

Level of understanding of top-level system requirements is 
adequate to support further requirements analysis and design 
activities.

Government and contractor mutually understand system 
requirements including (1) the preferred materiel solution 
(including its support concept) from the Materiel Solution Analysis 
(MSA) phase, (2) available technologies resulting from the 
prototyping efforts, and (3) maturity of interdependent systems. 

•	 Select automated tools for design, vulnerability scan/analysis, etc.
•	 Establish facilities, tools, equipment, staff and funding.
•	 Confirm contractor SEMP includes SwA roles and responsibilities
•	 Determine security requirements for programming languages, architectures, development 

environment, and operational environment. 
•	 Identify secure design principles to guide architecture and design decisions.
•	 Establish processes for ensuring adherence to secure design and coding standards.
•	 Develop plan for addressing SwA in legacy code.
•	 Establish assurance requirements for software to deter, detect, react, and recover from 

faults and attacks.
•	 Perform initial SwA reviews and inspections, and establish tracking processes for 

completion of assurance requirements.

Preliminary Design Review (PDR)

Recommendation that allocated baseline fully satisfies user 
requirements and developer ready to begin detailed design with 
acceptable risk. 

Allocated baseline established such that design provides sufficient 
confidence to support 2366b certification. 

Preliminary design and basic system architecture support 
capability need and affordability target achievement.

•	 Determine that baseline fully satisfies user requirements
•	 Review architecture and design against secure design principles; including system element 

isolation, least common mechanism, least privilege, fault isolation, input checking and 
validation.

•	 Determine if initial SwA Reviews and Inspections received from assurance testing activities 
capture requirements appropriately.

•	 Confirm that SwA requirements are mapped to module test cases and to the final 
acceptance test cases.

•	 Establish automated regression testing procedures and tools as a core process.

Critical Design Review (CDR)

Recommendation to start fabricating, integrating, and testing test 
articles with acceptable risk. 

Product design is stable. Initial product baseline established.

Design is stable and performs as expected. Initial product baseline 
established by the system detailed design documentation confirms 
affordability/should-cost goals. Government control of Class I 
changes as appropriate. 

•	 Enforce secure coding practices through Code Inspection augmented by automated Static 
Analysis Tools. 

•	 Detect vulnerabilities, weaknesses and defects in the software, prioritize, and remediate.
•	 Assure chain-of-custody from development through sustainment for any known 

vulnerabilities and weaknesses remaining and mitigations planned.
•	 Assure hash checking for delivered products.
•	 Establish processes for timely remediation of known vulnerabilities (e.g. Common 

Vulnerability Enumeration (CVEs)) in fielded COTS components.
•	 Ensure planned SwA testing provides variation in testing parameters, e.g. through 

application of Test Coverage Analyzers.
•	 Ensure program critical function software, Critical Program Information, and Critical 

Components receive rigorous  test coverage

JFAC website, and directed the SwA Technical Working Group 
to develop a strategy to address the identified gaps. This strategy 
is in development and the gap analysis will be published on the 
JFAC portal5.

Cyber Integrator (CI): U.S. Army Aviation and Missile Research, 
Development, and Engineering Center (AMRDEC) conducted 
a one-year pilot program in an ACAT I program to include a CI 
into the Program Management Organization [9]. The CI is an 
acquisition professional with a systems engineering background 
charged with the holistic assessment of software assurance, anti-
tamper, hardware assurance, firmware assurance and more, for 
planning recommendations to the Program Office, to plan and 
meet assurance and cybersecurity statute, policy and guidance 
requirements for each phase of the acquisition life cycle. 

As the principal assurance and cyber advisor to the PM, the CI:

ii horizontally assesses all system security 
disciplines to identify gaps beyond general 
statutory and policy compliance; 

ii recommends means to fully comply with statutory 
and policy requirements and incorporate best 
practices to improve overall assurance posture; 

ii plans PPP activities and determines costs to implement; 
ii informs contract language needs, performs 

assessments, and makes updates to improve a 
program’s technical assurance posture; 

ii conducts relevant full coverage scans; and 
ii continuously monitors assurance activities, provides 

status, and maintains awareness of changing policy 
and guidance and derived cyber requirements. 

https://www.csiac.org


46

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

AMRDEC observed that programs normally met all compliance 
requirements prior to an acquisition milestone, yet with even 
100% “compliance,” residual assurance risk can remain in a system. 
AMRDEC’s goal is to reduce or eliminate this residual assurance 
risk through implementation of system technical assurance posture, 
while executing best practices along the way. To aid in the conduct 
of the CI’s responsibilities, AMRDEC, in conjunction with the 
JFAC, sponsored a CI Dashboard tool that supports planning, 
tracking and reporting assurance and cyber-related activities and 
requirements. The CI dashboard guides users through a series of 
informative survey questions to obtain appropriate assurance and 
compliance (statutory and policy) and recommended guidance 
tailored to the program. The dashboard, shown in Figure 2, is 
populated by the responses to the survey questions and provides 
the PMO an “at-a-glance” status of all the ongoing assurance and 
cyber activities. A more detailed report is provided for activities 
that are not on track, and any highlighted area can redirect the 
user to the specific area of insufficiency. The CI Dashboard is a 

Figure 2: The Cyber Integrator Dashboard tracks cybersecurity activities across the entire DoD acquisition life cycle. 

pilot that will be offered as a service via the JFAC website to all 
DoD programs and organizations without fee or other constraint. 

Conclusion

Software is the foundation of systems comprising our nation’s 
military power. The primary and important mission capabilities 
of all current and foreseen weapons systems are implemented in 
software, and software will be 88% of the cost of DoD systems by 
2024. However, the assurance that weapon system software is free 
of detectable vulnerabilities, defects and weaknesses that could 
disrupt mission, or prevent its achievement, is only now emerging 
as a technology and engineering discipline. The key outcome is 
to understand that traditional cybersecurity has a shared mission 
with SSE in reduction or elimination of critical vulnerabilities 
in the operation of weapons system and other software. Where 
cybersecurity has used perimeter or layered defenses to defend 



WWW.CSIAC.ORG  |  47

Engineering Software Assurance into Weapons Systems During the DoD Acquisition Life Cycle  –  CON'T

systems against cyberattack, SSE builds systems from the start that 
are engineered to be resilient and fight through tactical cyberattack. 
SSE uses software assurance tools, techniques, and methodology to 
“engineer-in assurance” from the beginning of concept development, 
and throughout the system life cycle, so that vulnerabilities are 
discovered and fixed at the earliest possible point by the engineering 
team. The software becomes resilient to cyberattack, so that when the 
adversary penetrates cybersecurity, the mission continues. Eighty-
four percent of successful cyberattacks are directly and specifically to 
the functions in the applications that achieve system mission, and in 
each case the attacks not observed by cybersecurity defenses. SSE is 
the discipline that will mitigate this problem. This article considered 
assurance of the supply chain for software, malicious insertions, 
latent vulnerabilities in operations, and vulnerability detection and 
remediation during development, sustainment, and in operations.  
It addressed software assurance roles and responsibilities, processes, 
products, tools, and software assurance capability gaps within the 
Department. We recommend a set of software assurance activities for 
each acquisition phase and technical review that a PM and their staff 
can tailor as appropriate to the life cycle phase and characteristics 
of their program. Inclusion of these activities in future authoritative 
guidance and tools (e.g., Cyber Integrator) will aid PMOs to execute 
SwA more effectively and efficiently.

