

Our Mission
CSIAC is chartered to leverage the best practices
and expertise from government, industry, and
academia in order to promote technology
domain awareness and solve the most critically
challenging scientific and technical (S&T)
problems in the following areas:

 ▶ Cybersecurity and Information Assurance
 ▶ So� ware Engineering
 ▶ Modeling and Simulation
 ▶ Knowledge Management/Information Sharing

The primary activities focus on the collection,
analysis, synthesis, processing, production
and dissemination of Scientific and Technical
Information (STI).

Our Vision
The goal of CSIAC is to facilitate the
advancement of technological innovations
and developments. This is achieved by
conducting gap analyses and proactively
performing research e� orts to fill the voids
in the knowledge bases that are vital to our
nation. CSIAC provides access to a wealth
of STI along with expert guidance in order to
improve our strategic capabilities.

CSIAC is operated by Quanterion Solutions Inc and sponsored by the Defense Technical Information Center (DTIC)
266 Genesee Street Utica, NY 13502 | 1 (800) 214-7921 | info@csiac.org | https://www.csiac.org

WHAT WE OFFER
We provide expert technical advice and
assistance to our user community. CSIAC is a
competitively procured, single award contract.
The CSIAC contract vehicle has Indefinite
Delivery/Indefinite Quantity (ID/IQ) provisions
that allow us to rapidly respond to our users’
most important needs and requirements.

Custom solutions are delivered by executing
user defined and funded CAT projects.

Core Services
 ▶ Technical Inquiries: up to 4 hours free
 ▶ Extended Inquiries: 5 - 24 hours
 ▶ Search and Summary Inquiries
 ▶ STI Searches of DTIC and other repositories
 ▶ Workshops and Training Classes
 ▶ Subject Matter Expert (SME)

Registry and Referrals
 ▶ Risk Management Framework

(RMF) Assessment & Authorization
(A&A) Assistance and Training

 ▶ Community of Interest (COI)
and Practice Support

 ▶ Document Hosting and Blog Spaces
 ▶ Agile & Responsive Solutions to

emerging trends/threats

As one of three DoD Information Analysis Centers (IACs), sponsored by the Defense Technical Information Center
(DTIC), CSIAC is the Center of Excellence in Cyber Security and Information Systems. CSIAC fulfills the Scientific
and Technical Information (STI) needs of the Research and Development (R&D) and acquisition communities. This
is accomplished by providing access to the vast knowledge repositories of existing STI as well as conducting novel
core analysis tasks (CATs) to address current, customer focused technological shortfalls.

Products
 ▶ State-of-the-Art Reports (SOARs)
 ▶ Technical Journals (Quarterly)
 ▶ Cybersecurity Digest (Semimonthly)
 ▶ RMF A&A Information
 ▶ Critical Reviews and Technology

Assessments (CR/TAs)
 ▶ Analytical Tools and Techniques
 ▶ Webinars & Podcasts
 ▶ Handbooks and Data Books
 ▶ DoD Cybersecurity Policy Chart

Core Analysis Tasks (CATs)
 ▶ Customer tailored R&D e� orts performed

to solve specific user defined problems
 ▶ Funded Studies - $500K ceiling
 ▶ Duration - 12 month maximum
 ▶ Lead time - on contract within

as few as 6-8 weeks

Contact Information
266 Genesee Street
Utica, NY 13502

1 (800) 214-7921

info@csiac.org

About the CSIAC

 /DoD_CSIAC

 /CSIAC
Facebook “f ” Logo CMYK / .eps Facebook “f ” Logo CMYK / .eps

 /CSIAC

ABOUT THIS PUBLICATION
The Journal of Cyber Security and Information Systems is published quarterly by the

Cyber Security and Information Systems Information Analysis Center (CSIAC). The CSIAC is

a Department of Defense (DoD) Information Analysis Center (IAC) sponsored by the Defense

Technical Information Center (DTIC) and operated by Quanterion Solutions Incorporated in

Utica, NY.

Reference herein to any specific commercial products, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or the CSIAC.

The views and opinions of authors expressed herein do not necessarily state or reflect those

of the United States Government or the CSIAC, and shall not be used for advertising or

product endorsement purposes.

ARTICLE REPRODUCTION
Images and information presented in these articles may be reproduced as long as the
following message is noted:

“This article was originally published in the CSIAC Journal of Cyber Security and
Information Systems Vol.5, No 2”

In addition to this print message, we ask that you notify CSIAC regarding any document
that references any article appearing in the CSIAC Journal.

Requests for copies of the referenced journal may be submitted to the following address:

Cyber Security and Information Systems
266 Genesee Street

Utica, NY 13502

Phone: 800-214-7921
Fax: 315-732-3261

E-mail: info@csiac.org

An archive of past newsletters is available at https://www.csiac.org/journal/.

To unsubscribe from CSIAC Journal Mailings please email us at info@csiac.org and request
that your address be removed from our distribution mailing database.

ABOUT THE JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

Distribution Statement
Unclassified and Unlimited

Journal of Cyber Security and Information Systems

Design and Development Process for Assured Software - Volume 1

Introduction ��4

Keys to Successful DoD Software Project Execution ��5

Software Assurance in the Agile Software Development Lifecycle ��14

Hacker 101 & Secure Coding: A Grassroots Movement towards Software Assurance ��������������������������������������20

Is Our Software REALLY Secure? ���28

Defense Technical Information Center’s (DTICs) Hidden GEMS ���34

Development and Transition of the SEI Software Assurance Curriculum ���36

JOURNAL EDITORIAL BOARD

RODERICK A. NETTLES
Managing Editor

Quanterion Solutions Inc., CSIAC

SHELLEY HOWARD
Graphic Designer

Quanterion Solutions Inc., CSIAC

MICHAEL WEIR
CSIAC Director

Quanterion Solutions Inc., CSIAC

RONNIE K. BRITTON
Director

NSA Center for Assured Software

JAMES RICE
Cybersecurity Analyst

Quanterion Solutions Inc., CSIAC

 DR. PAUL B. LOSIEWICZ
Senior Scientific Advisor

Quanterion Solutions Inc., CSIAC

CHARLES MESSENGER
Strategic Programs

Quanterion Solutions Inc., CSIAC

STEVE WARZALA
Senior Program Manager

Quanterion Solutions Inc., CSIAC

WWW.CSIAC.ORG | 3

mailto:info%40csiac.org?subject=
https://www.csiac.org/journal/
mailto:info%40csiac.org?subject=Unsubscribe%20from%20CSIAC%20Journal%20Mailing
https://www.csiac.org

software. To date, the DoD has not demonstrated
a full understanding of the shape of the field that
underlies the process of producing, sustaining and
acquiring secure software. Decision makers often
have trouble "connecting the dots" among the
detailed, disparate data available from interactively
complex systems. As a result, they can find it difficult
to understand a system's macro-level behavior and
the risks that their deployed software faces. Over the
past 20 years, the rules of the game have changed
-- building software without accounting for security
is no longer an acceptable risk.

This edition explores different aspects of developing,
deploying and training on how to build assured
software. Articles are contributed by software
assurance practitioners from the DoD and civil
government that are devoted to the advancement
of secure development principles in U.S government
critical systems. We hope that you can get a flavor of
some of the exciting things happening in this space,
identify some principles that will increase your
software assurance posture and find opportunities
to connect with key players in the community
to support your assured software development/
acquisition process.

INTRODUCTION
DESIGN AND DEVELOPMENT PROCESS FOR ASSURED SOFTWARE - VOLUME 1

By: Michael Weir

Welcome to this special Software Assurance (SwA)
edition of the Journal of Cyber Security & Information
Systems, published by the Cyber Security & Information
Systems Information Analysis Center (CSIAC).

oftware is ubiquitous. It is at the core of
every deployed critical system in the DoD
(and our society for that matter). As our
systems become more complex and the

software that supports these systems explodes
in size, our adversaries are presented with an
ever increasing attack surface which they have
repeatedly demonstrated the capability to exploit.
The need to gain confidence that this software is
free from exploitable vulnerabilities and malicious
behavior has never been more important. Gaining
confidence --- that is "assurance" --- in software
is more than simply testing the software to show
correct functionality or running tools against
the code to identify known flaws; it requires
an acquisition and development discipline
augmented with technology, supported by sound
policy, measurement practices, and deployment
processes that achieve the necessary confidence
our systems are fit to protect our country's most
valuable assets.

Although it is easy to acknowledge that "assured
software" is a critical national priority, we still
do not hold strong examples of truly securely
designed, implemented and deployed assured

4

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

KEYS TO SUCCESSFUL DOD SOFTWARE PROJECT ExECUTION

INTRODUCTION
DESIGN AND DEVELOPMENT PROCESS FOR ASSURED SOFTWARE - VOLUME 1

Text

stars
wreath

KEYS TO SUCCESSFUL DoD
SOFTWARE PROJECT EXECUTION
By: Joe Heil, Naval Surface Warfare Center Dahlgren Division (NSWCDD)

S oftware is inherent in today’s complex systems and is often the primary cost, schedule, and
technical performance driver in Department of Defense (DoD) programs. For DoD mission
critical systems, the associated software size, complexity, interdependencies, reliance-on

for mission and safety critical functionality, and software assurance (high quality and free from
vulnerabilities) related challenges are all continuing to rapidly increase. Successful software project
execution for DoD mission critical programs is vital to maintaining our national security. This in turn
requires the ability to efficiently as possible develop and deliver high quality software systems that
fully meet the warfighter’s operational needs and that are safe, secure, reliable, maintainable and
scalable. There are many reports from various software acquisition and performance assessment
organizations such as the Defense Science Board (DSB), Government Accounting Agency (GAO),
and the Carnegie Mellon University Software Engineering Institute (SEI) that document the common
challenges that have contributed to the inconsistent execution of DoD software system projects.
This paper provides a brief high-level introduction to some of the proven key approaches and
techniques required for successful software project execution.

WWW.CSIAC.ORG | 5

https://www.csiac.org

In general, the primary reason for software project failure is often not
due to the lack of technical expertise by the software development
engineers; but rather it is due to poor project estimation, planning and
control. Per the referenced reports above, some of the most commonly
reported reasons for software project execution failure include:

 i Poor software effort cost and schedule
estimation and tracking

 i Poor requirements and interface management
 i Limited data-driven execution control and

continuous improvement
 i Limited awareness and enforcement

of best software engineering practices
 i Lack of integrated software assurance

techniques in all development phases
 i Lack of frequent, regular, and structured

cross-discipline communication
 i Lack of formal risk management
 i Lack of investment in automated

testing, simulations, and data-extraction
 i Lack of multi-mission-platform

capable software architectures
 i Program leaders lacking applied software

engineering experience and expertise
 i Over-reliance on private industry for

system and software development
 i Failure to apply lessons-learned from previous efforts

Despite the common challenges to success listed above, some
DoD software intensive projects have been consistently successful
with regards to cost, schedule, technical, quality and operational
performance. These consistently successful software projects span
a wide range of missions (e.g. strategic, tactical, simulations),
development methodologies (e.g. nuclear certified, DoD 5000
waterfall, agile, prototyping), complexity (numerous interfaces),
and sizes (multi-million lines of code to tens of thousands); but
they all utilize many of the same software system acquisition and
development techniques to ensure success. Some of the common

keys to software project execution success are
addressed in the following sections.

KEY: Data Driven Software Effort
Estimation and Tracking

One of the primary root causes for many
software project failures is that the effort
was poorly estimated; or that the effort was

accurately estimated but the program’s senior leader drove the
development organizations to “accept the challenge” of significantly
reduced cost and accelerated schedule without reducing the
planned capabilities or requirements. Aggravating and increasing
the negative impacts of poor estimation and tracking is the lack
of control over requirements and interface volatility.

Software efforts
are often “hidden”
under the “system

engineering”

6

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

The key to success in estimating software efforts is to establish and
maintain detailed historical data on cost, schedule and technical
performance. Ideally, software projects should use the historical
data from their own programs for effort estimation/validation
versus trying to use data from other programs as this is rarely
successful given that there are too many variables involved to ensure
an apples-to-apples comparison (different tools, team experience,
development processes, requirements, constraints, etc.).

Software efforts are often “hidden” under the “system engineering”
efforts when planning and controlling a project. Project teams
must take the time and make the investment to establish a
well-defined work-break-down structure (WBS) that breaks out
the various software development activities
(requirements, architecture, design, code,
integration, test phases, etc.) and includes
the ability to develop and track associated
productivity factors (development-hours-
required per work-unit). Teams must establish
the process, tools and discipline to accurately
collect and utilize the estimated-vs-actual
data. It is NOT recommended to estimate and
track coding efforts by source-lines-of-code
(SLOC). Higher level work-unit abstractions
such as Objects, Files, or Function-points are
much better than SLOC. Note that although
SLOC based estimates are a poor method for
estimating and tracking, it is still important
to know the system size as measured in
SLOC and for normalizing software quality
(calculating defect ratios).

There should be detailed planned vs actual
cost and schedule plans for each Computer
Software Configuration Item (CSCI). Caution
must be exercised in combining the cost and schedule performance
indicators for multiple CSCIs. This is because over-performance
by one CSCI may mask high risk under-performance by another
CSCI. The software cost and schedule plans should be traceable
and linked directly into the higher level integrated system level
cost and schedule plans.

Program leaders that drive volatility but refuse to trade off
other capabilities or extend cost and schedule are destined
to fail. A formal Change Management (CM) process must
be institutionalized and strictly adhered to. All requirements
and associated quantifiable and verifiable Key Performance
Parameters (KPPs) must be allocated and traced to architecture,
design, code and test organizations and artifacts. Program leaders
must resist requirements creep/volatility and changes late in the
cycle. All content changes must be accompanied by revised cost,
schedule and technical performance impact assessments.

The project leaders and software team lead(s) must review planned
content, cost and schedule performance indicators, and technical

performance indicators on a very frequent, regular, and structured
basis. Variance thresholds must be defined and formal performance
risks and mitigation plans must be documented and tracked to
closure.