REFERENCES
[1]	 Under Secretary of Defense for Acquisition, Technology and Logis-

tics. DoDI 5000.02, Operation of the Defense Acquisition System. 
Instruction, Department of Defense. February 2, 2017.

[2]	 Office of the Under Secretary of Defense for Acquisition, Technolo-
gy and Logistics. Report of the Defense Science Board Task Force 
on Cyber Supply Chain. February 2017.

[3]	 Public Law 111-383. National Defense Authorization Act (NDAA) 
for Fiscal Year 2011. Section 932, Strategy on Computer Software 
Assurance.

[4]	 Public Law 112-239. National Defense Authorization Act (NDAA) 
for Fiscal Year 2013. Section 933, Improvements in Assurance of 
Computer Software Procured by the Department of Defense.

[5]	 Public Law 113-66. National Defense Authorization Act (NDAA) for 
Fiscal Year 2014. Section 937, Joint Federated Centers for Trusted 
Defense Systems for the Department of Defense. 

[6]	 Office of the Deputy Assistant Secretary of Defense for Systems 
Engineering. Department of Defense Risk, Issue, Opportunities 
Management Guide for Defense Acquisition Programs. Guide, 
Department of Defense. 2015.

[7]	 Department of Defense Chief Information Officer. DoD Instruction 
8510.01, Risk Management Framework (RMF) for DoD Information 
Technology (IT). Instruction, Department of Defense. 2016.

[8]	 Public Law 112-239. National Defense Authorization Act for Fiscal 
Year 2013. January 2, 2013.

[9]	 Goldsmith, Rob, and Steve Mills. Cyber Integrator: A Concept Whose 
Time Has Come. Defense AT&L Magazine. March–April 2015.

ABOUT THE AUTHORS

Mr. Thomas Hurt is the Director of the Joint Federated 
Assurance Center (JFAC) and lead for Software Assurance (SwA) 
in the Office of the Deputy Assistant Secretary of Defense for 
Systems Engineering (ODASD(SE)) within the Office of the Under 
Secretary of Defense for Acquisition, Technology, and Logistics 
(OUSD(AT&L)).  Before joining ODASD(SE), Mr. Hurt served as 
the project manager of an Army initiative to establish the use of 
modeling and simulation to support systems engineering trades 
and analyses, then automate the process to 1-day turnaround. 
He also led the RDECOM component of the Test and Evaluation 
Managers Committee for the U.S. Army Research, Development, 
and Engineering Command (RDECOM) Headquarters and for the 
Army Test Executive.  Mr. Hurt founded and led TeraStore and 
holds more than 30 U.S. and international patents on nano-
devices and their quantum electrical and magnetic effects.  
He worked in programs such as the TRIDENT, V-22, a global 
intelligence network, and the Freedom Space Station in software 
development and systems engineering capacities. Mr. Hurt 
started his career as an officer in the U.S. Marine Corps.  He 
holds a bachelor’s degree in electrical engineering from Capitol 
Technology University.

Scott Brown, Ph.D., serves as the technical director and 
deputy program manager of Engility Corporation’s technical 
services in support of the Office of the Deputy Assistant 
Secretary of Defense for Systems Engineering (ODASD(SE)), 
Engineering Enterprise directorate. In this position, he is 
responsible for leading a team of over 40 personnel in the 
areas of Systems Engineering (SE) workforce development, 
specialty engineering (reliability & maintainability, 
manufacturing, human-systems integration, safety, value 
engineering), digital engineering, model-based systems 
engineering, modular open systems architectures, systems 
assurance and program protection, and policy and guidance. 
He is the senior subject matter expert for software assurance 
and the Joint Federated Assurance Center (JFAC) Coordination 
Center. Between 1992 and 2012, Dr. Brown served as an 
officer in the United States Air Force as a software engineer, 
acquisition professional, and squadron commander.  In 2009, 
Lt Col (ret.) Brown was awarded the Space and Missile 
Systems Center Program Manager of the Year. Since 2009, Dr. 
Brown has directed the assessment of over 100 major defense 
programs, specializing in software engineering and acquisition. 
He earned his Ph.D. from the Air Force Institute of Technology, 
Wright-Patterson Air Force Base, OH, in 1998, and has 
published over 20 technical papers in the areas of artificial 
intelligence and software engineering.

https://www.csiac.org


48

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

THE SOFTWARE ASSURANCE 
STATE-OF-THE-ART 

RESOURCE
By: David A. Wheeler

U nintentional and intentionally inserted vulnerabilities in software 
can provide adversaries with various avenues to reduce system 
effectiveness, render systems useless, or even use our systems against 

us. Unfortunately, it can be difficult to determine what types of tools and 
techniques exist for evaluating software, and where their use is appropriate. 
The State-of-the-Art Resource for Software Vulnerability Detection, Test, 
and Evaluation, a.k.a. the “Software SOAR,” was written to enable program 
managers and their staffs to make effective software assurance and software 
supply chain risk management (SCRM) decisions, particularly when they are 
developing and executing their program protection plans (PPP). A secondary 
purpose is to inform DoD policymakers who are developing software policies. 
This article summarizes the Software SOAR, including some of the over 50 
types of tools and techniques available, and an overall process for selecting 
and using appropriate analysis tool/technique types for evaluating software. It 
also discusses some of the changes made in its latest update.



The Software Assurance State-of-the-Art Resource  –  CON'T

1. Introduction

Nearly all modern systems depend on software. It may be embedded 
within the system, delivering capability; used in the design and 
development of the system; or used to manage and control the 
system, possibly through other systems. Software may be acquired 
as a commercial-off-the-shelf (COTS) component or may be 
custom-developed for the system. Software is often embedded 
within subcomponents by manufacturers. Modern systems often 
perform the majority of their functions through software, which 
can easily include millions of lines of software code.

Although functionality is often created through software, this 
software can also introduce risks. Unintentional or intentionally 
inserted vulnerabilities (including previously known vulnerabilities) 
can provide adversaries with various avenues to reduce system 
effectiveness, render systems useless, or even turn our systems 
against us. Department of Defense (DoD) software, in particular, 
is subject to attack.