KEY: Data Driven Management and Technical
Execution Best Practices

Mature data-driven best software project management and technical
engineering practices are required to consistently achieve the goal of
delivering high quality, safe, secure, and reliable systems on schedule
and within budget.

The software project management processes
and technical development processes must be
documented, institutionalized and enforced. The
software development plan must specify the steps,
activities, roles and responsibilities, and required
reviews and metrics that are used for both the
initial system development (pre-IOC) and
sustainment (post-IOC) efforts. This includes the
set of required metrics and measures-of-success
that will be utilized to proactively control cost,
schedule, technical performance, quality, and
risk for the current effort as well as facilitating
analysis and continuous improvement for cost,
schedule, technical, and quality performance
of future efforts. At a minimum, each software
development organization must collect, maintain,
share and report on a frequent, regular and
structured basis the quantitative and qualitative
information to address all of the critical
execution questions listed below:

1. Are the expected system requirements stable and understood?
2. Is the scope and size of the effort understood?
3. Is the activity adequately staffed?
4. Is the activity making the required progress?
5. Is the activity being executed within budget?
6. Is the activity meeting technical performance,

assurance, and quality goals?
7. Is the activity formally successfully

identifying and mitigating risks?
8. Is the activity continually improving

efficiency and effectiveness?

Continuous improvement requires the software teams to maintain
awareness of and apply emergent best practices which include tools,
techniques, methods, technologies, etc. For example, a few proven
best sw engineering technical practices include:

 i User Centered and Model-based system
and software engineering.

 i Documented traceability between requirements,

Software
assurance (quality

AND resiliency
against cyber

vulnerabilities)
must be

engineered-in
throughout all
development

activities.

WWW.CSIAC.ORG | 7

KEYS TO SUCCESSFUL DOD SOFTWARE PROJECT ExECUTION – CON'T

https://www.csiac.org

design, code and test artifacts.
 i Multi-Discipline-expert peer reviews of

artifacts (specifications, code, tests, etc.).
 i Build-a-Little Test-a-Little (Rapid

prototyping, Agile development, etc.).
 i Automated testing (at CSCI level) and

simulators for go/fault/stress testing.
 i Tracking defect detection and removal

in each development phase.
 i Regular causal analysis of defects to improve

earlier detection and removal.

Project teams must take the time to formally and regularly assess
their cost, schedule, technical, quality and risk management

performance trends and then identify and track to closure the
associated specific process improvement actions.

Software assurance (quality AND resiliency against cyber
vulnerabilities) must be engineered-in throughout all development
activities. This entails much more than applying the latest COTS
security patches prior to delivery. SW assurance requirements
must be defined, the software design must not only defend
against cyber intrusions, but also be resilient enough to detect
and complete mission critical functions after intrusion; coders
must be trained on and apply secure coding techniques; multiple
tools must be integrated into all activities to identify and remove
vulnerabilities as early as possible; and all testing phases should
include penetration testing.

8

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

KEY: Structured Communication and Formal Risk
Management

Open and honest communications up and down the chain of
command as well as across the various development stakeholders
and organizations is critical for success. Program leaders must create
a culture where all team members are empowered and encouraged to
identify and proactively communicate risks and associated mitigation
techniques and plans. Leaders must not “shoot the messenger” when
emergent high severity risks are identified.

Effective communication often suffers due to poor project
estimation. Team members are behind schedule from day one and
therefore “do not have time” to communicate on a regular basis with
their peers, stakeholders and leaders. Lack of communication and
miscommunication due to over-allocated engineers often results in
requirements, design and interface problems detected very late in
the development cycle which are very costly.

Project teams must establish a set of hierarchical and linked cost,
schedule, technical performance indicators and quality measures.
Cross discipline and team delivery interdependencies must be

identified and closely tracked. All development teams must establish
timely regular data-driven reviews to proactively assess and mitigate
cost, schedule, technical, and quality performance risks.

A formal risk and opportunities board and process must be
established and executed with discipline. The process must facilitate
risks being identified and communicated on a frequent, regular
interval and at the appropriate levels of leadership. All risks must
always be addressed from the three perspectives of cost, schedule
and technical performance impact. Risks must be formally
documented via the standard 5x5 risk cubes; and each risk must
have a documented mitigation plan with assigned individual(s)
responsible for driving the risk to closure.

All status and risk reviews must have an assigned leader and well
defined agenda and required participants. The discussions must be
supported by objective data (planned vs actual cost and schedules,
technical performance, and quality indicators, open versus closed
risks over time, etc.) rather than subjective “red, yellow, green
stoplight” type indicators.

One strength of Agile based development approaches is the
requirement for key stakeholders to communicate on a daily basis.

WWW.CSIAC.ORG | 9

KEYS TO SUCCESSFUL DOD SOFTWARE PROJECT ExECUTION – CON'T

https://www.csiac.org

The project/product owners and leaders from the key engineering
disciplines (requirements, design, code, test, safety, security, end-
user, etc.) frequently communicate and stay in synch using efficient
and well-structured meetings. This philosophy
of frequent multi-stakeholder continuous
communication can be adopted by waterfall
based development teams by establishing regular
multi-discipline and multi-stakeholder reviews.
Projects must resist the temptation to frequently
delay or cancel periodic risk and status reviews
due to schedule pressure. Projects must establish
the tools and processes to formally capture action
items resulting from the frequent project control
communication events and ensure that all actions
are appropriately assigned and tracked to closure.

KEY: Early Defect Detection and Removal

It is well known that detecting and fixing defects late in the
development cycle is very costly. However, many projects fail to make
the investment in the tools, techniques, and methods that may cost
a bit more in the short run, but provide for significant reduction in
the program’s total ownership cost. As illustrated in the diagram
above; models, simulations, tools, and test-drivers should be utilized
throughout the development cycle to identify and remove defects
as early as possible. But note that this requires projects to fund and

account for the time and resources to develop and maintain these
testing products and processes.

Automation of testing requires a steady
investment and applied resources. Automated
testing must be implemented at the unit and
CSCI level as much as possible and not just
at the later and higher level system integration
activities. Investment must also be made in
implementing a Data-Extraction and Data-
Reduction capability. At a minimum, all data
that is exchanged between the CSCIs and
external systems must be extracted and time-
tagged. In addition, key data elements, state
changes, and system performance data should be

recorded as well. The associated Data-Reduction system and tools
must provide for automated detection of data out-of-sequence, out-
of-range, and other processing not in accordance with requirements
and design intent. The reduction tools must also enable the users to
sort and search for specific extraction elements.

KEY: Architecting Multi-Mission and Multi-Platform
Capable Software

It is not inherently natural for a profit based organization to provide
Modular Open System Architecture (MOSA) approaches resulting

avoid “vendor lock”
where they must

rely on the original
developer for all

fixes and upgrades

10

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

in common system and software architectures that can be easily
reused or quickly tailored to support multiple warfare missions on
various multiple platforms. Government software teams are more
apt to provide non-proprietary architectures and designs that are
modular, scalable, portable, configurable, and with standardized
interfaces that lead to higher system quality while also reducing
cost and schedule.

Program Offices should address MOSA from both business
and technical aspects in order to avoid “vendor lock” where they
must rely on the original developer for all fixes and upgrades.
The government and industry software development approach
discussed in later sections facilitates:

 i Increased: Competition, Innovation,
Protection of government data rights

 i Increased: System and Software Modularity,
Scalability, Commonality, Maintainability,
Reliability, Usability, Security, and Quality

 i Decreased: Proprietary components, Duplication
of design and implementation

The root cause for lack of well-
architected MOSA systems is due
to poor project estimation and the
emphasis on rapid prototyping and
speed to fleet. Rapid prototyping
by definition prevents teams from
investing the time required to establish
a sound foundational architecture.
They are focused on creating a “one
off or 80%” solution as quickly as
possible. While this approach may be
required to address emergent critical
threats; it is not a sound approach for
significantly reducing DoD software
acquisition cost and development
timelines in the long run.

The vast majority of software engineers
understand how to architect, design
and implement MOSA systems (i.e.
abstraction of the software application
layer from the hardware, utilization
of Virtualization, separation of the
user-interface and application layers,
utilization of Object Oriented Design
(OOD) to abstract and make common
the communication, sensor, weapon,
engagement, and other interfaces;
establishment of open standardized
interfaces, etc.). The simple key is to
allocate a bit more time and resources
up front for sound architecture and
design efforts.

KEY: Government In-House Applied Software
Expertise

Many studies document that program offices frequently do not
have the software experience, skills, training, or expertise required to
successfully execute. Although software has evolved into one of the
most significant, complex, and critical elements of DoD systems, a
common acquisition approach is to treat the software components as
“black boxes”; with the detailed understanding of the software (and
ownership rights) left almost entirely in the hands of private industry.
Government in-house software engineer participation (if any) is
typically limited to the reactive (versus proactive) responsibility of
reviewing industry developed artifacts and supporting milestone
reviews. This over-reliance on private industry can result in costly,
non-modular, proprietary system architectures, protracted schedules,
and poor performance. Sustainment of these systems is very
expensive as the government is “locked into” the original industry
software development organization and does not have the leverage
(technical knowledge and ownership of the software) required to
negotiate better cost and performance. This over reliance on industry
has also reduced the ability to maintain an in-house government
applied software expertise pipeline, leading to a dearth of program

NOTE: Percentages shown above are just notional examples; each program must determine appropriate level of
government and contractor mix

WWW.CSIAC.ORG | 11

KEYS TO SUCCESSFUL DOD SOFTWARE PROJECT ExECUTION – CON'T

https://www.csiac.org

leadership that fully understands software development best-
practices. As documented in the 2008 Mr. Donald Winter SECDEF
memo: “This combination of personnel reductions and reduced
RDT&E has seriously eroded the Department’s domain knowledge
and produced an over-reliance on contractors to perform core in-
house technical functions. This environment has led to outsourcing
the ‘hands-on’ work that is needed in-house, to acquire the Nation’s
best science and engineering talent and to equip them to meet the
challenges of the future Navy. In order to acquire DoN Platforms
and weapons systems in a responsible manner, it is imperative the
DoN maintain applied technical domain expertise at all levels of
the acquisition infrastructure.”

A proven successful alternative software system acquisition,
development, and sustainment approach utilizes government in-
house software engineers teaming with industry software engineers.
Government software engineers do not just monitor/review industry
software efforts, but rather they are also responsible for the hands-
on architecting, designing, coding, integrating,
and testing of a subset of the mission critical
complex software components. Government
organic software experts are involved both in
the original software component development
effort for the system (i.e. pre Initial-Operational-
Capability (IOC)) and throughout the software
sustainment efforts (i.e. post IOC capability
upgrades, enhancements, and defect corrections).
The percentage of software work allocated
between government and industry software
organizations will vary between programs based
on multiple factors such as size, complexity, and
system maturity. In the example programs that
utilize this approach listed below, the percentage
of government in-house versus industry software
developers varies significantly.

This software development teaming approach has been successfully
utilized for over 50 years by the Naval Warfare Centers for a wide
range of systems (e.g. missiles, guns, directed-energy, lethal and
non-lethal detect-track-engage systems) and for a wide range of
development approaches (e.g. Waterfall, Incremental, Agile, Rapid
Prototyping). Specific programs include the: Strategic Systems
Submarine Launched Ballistic Missile (SLBM) Fire Control System
(FCS) and Mission Planning System (MPS), Tactical Tomahawk
Weapon Control System (TTWCS), the Precision Guided
Munition (PGM) and Gun Battle Management System (BMS),
Laser Weapon Systems components, and several ground vehicle
Detect-Track-Engage systems. These programs have all utilized
government and industry software teaming and data-driven best
practices to consistently deliver high quality, safe, reliable, modular,
scalable, maintainable, reusable, and operationally proven software
systems developed within cost and schedule constraints.

By assigning actual software development responsibility to in-house
engineers, the Government maintains a software expertise pipe-line

as shown in the figure below, and thereby maintains the applied
hands-on software expertise required to perform as technical peer
level team-mates with private industry software engineers.

Maintaining the government in-house software expertise pipeline
provides DoD Program Leaders with access to in-house software
experts required to successfully:

 i Assess industry approaches, processes, and effort estimates.
 i Offer alternative non-profit-focused technical approaches.
 i Mitigate the risk of program office personnel turnover.
 i Apply lessons learned and metrics for continuous improvement.
 i Be assigned emergent tasks for technology investigation, rapid

prototyping, or other technical tasks without costly contract
modifications.

 i Control industry cost as the software development tasks can
be easily transferred to the government team if industry cost
growth becomes too great or for poor technical performance

(and vice versa). This leverage works best
when the government software development
organization(s) have been involved from
the initial system development efforts and
throughout the sustainment phases.

KEY: Applying Lessons Learned

The majority of challenges and best-practices
addressed in this paper have been previously
reported in DoD software system acquisition
and engineering assessment reports (e.g. Defense
Science Board (DSB), Government Accounting
Organization (GAO), and Software Engineering
Institute (SEI)). However, there are software
intensive system programs that continue to
repeat the mistakes of the past.

Although the majority of programs conduct formal system
engineering technical reviews (requirements reviews, design reviews,
delivery readiness reviews, etc.), these programs do not collect
project execution metrics and conduct periodic formal software
process improvement events where the planned-versus-actual cost,
schedule, technical performance, quality, assurance, and risk metrics
are analyzed and used to identify specific process improvement
actions that are then assigned and tracked to closure.

Program offices lack the leaders and staff with applied software
development experience, expertise; training; or awareness of the
findings and recommendations from the many software assessment
reports required to fully appreciate and adequately resource (funding
and schedule) best-practice based software engineering and project
control. The significant pressure to reduce cost and schedule drives
program managers into “short-term” thinking and decision making
which frequently results in the long-run of driving total ownership
cost up, significant schedule delays, poor quality, and results in

DoD systems,
a common
acquisition
approach is
to treat the

software
components as
“black boxes”

12

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

non-maintainable, non-scalable, and non-multi-system-platform
architected systems.