This is emphasized in the February 2017 edition of DoD 
Instruction 5000.02, Enclosure 14, Cybersecurity in the Defense 
Acquisition System. This enclosure states that, “Cybersecurity is a 
requirement for all DoD programs and must be fully considered 
and implemented in all aspects of acquisition programs across 
the life cycle… Program managers…are responsible for the 
cybersecurity of their programs, systems, and information 
[from] the earliest exploratory phases…through all phases of 
the acquisition. … Program Managers will…request assistance, 
when appropriate, from the Joint Federated Assurance Center…
to support software and hardware assurance requirements…
[and] Incorporate automated software vulnerability analysis tools 
throughout the life cycle to evaluate software vulnerabilities….” 
[DoDI 5000.02 2017]

In short, analyzing DoD software to identify and remove 
weaknesses is a critical program protection countermeasure. 
What is more, because of its scale, it is often impractical to analyze 
software using purely manual approaches.

Unfortunately, it can be difficult to determine what types of tools 
and manual techniques exist for analyzing software, and where their 
use is appropriate. Even many software developers are unaware of 
the many types of tools and techniques available. Tool developers 
may emphasize how their tool is different from all other tools, 
resulting in more confusion by those trying to understand the 
different types of tools available.

To help reduce the confusion, our IDA team developed a document 
we call the “Software SOAR” or “Software Assurance SOAR” 
(its full title is State-of-the-Art Resources (SOAR) for Software 
Vulnerability Detection, Test, and Evaluation). The Software SOAR 
was originally released to the public in 2014 [Wheeler2014], and 
an updated version is expected to be available soon.

The purpose of the Software SOAR is to assist DoD program 
managers (PM), and their staffs, in making effective software 
assurance (SwA) and software supply chain risk management 
(SCRM) decisions, particularly when they are developing their 
program protection plans (PPP). A secondary purpose is to inform 
DoD policymakers who are developing software policies.

In this article, we first highlight the overall process we recommend 
for selecting and reporting results from appropriate tools and 
techniques. This process depends on projects identifying their 
technical objectives, which we discuss. The next section discusses 
the various types of tools and techniques available to help meet 
those objectives, followed by a section about changes in the SOAR.

The Software SOAR includes other information not discussed here, 
including gaps that were identified, key topics raised in interviews, 
detailed fact sheets, and the impact of the mobile environment. See 
the Software SOAR for more information.

2. Overall Process for Selecting and Reporting Results 
from Appropriate Tools and Techniques

Our proposed approach for selecting various tools and techniques, 
and developing reports using them, is to first identify the software 
components in a target of evaluation (TOE) and determine each 
software component’s context of use. Then, for each software 
component context of use:

1.	 Identify technical objectives based on context.
2.	 Select tool/technique types needed to address the technical 

objectives, using the matrix discussed below.
3.	 Select specific tools and techniques of the relevant types.
4.	 Summarize selection (write down your plan), which may be part 

of a larger report. Within DoD, this would be part of the PPP.
5.	 Apply the analysis tools, use their results, and report 

appropriately. Here, the selected tools and techniques 
are applied, including the selection, modification, or risk 
mitigation of software based on tool/technique results, and 
reports are provided to those with oversight authority.

Since different tool/technique types are better at addressing 
different technical objectives, we suggest ensuring that the set of 
tools/techniques selected adequately cover the intended technical 
objectives. One way to do this is to use a matrix we have developed 
that specifies the technical objectives met, to some degree, by 
various tool/technique types. The table below illustrates this matrix. 
The table cells indicate the applicability, e.g., a checkmark with a 
yellow cell indicates that the tool/technique type can be a highly 
cost-effective measure to address this technical objective and should 
be investigated further. A green circled checkmark indicates the 
tool/technique type completely addresses this technical objective 
(unfortunately, this is rare).

WWW.CSIAC.ORG  |  49



50

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

4. Types of Tools and Techniques

There is no widely accepted complete categorization of tools and 
techniques. For example, the National Institute of Standards and 
Technology Software Assurance Metrics and Tool Evaluation 
(NIST SAMATE) project web page has a brief but limited list of 
tool categories. This lack of categorization is one reason why the 
space is so confusing.

We have created a categorization of tools and techniques based on 
our own analysis, using sources such as interviews and the NIST 
SAMATE project. It is not the only possible categorization, and 
since it is incomplete, we do not call it a taxonomy. Our goal is simply 
to create a useful set of categories that can be extended as required. 
In general, we only included tool types where there is at least one 
commercially available tool; we granted some exceptions in the 
mobile space because that is a fast-paced environment. We expect 
that new types of tools and technologies could be added in the future 
to these categories, driven by innovation and commercialization 
(especially in the mobile environment).

The latest version of the SOAR identifies 59 types of tools and 
techniques available for analyzing software. We have identified the 
following three major groups of tool/technique types:

ii Static analysis: Examines the system/software 
without executing it, including examining 
source code, bytecode, and/or binaries.

ii Dynamic analysis: Examines the system/
software by executing it, giving it specific inputs, 
and examining results and/or outputs.

ii Hybrid analysis: Tightly integrates static and dynamic 
analysis approaches; for example, test coverage 
analyzers use dynamic analysis to run tests and then 
use static analysis to determine which parts of the 
software were not tested. This grouping is used only 
if static and dynamic analyses are tightly integrated; 
a tool or technology type that is primarily static or 
primarily dynamic is put in those groupings instead.

The following sections identify a subset of tool/technology types in 
each of these three major groups.

3. Technical Objectives

Different types of tools and techniques are better for different 
purposes. Thus, it is important to identify the various purposes 
for using different types of tools and techniques, so that the most 
appropriate types can be selected. The Software SOAR terms these 
purposes “technical objectives.”

It is common for security issues to be categorized as being related 
to confidentiality, integrity, and availability; DoD also separately 
considers authentication and non-repudiation [DoDI 8500.01]. 
However, since a vulnerability can cause problems in all of those 
areas, these categorizations are too general to support narrowing 
the selection of appropriate tool/technique types.

Even at a more detailed level, there is no universally accepted set 
of categories for technical objectives. The Common Weakness 
Enumeration (CWE) identifies a very large set of common 
weaknesses in software that may lead to vulnerabilities, but while 
CWE is useful for many purposes, it does not provide a single, simple 
organizational structure. “Top” lists, such as the “CWE/SANS top 
25” and the “Open Web Application Security Project (OWASP) top 
10,” are helpful in identifying especially common weaknesses, but 
they make no attempt to cover all relevant objectives.

Instead, we have focused on identifying a set of detailed technical 
objectives that can help narrow the selection of appropriate tools and 
techniques. We created this set of technical objectives by merging several 
accepted sources. Here is the top-level set of technical objectives:



The Software Assurance State-of-the-Art Resource  –  CON'T

4.1. Static Analysis

Here are some of the common static analysis tool/technology types:

1.	 Attack modeling. Attack modeling analyzes the system 
architecture from an attacker’s point of view to find weaknesses 
or vulnerabilities that should be countered. 

2.	 Source code analyzers1  is a group of the following tool types:
a.	 Warning flags. Warning flags are mechanisms built into 

programming language implementations and platforms that 
warn of dangerous circumstances while processing source code.

b.	 Source code quality analyzer. Source code quality analyzers 
examine software source code and search for the implementation 
of poor coding or certain poor architecture practices, using 
pattern matches against good coding practices or mistakes 
that can lead to poor functionality, poor performance, costly 
maintenance, or security weaknesses, depending on context. 
There is now a preponderance of evidence that higher-quality 
software (in general) tends to produce more secure software 
[Woody 2014]. These kinds of tools are often less expensive 
than some other kinds, and can often be applied earlier in 
development, providing good reasons to use them even when 
the focus is to develop secure software.

c.	 Source code weakness analyzer. Source code weakness 
analyzers examine software source code and search for 
vulnerabilities, using pattern matches against well-known 
common types of vulnerabilities (weaknesses). This kind of 
tool is also called a “source code security analyzer,” “static 
application security testing” (SAST) tool, “static analysis code 
scanner,” or “code weakness analysis tool.” We’ve chosen the 
name “source code weakness analyzer” because this name more 
clearly defines what this type of tool does and distinguishes 
it from other types of analysis.

d.	 Context-configured source code weakness analyzer. This 
configures a source code weakness analyzer specifically for the 
product being evaluated (e.g., by adding many additional rules).

3.	 Binary/bytecode analysis is a group of the following tool types:
a.	 Traditional virus/spyware scanner. Traditional virus/spyware 

scanners search for known malicious patterns in the binary 
or bytecode.

b.	 Quality analyzer. Binary/bytecode quality analyzers examine 
the binary or bytecode (respectively) and search for the 
implementation of poor coding or certain poor architecture 
practices, using pattern matches against good coding practices or 
mistakes that can lead to poor functionality, performance, costly 
maintenance, or security weaknesses depending on context.

c.	 Bytecode weakness analyzer. Bytecode weakness analyzers 
examine binaries and search for vulnerabilities, using pattern 
matches against well-known common types of vulnerabilities 
(weaknesses). Note that these are similar to source code 
weakness analyzers, except that the analysis is performed 

1	For the purposes of this paper, “source code analyzer” is a group of tool types; the 
lettered items below are the tool/technique types. A person who performs manual 
review of source code could also be considered a “source code analyzer,” but for our 
purposes we group manual review processes separately.

on bytecode.
d.	 Binary weakness analyzer. Binary weakness analyzers 

examine binaries and search for vulnerabilities, using pattern 
matches against well-known common types of vulnerabilities 
(weaknesses). Note that these are similar to source code 
weakness analyzers, except that the analysis is performed on 
a binary.

4.	 Human review. This is typically done with source code, but 
it can also be done with binary or bytecode (often this is 
generated by a binary or bytecode disassembler, as noted 
above). Note that human reviews can apply to products other 
than code, including requirements, architecture, design, and 
test artifacts. Human reviews include the following more-
specific types of techniques:

a.	 Focused manual spot check. This specialized technique 
focuses on manual analysis of code (typically less than 100 
lines of code) to answer specific questions. For example, does 
the software require authorization when it should? Do the 
software interfaces contain input checking and validation?

b.	 Manual code review (other than inspections). This specialized 
technique is the manual examination of code, e.g., to look for 
malicious code.

c.	 Inspections (Institute of Electrical and Electronics Engineers 
(IEEE) standard). IEEE 1028 inspection is a systematic peer 
examination to detect and identify software product anomalies.

d.	 Generated code inspection. This technique examines generated 
binary or bytecode to determine that it accurately represents 
the source code. For example, if a compiler or later process 
inserts malicious code, this technique might detect it. This is 
usually a spot check and not performed across all of the code.

5.	 Secure platform selection is a group of the following tool types:
a.	 Safer languages. This is selecting languages, or language subsets, 

that eliminate or make it more difficult to inadvertently insert 
vulnerabilities. This includes selecting memory-safe and type-
safe languages.

b.	 Secure library selection. Secure libraries provide mechanisms 
designed to simplify developing secure applications. They may 
be standalone or be built into larger libraries and platforms. 

c.	 Secured operating system (OS). A secured OS is an underlying 
operating system and platform that is hardened to reduce the 
number, exploitability, and impact of vulnerabilities.

6.	 Origin analyzer. Origin analyzers are tools that analyze source 
code, bytecode, or binary code to determine their origins (e.g., 
pedigree and version). From this information, some estimate 
of riskiness may be determined, including the potential 
identification of obsolete/vulnerable libraries and reused code.

7.	 Digital signature verification. Digital signature verification 
ensures that software is verified as being from the authorized 
source (and has not been tampered with since its development). 
This typically involves checking cryptographic signatures.

8.	 Configuration checker. Configuration checkers assess the 
configuration of software to ensure that it meets requirements, 
including security requirements. A configuration is the set 
of settings that determine how the software is accessed, is 
protected, and operates.

WWW.CSIAC.ORG  |  51



OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

4.2. Dynamic Analysis

Here are some of the common dynamic analysis tool/technology 
types:

1.	 Application-type-specific vulnerability scanner. An application-
type-specific vulnerability scanner sends data to an application, 
to identify both known and new vulnerabilities. It may look for 
known vulnerability patterns (a.k.a. weaknesses) and anomalies. 
This is a group of the following tool types:

a.	 Web application vulnerability scanner. A web application 
vulnerability scanner automatically scans web applications for 
potential vulnerabilities. They typically simulate a web browser 
user, by trawling through URLs and trying to attack the web 
application. For example, they may perform checks for field 
manipulation and cookie poisoning [SAMATE].

b.	 Web services scanner. A web services scanner automatically 
scans a web service (as opposed to a web application), e.g., for 
potential vulnerabilities. [SAMATE]

c.	 Database scanner. Database scanners are specialized tools used 
specifically to identify vulnerabilities in database applications. 
[SAMATE] For example, they may detect unauthorized 
altered data (including modification of tables) and excessive 
privileges.

2.	 Fuzz tester. A fuzz tester provides invalid, unexpected, or 
random data to software, to determine whether problems occur 
(e.g., crashes or failed built-in assertions). Note that many 
scanners (listed above) use fuzz testing approaches.

3.	 Automated detonation chamber (limited time) automatically 
isolates a program (including running multiple copies in 
virtual machines), executes it, detects potentially malicious 
or unintentionally vulnerable activities, and then reports its 
findings prior to the software’s deployment. In contrast, we 
use the broader term “monitored execution” to refer to broader 
processes that use many tools/techniques (including manual 
techniques) to isolate software and detect malicious activities.

4.3. Hybrid Analysis

Here are some of the common hybrid analysis tool/technology types:

1.	 Test coverage analyzer. Test coverage analyzers are tools that 
measure the degree to which a program has been tested (e.g., 
by a regression test suite). Common measures of test coverage 
include statement coverage (the percentage of program 
statements executed by at least one test) and branch coverage 
(the percentage of program branch alternatives executed by 
at least one test). Areas that have not been tested can then 
be examined, e.g., to determine whether more tests should be 
created or whether that code is unwanted.