Summary

The associated software size, complexity, interdependencies, reliance-
on, and software assurance related challenges continue to increase.
DoD programs are challenged to consistently develop and deliver
high quality software systems that fully meet the warfighter’s
operational needs and that are safe, secure, reliable, maintainable and
scalable. The common challenges that prevent consistent software
development and delivery are well documented and known. The
primary reason for software project failure is usually not due to the
lack of technical expertise by the software development engineers;
but rather due to poor project estimation, planning and control.

There are some DoD software projects that have been consistently
successful with regards to cost, schedule, technical, quality and
operational performance. These projects span a wide range of
missions (e.g. strategic, tactical), development methodologies (e.g.
nuclear certified, waterfall, agile, rapid prototyping), complexity
(numerous interfaces to external systems to stand-alone), and sizes
(multi-million lines of code to tens of thousands); and they all utilize
many of the same software system acquisition and development
techniques to ensure success.

The common keys to success include utilizing a software system
acquisition approach that relies on government software engineers
to not just monitor/review industry software efforts, but also
perform hands-on architecting, designing, coding, integrating, and
testing of a subset of the complex software components for mission
critical systems. This teaming approach combined with data-driven
project-management and technical execution best practices has
been successfully utilized for decades for several mission critical
warfare programs and has consistently resulted in the delivery of
high quality, safe, reliable, multi-mission-platform capable and
operationally successfully software systems that were developed
within cost and schedule constraints.

REFERENCES
[1] Assistant Secretary of the Navy Research Development and

Acquisition (ASN/RDA), Chief Engineer, Software Process Initiative
Software Acquisition Management Focus Team, “As-Is and To-Be
State Reports”, 2007, 2008.

[2] Assistant Secretary of the Navy Research Development and
Acquisition (ASN/RDA), ASN/RDA Memo: “Department of the
Navy (DoN) Software Measurement Policy for Software Intensive
Systems”, July 2009.

[3] Assistant Secretary of the Navy Research Development and
Acquisition (ASN/RDA), ASN/RDA Memo: “Strategy to Balance
Acquisition In-House and Contractor Support Capabilities”, Decem-
ber 2008.

[4] Assistant Secretary of the Navy Research Development and Acqui-
sition (ASN/RDA), ASN/RDA Memo: “Meeting of the Navy Labora-
tory/Center Competency Group”, November 2008.

[5] Government Accounting Office (GAO), Report to Congressional
Committees Best Practices, February 2008.

[6] Office of the Under Secretary of Defense for Acquisition, Technolo-
gy and Logistics, Report of the Defense Science Board (DSB) Task
Force on Developmental Test and Evaluation, May 2008.

[7] Office of the Under Secretary of Defense for Acquisition, Technol-
ogy and Logistics, Report of the Defense Science Board (DSB)
Task Force on Defense Software, November 2000.

[8] Secretary of Defense (SECDEF), SECDEF Memo: “Department of
the Navy Acquisition”, December 2008.

[9] Senator Carl Levin, U.S. Senate Committee of Armed Services
Press Release, March 2009.

ABOUT THE AUTHOR

Joe Heil has worked as a Software Engineer for the Naval
Surface Warfare Center Dahlgren Division (NSWCDD) for over
30 years. The majority of Joe’s career was spent as the Lead
of Government and Industry Software Development Integrated
Product Team (IPT) for the Tactical Tomahawk Cruise Missile
Weapon Control System (TTWCS). As the TTWCS Software
Development IPT lead, Joe was responsible for defining the
software development processes, leading, coordinating the
software development efforts and ensuring successful cost,
schedule, technical, safety, and quality performance

Joe founded and is the current lead of the Naval Software
Community of Practice (SW COP). The NAVAL SW COP has
over 300 registered government in-house software experts
from across 19 different organizations, including the various
Naval Warfare Centers, Naval System Commands, Army and
Air Force engineers, and leaders from the Naval Post Graduate
School (NPS), Defense Acquisition University (DAU), and
Carnegie Mellon University Software Engineering Institute (SEI).

Joe’s current leadership roles and responsibilities are
focused on increasing awareness and application of data-
driven software engineering best-practices across the naval
enterprise. These leadership roles include:

• Deputy Chief Engineer for the Naval Surface Warfare Center
Dahlgren Division

• Navy Advisor to the Defense Science Board (DSB) Task Force
(TF) for Software

• Lead of the Naval Software Community of Practice (SW COP)
• Lead of the Naval System Engineering Stakeholders Group

(SESG) SW Group
• Contributor to the DOD SW Assurance Community of Practice

(SWA COP)

WWW.CSIAC.ORG | 13

KEYS TO SUCCESSFUL DOD SOFTWARE PROJECT ExECUTION – CON'T

https://www.csiac.org

Requirements

Build
Test

Deploy

Design

Release

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

SOFTWARE ASSURANCE
IN THE AGILE SOFTWARE
DEVELOPMENT LIFECYCLE
By: Bradley Lanford, Engility Corporation

O ver the last 30 years, the DoD has struggled to adapt to the ever-changing world
of software development. Of these many struggles, implementing Agile software
development and practicing systems security engineering are two struggles that

continue to plague the DoD. In an attempt to overcome both of these hurdles, this paper
presents a Software Assurance approach that is tightly woven into the Agile software

development lifecycle and emphasizes the benefits that Agile
development best practices can have on the security posture

of a software system. First, we review the DoD’s adoption
of Agile software development, including how to tailor

Agile for DoD development. Next, we examine Software
Assurance best practice and how they align with the

Agile software development process. Finally,
we discuss how an Agile approach

to software development
and the implementation

of DevOps can improve
a team’s ability to

maintain a high
security

posture.

14

Requirements

Build
Test

Deploy

Design

Release

SOFTWARE ASSURANCE IN ThE AGILE SOFTWARE DEVELOPMENT LIFECYCLE

Agile Development in the Department of Defense

Building and delivering software in incrementally has always been
a part of software development. The commercial world has been
modifying and enhancing that process since the publication of the
Agile Manifesto in 2001 [1]. The Manifesto identifies 4 values:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

These are then explained based on 12 principles
that outline a high level, highly collaborative,
time boxed process that focuses on delivering
working software to users and provides a method
for adjusting to changes in requirements. Since its
publication software has become more complex
and is now the most costly effort in almost all
DoD programs [2]. In response, the DoD has
adopted many of the Agile development practices made popular
by the commercial industry. The many struggles of that adoption
were documented in the 2012 GAO report [3] and five years later
the DoD continues to struggle.

A barrier to adopting a true Agile methodology is often the
Acquisition process and the strict requirements that are placed on
government program offices. Even as industry has evolved to only
offer Agile solutions, those solutions must be tailored to fit within
Acquisition. The constraints placed on any Agile implementation
are confined to the time between the finalization of the Capability
Development Document (CDD), which defines all requirements

for the entire period of performance, and operational test,
which is designed to determine the program’s ability to meet
CDD requirements. These two road blocks which are essential
to the acquisition process are fundamentally in opposition to
Agile’s flexible requirements and user interaction throughout
development. As development methodologies continue to move
further from rigid requirements, programs remain confined by
requirements that must be defined prior to contract award and
eventually tested to with limited operational test interaction in
development.