2.	 Hardening tools/scripts. This type of tool modifies software 
configuration to counter or mitigate attacks, or to comply with 
policy. In the process, it may detect weaknesses or vulnerabilities 
in the software being configured.

3.	 Execute and compare with application manifest. Run an 

application with a variety of inputs to determine the permissions 
it tries to use, and compare that with the application permission 
manifest.

4.	 Track sensitive data. Statically identify data that should not 
be transmitted or shared (e.g., due to privacy concerns or 
confidentiality requirements), then dynamically execute the 
application, tracking that data as tainted to detect exfiltration 
attempts. 

5.	 Coverage-guided fuzz tester. Use code coverage information to 
determine new inputs to test.

5. Changes to the SOAR

In the May 2014 version of the SOAR, we noted that there was 
a lack of specific quantitative data to support the hypothesis that 
higher software quality tends to produce more secure software. At 
the time this was a plausible hypothesis that a number of experts 
believed to be true. However, many seemingly reasonable hypotheses 
are false. We believed in 2014 that it was important to investigate this 
claim before recommending it. This question is important, because 
if it is true, then it might be appropriate to first use tools to identify 
quality problems, fix the problems they identify, and then use other 
tools for more complex analysis. More evidence that supports this 
hypothesis has since been published. In particular, SEI [Woody 
2014] published in December 2014 a compendium of evidence to 
support the claim that higher quality software (in a general sense) 
tends to produce more secure software.

While more evidence would be welcome, we believe the 
preponderance of evidence now is that improving the general quality 
of software tends to improve the security of the software. This does 
not mean that using only generic quality tools is enough to develop 
secure software. Instead, it means that using generic quality tools 
can be a valuable aid in developing secure software.

We searched for new types of tools and techniques in the commercial 
software market (both open source software and proprietary 
software). Software assurance is not a solved problem, and while most 
tool suppliers had refined their tools further, we were disappointed 
that we did not find more new approaches. That said, we added 
some new tool categories not in previous versions of the SOAR. For 
example, we added “coverage-guided fuzz tester” as a category to 
cover tools such as American Fuzzy Lop (an open source software 
tool that has found a large number of vulnerabilities).

All of these additional types of tools are hybrid approaches, which is 
interesting because we had previously predicted that more tool types 
would be created as hybrids to take advantage of the information 
available from both static and dynamic analysis.

We also added more guidance on how to apply this, including 
tips on selecting technical objectives and how to select tools and 
techniques given those technical objectives. We added a mapping to 
the OWASP top 10 of 2013 (which is widely used when developing 

52



The Software Assurance State-of-the-Art Resource  –  CON'T

However, achieving the desired result will not happen by accident. 
Programs need to proactively determine their technical objectives, 
determine what kinds of tools and techniques will help them achieve 
their objectives, and then smartly apply these tools and techniques. 
We hope that the Software SOAR will help programs identify and 
achieve their objectives.

REFERENCES
[1]	 [DoDI 5000.02 2017] DoD. February 2, 2017 (Change 2).  Operation 

of the Defense Acquisition System. DoD Instruction 5000.02. http://
www.dtic.mil/whs/directives/corres/pdf/500002_dodi_2015.pdf

[2]	  [DoDI 8500.01] DoD. March 14, 2014. Cybersecurity. DoD 
Instruction 8500.01. http://www.dtic.mil/whs/directives/corres/
pdf/850001_2014.pdf

[3]	 [SAMATE] “Classes of Tools & Techniques.” Retrieved 2017-04-04. 
https://samate.nist.gov/index.php/Tool_Survey.html

[4]	 [Wheeler2014] Wheeler, David A. and Rama S. Moorthy. State-of-
the-Art Resources (SOAR) for Software Vulnerability Detection, 
Test, and Evaluation. July 2014. IDA Paper P-5061. http://www.
acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-
Doc-20140716.pdf

[5]	 [Woody2014] Woody, Carol, Robert Eillison, and William Nichols. 
“Predicting Software Assurance Using Quality and Reliability Mea-
sures.” December 2014. Technical Note CMU/SEI-2014-TN-026. 
Carnegie Mellon University (GMU) Software Engineering Institute 
(SEI) CERT Division/SSD.

THIS WORK WAS CONDUCTED UNDER CONTRACT HQ0034-14-D-0001, TASK 
AU-5-3856, “ENHANCING PROGRAM PROTECTION THROUGH EFFECTIVE SYSTEMS 
ASSURANCE,” FOR OFFICE OF THE DEPUTY ASSISTANT SECRETARY OF DEFENSE 
FOR SYSTEMS ENGINEERING; ACQUISITION TECHNOLOGY AND LOGISTICS. THE 
PUBLICATION OF THIS IDA MEMORANDUM DOES NOT INDICATE ENDORSEMENT BY 
THE DEPARTMENT OF DEFENSE, NOR SHOULD THE CONTENTS BE CONSTRUED AS 
REFLECTING THE OFFICIAL POSITION OF THAT AGENCY. THE MATERIAL MAY BE 
REPRODUCED BY OR FOR THE U.S. GOVERNMENT PURSUANT TO THE COPYRIGHT 
LICENSE UNDER THE CLAUSE AT DFARS 252.227-7013 (A)(16) [JUN 2013].

web applications). We also discussed other kinds of tools that are 
related but not the primary focus, such as SwA correlation tools.

6. Combining Approaches

No one type of tool or technique can address all possible technical 
objectives. Some tool/technique types address only one or a few 
specific technical objectives, but are highly effective for that scope. 
Those that have broader applicability may have challenges (e.g., 
some can be more costly or require deeper expertise).

Thankfully, static, dynamic, and hybrid analysis tools and techniques 
can be combined to alleviate some of these limitations. The 
following figure is a conceptual illustration of the advantages of 
using multiple tools and techniques, particularly when they use 
different approaches. The arrows represent potential risks, including 
exposed vulnerabilities in the software, and the screens represent 
tools and techniques applied by a project. No one tool or technique 
addresses all technical objectives, and almost all find only a fraction 
of the vulnerabilities and other issues they address. Each tool or 
technique contributes to meeting technical objectives (and thus 
reducing overall risk).

WWW.CSIAC.ORG  |  53

STOP. Think. Connect.

CYBER SECURIT
Y 

IS
 O

U
R

 S
H

A
R

E
D

 R
E

S
P

O
N

S
IB

IL
IT

Y!
 G

ET

 IN
VOLVED AND EMPOWER OUR GLOBAL DIGITAL SO

C
IETY

 !

STOP. TH
IN

K
. C

O
N

N
E

C
T. 

U
S

E TH
E INTERNET SAFELY AND SECURELY

October Is National Cyber Security Awareness Month (NCSAM)

CYBER SECURITY IS OUR SHARED RESPONSIBILITY!

TIP: Keep security software current – Having the latest security software, 
web browser and  operating system is the best defense against viruses, 
malware and other online threats.

Get Involved and Empower Our Global Digital Society to Use the Internet Safely 
and Securely

Learn More Simple Ways To Stay Safe Online By Visiting CSIAC.org 



OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

PILOTING SOFTWARE ASSURANCE 
TOOLS IN THE DEPARTMENT OF DEFENSE 

By: Dr. Thomas P. Scanlon and Timothy A. Chick, Software Engineering Institute, Carnegie Mellon University

I n this article, we present and describe the JFAC Enterprise Software Licensing 
Pilot program activities during the 2016 fiscal year. During this period, JFAC 
provided limited quantities of Software Assurance tools to users in the DoD 

with an aim of evaluating how the use of these tools could improve the state of 
software assurance within the Department. The four Software Assurance tools 
procured and made available to the end-users consisted of a dynamic web testing 
tool, two static source code analyzers and an origin analysis tool that checked 
for vulnerabilities in third party libraries and components used to build software. 
After the licenses had been available to the licensees for nearly a full calendar 
year, researchers from the Software Engineering Institute (SEI) at Carnegie 
Mellon University conducted an outreach and survey effort to solicit feedback on 
user experiences. The results of the tools’ effectiveness are presented as well as 
findings on the impact use of the tools had on the software development process. 

54



JFAC Enterprise Software Licensing Program Objectives 

To increase the security posture of Department of Defense (DoD) 
software systems, the employment of Software Assurance techniques 
needs to shift from being part of a step in the development process 
to being an integrated element of the entire development process. 
Specifically, Software Assurance must be engineered into the 
entire lifecycle of applications and not just be something that is 
checked in a phase before deployment. The inclusion of Software 
Assurance testing earlier in the development process in parallel 
with development efforts, often referred to as “Shift Left”, is keenly 
effective when frequent and automated tests are performed during 
development phases to provide timely feedback to developers. 

To promote a more mature approach to Software Assurance within 
the DoD, the Joint Federated Assurance Center ( JFAC) established 
an Enterprise Software Licensing Pilot program in 2016.  The 
goals of this program are to provide enterprise-wide licenses to the 
DoD development community for Software Assurance tools,  to 
promote wider use of such tools, to provide training and expertise 
to engineers and developers on how and when to best use these 
tools, and to simplify the acquisition of Software Assurance tools 
by systems and software engineers [ JFAC 2016].

During the first year of the JFAC Enterprise Software Licensing Pilot 
program, JFAC provided limited quantities of Software Assurance 
tools to users in the DoD with an aim of evaluating how the use of 
these tools could improve the state of software assurance within the 
Department. Specifically, during this pilot phase, JFAC procured 
limited quantities of four commercially available Software Assurance 
tools and provided them to selected DoD constituents at no direct 
cost to the product users. The product users of these tools were largely 
members of the Army, Navy, and Air Force in a near even distribution 
and a small number of selected other DoD personnel. 

The four Software Assurance tools procured and made available to 
the end-users consisted of a dynamic web testing tool, two static 
source code analyzers, and an origin analysis tool that checked 
for vulnerabilities in third party libraries and components used to 
build software. The tools selected for use in the JFAC Enterprise 
Software Licensing Pilot program were selected in part based on 
their reputation in the industry, proliferation in the marketplace, 
and results of prior research and studies. On the whole, the tools 
proved to be capable enterprise class products as they supported 
and were implemented on a diverse set of operating systems, 
programming languages, and platform targets.

The software licenses for these tools were contracted and procured 
in bulk by JFAC. The JFAC Coordination Center ( JFAC-CC), a 
subcomponent of JFAC, was then responsible for disseminating 
the individual licenses to each of the product users and also serving 
as an intermediary between the product vendors and the product 
users. Licensees were granted a license by request and approval 
of a representative from their organization. Licensees were a 
combination of individuals who specifically requested use of the 
product and those nominated by their organization to be pilot 

participants. In total, 248 licenses were distributed across the four 
product offerings. Approximately 66 different programs, projects, 
or organizations within the DoD received licenses through the 
JFAC pilot program.

After the licenses had been available to the licensees for nearly a full 
calendar year, researchers from the Software Engineering Institute 
(SEI) at Carnegie Mellon University conducted an outreach and 
survey effort to solicit feedback on user experiences.  

Study Design

A formal online survey was developed by researchers at the SEI and 
distributed to each of the licensees. Additionally, an outreach program 
was conducted whereby all licensees were personally contacted via 
email and/or telephone and interviewed for any additional feedback, 
as well as reminded to complete the online survey. As part of the 
agreement to use the software license, pilot participants had to agree 
to complete a survey at the end of the license year. 

The survey questions were the same for all four products. The survey 
questions focused on the technical environment the tool was deployed 
in, the effectiveness and perceived value of the tool, and the usability 
of the tool. Usability was measured using a modified version of the 
System Usability Scale (SUS), a widely used instrument that provides 
a quick and reliable indicator of usability [Brooke 1996].

49 out of 115 distributed surveys were completed. These 115 survey 
candidates represented 248 licenses that were distributed during 
the pilot program. In some cases, the same program, project, or 
organization was issued licenses for more than one of the Enterprise 
Software Licensing Pilot program licenses. In these cases, the 
participant had to fill out one survey for each product that they were 
licensed. For various reasons, the sample size may be less than 49 in 
some cases of individual questions examined below. These reasons 
include applicability of response, lack of response (some questions 
were optional), or question was not presented to respondent due to 
conditional survey logic. On the other hand, some survey questions 
allowed more than one response so the total responses for that 
question can be higher than the number of respondents.

Impact of Software Assurance Tools on Software Quality

Survey respondents were asked to indicate the total number of 
lines of code they scanned with each Software Assurance tool. The 
cumulative number of all lines of code scanned as indicated on the 
responses was 22,442,902. These lines of code represented 1,391 
unique projects or applications. Note that not all respondents 
answered these two questions. These totals are based on just the 
respondents who answered these questions. 

The actual number of lines of code scanned during the JFAC 
Enterprise Software Licensing Pilot program can be estimated 
based on these responses. A simple approximation of the 

Piloting Software Assurance Tools in the Department of Defense 

WWW.CSIAC.ORG  |  55



number of lines of code scanned during the pilot, based on 
extrapolating known figures, would be 49,181,213. Likewise, 
the number of projects or applications scanned during the Pilot 
was approximately 9,121.