Despite these constraints, the defense industry
has developed its own variety of Agile that derives
many of the benefits of the Agile process while
still meeting the requirements of acquisition.
What is lost in the adherence to Acquisition is
the flexibility in user requirements that evolve
throughout the development lifecycle. What is
retained is the built in quality that comes from
the cadence of Agile development. Through this

cadence, DoD programs can apply and maintain software assurance
best practice throughout the life of the software.

Software Assurance in the Agile Software
Development Lifecycle

Software Assurance is fundamental to the systems engineering
process and ensures high quality software is delivered with limited
vulnerabilities. In order to achieve this goal software assurance must
be applied across the full Software Development Lifecycle (SDLC).
Many organizations, such as the National Institute of Standards

Agile Sprint

Requirements Design Build Test Deploy Release

S
w
A

A
g
i
l
e

● Modeling
● Derived Req.
● Security Req.

● Secure Design
● Architectural
 Analysis

● Orgin Analysis
● Code Review
● Static Analysis
● Unit test
● Formal Methods

● Dynamic
 Analysis
● Penetration
 Testing

● Regression &
 Performance
 Testing
● Automation
● Red Teaming

● Vulnerability
 Tracking
● Operational
 Monitoring

● Sprint Planning
● Definition of
 Ready

● Refactoring ● Continuous
 Integration
● Configuration
 Management
● IDE

● Test Automation ● Automated
 Deployment
● Sprint Demo
● User Testing

● Release
 Management

Cyber security is
a high priority for

all programs in
the DoD

Figure 1: SDLC with Software Assurance and Agile Development Process Overlays

WWW.CSIAC.ORG | 15

https://www.csiac.org

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

and Technology (NIST), have detailed this process, but do so in a
traditional waterfall approach [4]. In order to transition this software
assurance approach to an Agile software development lifecycle it
is important to utilize not only the cadence for development and
testing but also the cross functional team structure to reinforce
your assurance practices. Figure 1 provides an overlay of software
assurance best practices onto a single Agile development sprint.
Although similar to a standard development lifecycle each phase
has a unique Agile implementation that provides a structure for
assurance practice.

Requirements

The foundation for software assurance is
defined with the requirements. Requirements
should be written and decomposed focusing
not only on what the system needs to do
functionally, but how it will be protected.
To inform these decisions, programs model
threats, complete criticality analysis, and define
functional and non-functional software security
requirements. Due to the level of requirements
that must be defined prior to Engineering &
Manufacturing Development (EMD) phase of
the DoD acquisition lifecycle, programs should
have a more complete definition of software
assurance requirements than a typical Agile
development effort.

While requirements may be more fully defined
it does not mean they are fully understood or
even evolved to meet the changing threats
required to complete the mission. Prior to the
start of an Agile sprint, the team reviews the
requirements for any new capabilities being
developed. From an assurance perspective all
relevant security requirements should be documented and included
in these user stories for the upcoming sprint. In addition to new
requirements, all acceptance criteria for sprint work should be
included in the user stories, referred to as the definition of ready, to
ensure that stories are actionable for developers. This includes code
reviews, completion of unit tests, and use of static analysis tools
prior to delivery of new code.

Design

Along with defining requirements, the team should make design
decisions prior to the first sprint and then review these designs
with each sprint planning meeting. This includes following secure
architectural design patterns and doing an architectural analysis
of risk. Once architectural drawings and system modeling is
complete, the team can make changes and reassess risk with each
subsequent sprint planning session. This also allows programs to
identify any new vulnerabilities affecting the initial design and
plan rework efforts based on the prioritized backlog. The built-

in quality expected of Agile development relies on the ability to
refactor existing code to address changes in requirements. As
threats change and design pattern vulnerabilities are discovered,
the flexibility to refactor becomes far more important in the
development of a secure system.

Build

An Agile development methodology is only as good as the tools
and environments used to facilitate continuous integration. It is
also these tools and environments that enable software assurance
practices to be incorporated into the software development. All
members of a development team can have access to an integrated

development environment (IDE) to ensure
secure coding standards are being followed.
Additionally check-in procedures for new
code can require static analysis of new code,
code review by peer programmers, and origin
analysis to determine the source and existing
vulnerabilities of all code added to the stream.
Integrated team testers should identify
vulnerabilities and ensure they are resolved
prior to check-in. Daily stand-ups include
representatives from cross-functional teams
including database administrators, architects,
and Information Assurance to address system
assurance and other related questions to ensure
development teams are aware of potential
sources of vulnerabilities.

The effectiveness and efficiency of Agile teams
relies on the automation of day to day procedures.
Automation is also key to software assurance
because it enables a system to be thoroughly
and accurately tested for vulnerabilities on a
continuous basis without overburdening a test

team. This automation begins with the development team and then
is provided for reuse later in the lifecycle. Once automated, unit
and regression testing can take place as needed to ensure working
software that is free of vulnerabilities. The practice of assuring
software, once thought to be burdensome to software developers, can
be aligned with the Agile cadence and integrated into development,
compilation, and delivery tools to become a standard part of the
development process. In return, vulnerabilities are found earlier
and fixed prior to delivery to the test environment. As a side effect,
developers learn secure coding practices through experience and
reduce similar issues from occurring in the future.

Test

Through Agile development, parts of the test process are moved
into the software development phase to fix defects prior to
integration into the code base. This process formalizes test cases
and often automates them for reuse. Independent Verification
and Validation (IV&V) teams use existing test and develop

Detection
framework will
also improve

the ability of the
human analysts

to acquire
and maintain

situational
awareness in
cyberspace

16

SOFTWARE ASSURANCE IN ThE AGILE SOFTWARE DEVELOPMENT LIFECYCLE – CON'T

additional testing to discover defects prior to user acceptance
testing. Through Agile’s continuous integration model, testing can
occur continuously with testers having access to the code base in
an environment designed to mirror the operational environment.
Static and dynamic analysis tools can scan and examine the entire
code base. These results, along with penetration testing, provide
direct feedback to developers and increases defect/vulnerability
reporting into the product backlog.

At the end of each sprint all working software is delivered to one or
multiple test environments. Test teams work a single sprint behind
development to identify defects and vulnerabilities that can be
prioritized in the program backlog for the next release. In addition
to test teams, Agile relies on the involvement
of users in the sprint process. Along with the
ability to provide sprint demo’s the continuous
development environment and automated
deployment allows users the opportunity to test
functioning code before release to production.
This adds an additional layer of assurance
as users can determine if software functions
as intended and only as intended without
simply relying on requirements. Through the
integrated development environment, users can
also provide feedback in the form of defects to
the product backlog and development teams.