Table 1: Projects and Lines of Code Scanned in FY2016 Pilot

Li
ce

ns
es

 Is
su

ed

Su
rv

ey
 R

es
po

nd
en

ts
 

Re
po

rt
ed

 P
ro

je
ct

s
Sc

an
ne

d 
(p

er
 R

es
po

nd
en

ts
)

Re
po

rt
ed

 L
in

es
 o

f C
od

e 
Sc

an
ne

d 
(p

er
 R

es
po

nd
en

ts
)

Ap
pr

ox
im

at
e 

Ac
tu

al
 

Pr
oj

ec
ts

 S
ca

nn
ed

 
(e

xt
ra

po
la

te
d)

Ap
pr

ox
im

at
e 

Ac
tu

al
 

Li
ne

s 
of

 C
od

e 
Sc

an
ne

d 
(e

xt
ra

po
la

te
d)

Dynamic 
Code 

Analysis Tool
24 11 16 8,029,000 35 17,517,818

Static Code 
Analysis Tool 

“A”
31 15 243 9,805,861 502 20,265,446

Static Code 
Analysis Tool 

“B”
19 10 521 4,357,041 990 8,278,378

Origin 
Analysis Tool

174 14 611 251,000 7,594 3,119,571

PILOT 
TOTALS

248 49 1,391 22,442,902 9,121 49,181,213

Note that some caution should be taken when examining the results 
for the origin analysis tool in particular for two reasons. First, this 
product had a much lower percentage of survey respondents per 
licenses issued, so there is a greater chance for variance between 
actual figured reports and extrapolated figures. Further, for an 
original analysis tool, the number of projects scanned is a more 
relevant scanned than lines of code scanned.

Issue Detection
Survey respondents were asked to identify how many total 
issues, warnings, and/or vulnerabilities each tool identified. In 
total, the tools identified 419,189 issues as reported in survey 
submissions. Extrapolating this figure out across all license 
holders, the tools likely helped identify 866,697 issues during 
the Pilot. It is important to remember that not all issues 
identified by the tools are actual items to be addressed. Potential 
issues can often be determined to not be applicable for various 

reasons and the triaging and handling of such issues is another 
important feature of Software Assurance tools.

Table 2: Issues Detected in FY2016 Pilot

Issues Detected
Approximate Actual 

Issues Detected
(extrapolated)

Dynamic Code Analysis Tool 102 223

Static Code Analysis Tool “A” 49,838 102,999

Static Code Analysis Tool “B” 363,344 690,354

Origin Analysis Tool 5,905 73,391

PILOT TOTALS 419,189 866,697

Issue Correction
Survey respondents were asked questions about whether 
issues, warnings, and/or vulnerabilities discovered using each 
tool caused them to take corrective actions or make plans for 
corrective actions.  The first question in this area was whether 
respondents thought that the issues detected were valid issues 
that need addressed. 100% of respondents using the static code 
analysis tool “B” and the dynamic code analysis tool thought 
the discovered issues were valid and needed addressed. Nearly 
all respondents for the static code analysis tool “A” felt similarly, 
while just over ½ the respondents for the origin analysis tool 
thought the discovered issues warranted attention.

Figure 1: Did the tool find meaningful issues that need addressed?

Respondents were then asked further if they thought the 
discovered issues were in need of immediate attention, meaning 
the issues posed a risk of some urgent importance. Nearly ¾ 
of the dynamic code analysis tool and the static code analysis 
tool “A” respondents felt some of the detected issues required 
immediate attention while more than ½ of the static code 
analysis tools “B” respondents felt the same. 40% of the origin 
analysis tool respondents thought the detected issues required 
immediate attention.

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

56



Figure 2: Did the tool find issues that you felt required IMMEDIATE 
attention?

Having found the detected issues, respondents were asked if they 
had actually implemented any corrective actions to address these 
issues. Across all tool products, about 40% of respondents indicated 
that they had already initiated some corrective action.

Figure 3: To date, have you fixed/addressed any issues, warnings, and/or 
vulnerabilities as a result of the tool feedback?

While perhaps not yet initiated, respondents were asked if they 
had any future plans to implement any corrective actions to 
address the detected issues. 80% of respondents for the origin 
analysis tool indicated they had already made plans to correct 
issues detected and the other 20% indicated they were considering 
making such plans (“Maybe” response). For the static code 
analysis tool “B”, only 40% of respondents indicated they had 
already made plans to correct issues detected, while the other 
60% indicated they were considering making such plans. For 
the static code analysis tool “A”, just over ½ the respondents 
indicated they had already made plans to address discovered issues 
and approximately 30% more indicated they were considering 
making such plans, while about 15% indicated they had no plans 
to correct detected issues. Almost exactly ½ of the dynamic code 
analysis tool respondents indicated they had already made plans 
to address discovered issues and another ¼ indicated they were 
considering making such plans, while about 25% indicated they 
had no plans to correct detected issues.

Figure 4: Are there future plans to fix or address any issues, warnings, 
and/or vulnerabilities as a result of the tool feedback?

Impact of Software Assurance Tools on Development 
Processes

Beyond making changes to correct specific issues that were 
detected by each tool, survey respondents were asked whether 
use of the tools had prompted them to make any changes to their 
development processes. Across each of the tools, about 20% to 40% 
of respondents indicated that the tool use had prompted them 
to make changes in their development process that had already 
been implemented. About the same number of respondents (20% 
to 40%) for each tool indicated they had future plans to change 
their development processes as a result of tool use (Figure 6). 
However, another 20% to 50% of respondents indicated they 
were still considering (“Maybe” response) making changes to their 
development processes as a result of tool use.

Figure 5:  Have you made changes to your design, development, or build 
processes as result of having used this tool?

Piloting Software Assurance Tools in the Department of Defense   –  CON'T

WWW.CSIAC.ORG  |  57



Figure 6:  Are there future plans to make changes to your design, 
development, or build processes as result of having used this tool?

Respondents were asked, subjectively, if they felt that each 
tool is effective at finding meaningful issues, warnings, and/or 
vulnerabilities in their projects and applications. For the origin 
analysis tool, the dynamic code analysis tool, and the static code 
analysis tool “A”, roughly 75% of respondents felt that the tool 
was effective in finding meaningful issues. For the static code 
analysis tool “B”, only 40% of respondents felt the tool was 
effective, despite it having been reported to find a significant 
amount of potential vulnerabilities during the Pilot.

Figure 7: Do you think this tool is effective in finding meaningful issues, 
warnings, and/or vulnerabilities in your projects and applications?

Respondents were asked whether they would like to continue using 
each tool in their development and testing processes. 100% of the 
dynamic code analysis tool respondents indicated that they would 
like to continue using the tool.  For the static code analysis tool 
“A”, 85% of respondents indicated that they definitely would like to 
continue using the tool, while the other 15% said they “maybe” would 
like to continue using the tool. For both the static code analysis tool 
“B” and the origin analysis tool, 60% of respondents indicated that 
they would like to continue using the tool, while the other 40% of 
respondents said they “maybe” would like to continue using the tool.

  
Figure 8: Would you like to continue using this tool in your projects and 

applications?