Deploy

Due to the acquisition process, code cannot be released every sprint,
but Agile dictates frequent release of working software. In order
to facility this, delivery teams should maintain a pre-production
environment that mirrors production and accommodates
frequent releases. This allows early operational monitoring, red
teaming activities, and identifies vulnerabilities prior to release.
As mentioned above automation is integral to the success Agile
development. Along with the automation of test cases, release
management should also automate the deployment process to
ensure a thorough and repeatable process. This automation is
also important to the assurance of the system as automation
limits the ability to compromise the system through the addition
of vulnerabilities at the release stage. Projects can automate the
configuration, code signing, unit testing, versioning, code analysis,
and test deployment to ensure proper release to all environments.
Release acceptance testing, taking place on pre-production, can
also be automated based on test cases developed throughout the
sprint. Acceptance test should include regression, performance,
and integration testing to identify vulnerabilities. Deployment
follows the software development cadence with working
software being delivered at the completion of each sprint and
releases to the production aligning with completion of functional
capabilities. Once again, projects can use the IDE for configuration
management of all defects and vulnerabilities to include software
version and the environment where they were identified, with
mitigation and fixes tracked and included in regression test cases.

Release

Release of an acquisition system into the production environment
requires that programs complete operational testing and obtain an
authority to operate. This is a very detailed and, for Major Defense
Acquisition Programs (MDAP), waterfall process. Many times it
is this process that discovers a majority of vulnerabilities, when
the costs of rework are expensive. The Agile approach outlined
above discovers defects and vulnerabilities within development
sprints, when the cost to mitigate or fix is comparably low. Once
operational, projects should continue to monitor and maintain
these systems using tools designed to run along with the
application, operational monitoring, to identify any changes in

system performance or runtime.

Benefits of Agile and Introduction to
DevOps

Maintaining a high security posture is
becoming increasingly difficult as the cyber
security threats become more complex.
Although the fundamental systems engineering
process for developing secure software remains
the same, new methodologies, tools, and
technologies are always emerging to protect
our systems. The Agile manifesto was written
to place an emphasis on the importance of

responding to change and through the implementation of Agile
teams can not only streamline software assurance best practice,
but can also adapt to changes when new vulnerabilities or
assurance techniques are discovered. These are some of the key
Agile processes that can be used to facilitate software assurance
best practice:

Agile Cadence

Cyber security is a high priority for all programs in the DoD.
Unfortunately it is not always funded and often times it is
viewed as resource intensive for programs trying to implement
it outside of the systems engineering process. Using an Agile
methodology, the cadence of sprint development makes it
possible to neatly align all elements of software assurance.
Sprint planning requires review of design, architecture, and
requirements. Development teams perform code reviews,
develop unit test, and run all code through static analysis tools
before delivery. Team testers ensure test plans are developed and
acceptance criteria are met. All of this takes place in a two to
four week sprint and ensures that software assurance activities
are not burdensome due to the reduced scope. At the completion
of a sprint, IV&V and release management teams operate on
the same cadence once code is integrated. All of this culminates
in a scheduled release of working and secure software that has
been rigorously tested before moving to pre-production for user
acceptance or the production environment.

automation limits
the ability to

compromise the
system through
the addition of

vulnerabilities at
the release stage

WWW.CSIAC.ORG | 17

https://www.csiac.org

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

Continuous Integration

No matter the framework chosen for the implementation of
Agile the engine that makes a team successful is the continuous
integration environment. This is the infrastructure which allows all
team members to work on and deliver code to a single development
stream. Agile emphasizes early delivery of working code. For
systems engineers the continuous integration environment serves
as a means to ensure all code is properly scanned, reviewed, and
tested prior to delivery. This includes origin analysis of libraries and
functions, unit test, code reviews, and static code analysis. Smaller
incremental delivery allows code to be scanned quickly and with
little impact on performance. Once delivered, the single repository
is ideal for regression testing, static analysis of the full codebase,
and dynamic analysis of deployed software. In addition to the
process, IDEs used for continuous integration can provide instant
feedback on adherence to coding standards and best practice as well
as configuration management of vulnerabilities that is accessible by
all team members.

Continuous Delivery and DevOps

Continuous delivery is the process in which code that has been
delivered to the development stream is automatically built,
tested, and prepared for release. Although it is not vital to
Agile development it has been adopted in most instantiations.
Automation is an important practice in securing a system, as
it ensures a repeatable and consistent process that does not
introduce vulnerabilities into the system. Through continuous
delivery engineers, can automate software assurance tool usage
into the build process and provide feedback to developers based
on test results. Another important element of continuous delivery
is the infrastructure required to support release to multiple
environments. Once the build and release process is automated,
new code can be released to test pre-production, or production
environments allowing regression testing, code analysis,
red teaming, and penetration testing to start immediately.

Additionally having the flexibility in infrastructure allows for
operational monitoring prior to release to production.

A concept that has grown from the movement to Agile is DevOps.
DevOps is in many ways similar to Agile but with a focus on
delivering and evolving products at a high velocity. Continuous
deployment is key in realizing this objective and many times
programs merge development and operations teams to streamline
deployment. In this case many of the roles of the operations team
are realized using code such as infrastructure, policy, and monitoring.
Infrastructure as code allows development teams to provision and
manage infrastructure instead of manual configuration. This can
provide environments for more thorough security testing or a
location to deploy known malware to test applications. Infrastructure
as code also adds security because it can be tracked, validated, and
reconfigured automatically, flagging non-compliant resources. Agile
and DevOps methodologies both focus on optimizing the process
to allow faster delivery to the user, the end result is a well-defined
process that can be used to build in assurance practices to maintain
a high security posture [5].

REFERENCES
[1] Agile Manifesto. 2001. “Manifesto for Agile Software Development”

retrieved from http://agilemanifesto.org/ on March 31, 2017

[2] Hagen, Christian; Sorenson, Jeff 2013. “Delivering Military Software
Affordably,” Defense AT&L, Mar-Apr 2013 http://dau.dodlive.
mil/2013/04/24/delivering-military-software-affordably/

[3] GAO 2012 “Effective Practices and Federal Challenges in Applying
Agile Methods”

[4] GAO-12-681: Published: Jul 27, 2012. Publicly Released: Jul 27,
2012.

[5] Jarzombek, Joe. 2012. “Software Assurance: Enabling Security and
Resilience throughout the Software Lifecycle” http://csrc.nist.gov/
groups/SMA/forum/documents/october-2012_fcsm-jjarzombek.pdf

[6] Amazon Web Services. 2016. “What is DevOps?” retrieved from
https://aws.amazon.com/devops/what-is-devops/ on March 31,
2017

Like and Follow us
On Social Media!

Search: CSIAC

18

https://twitter.com/DoD_CSIAC
https://www.facebook.com/CSIAC/
https://www.youtube.com/channel/UCKHwOTkjLAV9VgiecyEUzgg
https://www.linkedin.com/groups/3406862
https://vimeo.com/csiac

HOW CAN CSIAC HELP?
In a time of shrinking budgets and increasing
responsibility, CSIAC is a valuable resource for accessing
evaluated Scienti�c and Technical Information (STI) culled
from e�orts to solve new and historic challenges. Our
CSIAC SME network includes experienced engineers and
technical scientists, retired military leaders, information
specialists, leading academic researchers, and industry
experts who are readily available to help prepare timely
and authoritative answers to complex technical inquiries.

Once submitted, the inquiry is sent directly to an analyst
who then identi�es the sta� member, CSIAC team
member, or SME that is best suited to answer the
question. The completed response is then compiled and
sent to the user. Responses can take up to 10 working
days, though they are typically delivered sooner.