Usability of Software Assurance Tools

Respondents were asked to complete a ten-question questionnaire 
regarding the usability of each tool. The usability was measured using 
a modified version of the System Usability Scale [Brooke 1996], 
which is a commonly used scale for garnering “quick measures” of 
usability, and is noted to be reliable with small sample sizes. 

In general, the average score for a system measured on the SUS 
is 68. However, it is recommended to normalize scores within 
a given study to control for environment. In the SUS usability 
measurements for the Enterprise Software Licensing Pilot 
program, the dynamic code analysis tool fared the best with an 
average score of 70.63.  The origin analysis tool (61.5) and the 
static code analysis tool “A” (61.43) had similar average scores, 
while the static code analysis tool “B” had the lowest average score 
at 46. Given the prior comment on normalization, the rank order 
of each product’s usability with respect to the other products is 
more telling than the raw score.

Figure 9:  Average SUS usability score for each tool

OCTOBER  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

58



JFAC Enterprise Software Licensing Program 
Effectiveness

The JFAC Enterprise Software Licensing Pilot program provided 
limited quantities of Software Assurance tools to users in the 
Department of Defense with an aim of evaluating how the use of 
these tools could improve the state of Software Assurance within 
the Department. The immediate impact of this pilot was that nearly 
50 million lines of code were scanned and approximately 867,000 
issues or potential issues were detected. 86% of respondents to the 
survey felt the issues were meaningful and needed addressed, and 
more than ½ of respondents thought these detected issues required 
immediate correction.

So, in a vacuum, the Pilot program achieved success by detecting 
numerous issues and driving corrective action on a selected set of 
systems. However, the larger impact delivered by the Pilot is in the 
way in which the introduction of Software Assurance tools promoted 
a more mature approach to Software Assurance throughout the 
development process. More than 25% of survey respondents indicated 
that they have already made changes to their development and testing 
process as a result of using the tools in the Pilot program. Another 35% 
of respondents indicated they are considering making such changes 
in their development and testing processes. Collectively, more than 
50% of the users of the piloted Software Assurance tools not only 
are making changes to their codebases, but are also making changes 
to their processes as a result of this program. 

Changes and improvements to these processes are likely to yield 
a much more exponential impact than just the changes to specific 
lines of code, resulting in greater savings of time, money, and other 
resources. However, changes in these development processes will 
require continuous use of Software Assurance tools in the processes. 
This is reflected in the sentiments of survey respondents as more than 
75% of respondents indicated that they felt the tools were useful 
in finding meaningful issues and more than 75% of respondents 
wished to continue use of these tools.

While not specifically studied, it is noted anecdotally that no 
performance issues were reported with the products either. So, in 
general, the tools proved capable and worthwhile.

Given the effectiveness of this Pilot program, an expansion of 
the program would have a significant impact on the security of 
software systems within the DoD. Publicly available data on non-
DoD software systems shows that 84% of software breaches exploit 
vulnerabilities at the application layer [Clark 2015], while funding 
for information technology (IT) defense versus software assurance 
is 23-to-1 [Feimann 2014]. It is likely similar numbers exist for 
DoD software systems and that greater attention to Software 
Assurance would yield a more mature software security posture for 
these systems.  The potential savings and increase in the programs 
security posture is significant given the fact that between 1% and 
5% of defects discovered in deployment are potentially exploitable 
vulnerabilities [Woody 2014] and the cost of fixing defects is 10 

times more costly to fix after coding and 100 times more costly to 
fix post deployment [Subramaniam 1999].

Areas for Future Work

There are several areas related to this Pilot program that would be 
worthwhile areas for further investigation. First, as a substantial 
number of survey respondents indicated they planned to make 
changes to their development process as a result of using these tools, 
it would be beneficial to explore which changes to the process they 
made or were planning to make. Taking that topic a step further 
would be to investigate which changes to a development process 
are most effective for Software Assurance.

A further topic for investigation would be studying the best places 
in the development process to utilize Software Assurance tools. That 
is, where should tools be used to get the “best bang for the buck”?  
Additionally, it should be explored which tool or combination of 
tools is most effective for certain types of projects and systems.

Lastly, an interesting topic to broach is the impact the usability of a 
tool has on its perceived value in finding issues. As noted in this study, 
the static code analysis tool “B” scored very well in terms of finding 
meaningful/valid issues, yet users were lukewarm on continued 
use of this product. One reason for this may be the low usability 
scores the tool received. Is there a correlation between usability and 
perceived effectiveness and value in Software Assurance tools? Or 
was this merely a spurious finding? There is a rich canon of study 
usability of tools and adoption rates, but it would be interesting to 
explore this relationship specifically for Software Assurance tools.

REFERENCES
[1]	 Brooke 1996

[2]	 Brooke, J. (1996). “SUS: a “quick and dirty” usability scale”. In P. 
W. Jordan, B. Thomas, B. A. Weerdmeester, & A. L. McClelland. 
Usability Evaluation in Industry. London: Taylor and Francis.

[3]	 Clark 2015

[4]	 Clark, Tim, Most cyber Attacks Occur from this Common Vulnera-
bility, Forbes. 03-10-2015.

[5]	 Feiman 2014

[6]	 Feiman, Joseph, Maverick Research: Stop Protecting Your Apps; 
It’s Time for Apps to Protect Themselves,  Gartner. 09-25-2014. 
G00269825

[7]	 Subramaniam 1999

[8]	 Subramaniam, Bala. “Effective Software Defect Tracking Reducing 
Project Costs and Enhancing Quality,” CrossTalk, April 1999: 3-9.
JFAC 2016

[9]	 JFAC. 2016. JFAC Objectives retrieved from JFAC website https://
jfac.army.mil on December 20, 2016

[10]	 Woody 2014

[11]	 Woody, Carol, Robert Ellison, and William Nichols. 2014. “Predict-
ing Software Assurance Using Quality and Reliability Measures.” 
CMU/SEI-2014-TN-026. Pittsburgh

Piloting Software Assurance Tools in the Department of Defense   –  CON'T

WWW.CSIAC.ORG  |  59



Cyber Security and Information Systems
Information Analysis Center
266 Genesee Street
Utica, NY 13502

PRSRT STD
U.S. Postage

P A I D
Permit #566 

UTICA, NY

To unsubscribe from CSIAC Journal Mailings please email us at info@csiac.org 
and request that your address be removed from our distribution mailing database.

Return Service Requested


	_Ref472505284
	_Ref473370921
	_Ref472763101
	_Ref473534758
	_Ref472765344
	_Ref473540608
	Introduction
Design and Development Process for Assured Software - Volume 2 
	SARD: Thousands of Reference Programs for Software Assurance
	Improving Software Assurance through Static Analysis Tool Expositions
	Software Assurance Adoption through Open Source Tools
	Software Assurance Measurement - establishing a confidence that security is sufficient
	Engineering Software Assurance into Weapons Systems During the DoD Acquisition Life Cycle
	The Software Assurance
State-of-the-Art
Resource
	Piloting Software Assurance Tools in the Department of Defense 