CALL NOW! 800-214-7921

EMAIL AT: info@csiac.org

WANT TO SUBMIT A
TECHNICAL INQUIRY?
The CSIAC provides up to 4 hours of Free
Technical Inquiry research to answer users’
most pressing technical questions. Our
subject matter experts can help �nd answers
to even your most di�cult questions.

Technical inquiries can be submitted to CSIAC
via our csiac.org, or by email, phone or fax.

FOR MORE INFO, GO TO:
https://www.csiac.org/free-inquiries/

HERE TO SUPPORT YOUR MISSION.
Is your organization currently facing a challenging Information

Technology oriented research and development problem that you need

to have addressed in a timely, efficient and cost effective manner?

JUNE 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMSJULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

HACKER 101 & SECURE CODING:
A Grassroots Movement towards Software Assurance

By: Carol Lee, Jasen Moran, Joel McCormick, Kolby Hoover, Matt Hackman, Paul McFall, Roger Lamb, Scott Nickeson

T he frequency and complexity of attacks upon the software assets of the United States
Military is increasing at a rate which requires a massive organized response from the defense
community. This threat is unlike anything encountered before and the response must be

swift and focused. Currently the Navy and the Department of Defense are working multiple fronts
in order to keep pace with the actual threats. The predominance of the attacks are focused in
one area which should help focus a part of our defense. The Gartner report1 stated that 84% of
all attacks are at the application layer. Therefore, securing the application layer should be the top
priority. To achieve security in this area, computer scientists need to build software with security
in mind from the beginning. However, most software developers have not been trained in secure
coding techniques within their undergraduate programs. The solution lies with driving the culture of
software development toward software assurance knowledge and practices; which is not a trivial
undertaking. The goal of this article is to describe a grass roots training class that was created at the
Naval Surface Warfare Center Dahlgren Division (NSWCDD) to provide software developers with an
introduction to the fundamentals of software assurance and secure coding.

20

hACKER 101 & SECURE CODING: A GRASSROOTS MOVEMENT TOWARDS SOFTWARE ASSURANCE

Introduction

The Cyber War has not only begun, but it is well underway. Sun
Tzu in The Art of War2 offers not only insight but also a potential
method for assessing whether one is prepared for battle.

If you know the enemy and know yourself…
You need not fear the result of a hundred battles.

If you know yourself but not the enemy…
For every victory gained you will also suffer a defeat.

If you know neither the enemy nor yourself…
You will succumb in every battle.

There have been a significant number of successful cyber attacks
on the U.S. Government over the past several years, from the 2014
Office of Personnel Management Data Breach to the successful
cyber attack on the IRS in 2016 and those are just the openly known
attacks. Using Sun Tzu’s philosophy as an assessment, one is forced
to admit that at best we don’t know our enemy (where and how
they are most likely to attack) and at worst we don’t know ourselves
either (where most of our vulnerabilities are located). The primary
response to this scenario has been to create a wave of new defense
methods and tools. The goal of this article is to review and outline the
successes and lessons learned from a “grass roots” training class that
was created at the Naval Surface Warfare Center Dahlgren Division
(NSWCDD) to provide software developers an introduction to the
fundamentals of software assurance to include secure coding.

Why Train Developers in Software Assurance?

The beginning was simple, a team of software engineers moved from
satellite and mobile development to the mysterious realm of cyber
R&D. In the software development community, there is a belief
that network defenses, such as firewalls and intrusion detection
systems, safeguard our software systems and therefore developers
do not have to concern themselves with security at large. One of
the early realizations the team had was that software applications
are an attacker’s main target and network defenses can be defeated.
Hackers try to use developers’ tools, such as input fields, and
computer resources, such as memory, in ways that weren’t intended
by the original designers. This is one of the primary ways hackers
can obtain system access and information. For example, developers
write code with the expectation of what constitutes normal inputs
that the user will give to an application. Developers often test for
accidental input errors, but they don’t design or code with the idea
that someone is intentionally trying to take advantage of their
application through a buffer overflow weakness.

Gary McGraw, IEEE Senior Member and Secure Coding expert,
notes that 50% of vulnerabilities that attackers take advantage of
occur in software design.3 The 2014 Gartner Research report stated
that 84% of breaches exploit vulnerabilities in the applications
themselves.1 These facts are not well known or understood among
the majority of developers who are still not trained in secure software

development in their undergraduate or graduate programs. However,
as we came to realize, if the software itself can be the target and
the weakest link in a system, then secure software can be the best
defender. Even security defense tools are themselves software that
can have vulnerabilities, and they must also be coded securely.

Therefore, secure software development became the focus and
software developers became the fundamental solution. Why?
Software developers take pride in their code and inherently strive to
make their software solid and robust through areas such as reliability,
scalability and maintainability. If software security was added to this
list, through exposure and adoption of secure coding knowledge,
then software would become intrinsically more secure. Code
security would be naturally and automatically included in the design,
architecture and daily development. Software assurance includes
secure software development practices, processes and tools. It is
part of the overarching software engineering umbrella. Upcoming
new accreditations and processes are attempting to address cyber
issues. However, success will be achieved most efficiently if software
designers and developers understand and adopt software assurance
principles in order to thwart hackers and fulfill their missions.

Getting Developers Interested in Software Assurance
Training

As the team progressed in studying cyber security and software
assurance, the more it became clear that this was not only an
ambitious undertaking but also an urgent need. While there is a vast
amount of information out there, developers do not know where to
look or even that they should be looking. The material came mostly
in two varieties. Either at a general level with instructions such as
“implement secure programming practices” with no details to help a
developer get started or at too detailed a level for developers with no
previous training or subject awareness to easily understand. The team
spent a great deal of time collecting and digesting the volumes of
information and training each other on information they found. The
obvious next step was to create a “grass roots movement” in software
assurance and secure coding. By presenting this information in an
easy to understand manner, developers could immediately proceed
to look for insecurities in their own code and fix them.

However, often when new rules or processes are added to our work, the
initial and natural response is to resist and attempt to subvert the extra
work, especially if it is not seen as adding value. Therefore, the software
assurance training needed to create excitement and immediate interest.
Thoughts of past government training in Information Assurance (IA)
came to mind (“Bueller, Bueller…”). While IA should be performed
during the development lifecycle, unfortunately, it became a checklist
at the end of development and therefore not as effective. Software
assurance activities need to be intimately integrated with software
development in order to be part of the Navy’s solution against its cyber
enemies. The plan was to create a set of classes, held over a couple of
days with fun hands-on activities to relate the volume of information
in an interesting and easy to understand manner while keeping the

WWW.CSIAC.ORG | 21

https://www.csiac.org

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

22

students awake and engaged. The week would be divided into three
sections: Hacker 101, Secure Coding, and Software Assurance.
The Hacker 101 “be a hacker” portion gained
early interest and filled the seats to maximum
capacity. Who doesn’t want to pretend to be a
hacker, even if they aren’t really sure what that
means? This portion would help the developers
understand the hacker’s mindset, satisfying Sun
Tzu’s concept of understanding your enemy. How
can you truly create secure code if you don’t know
how the hackers are attacking? After this class
grabbed everyone’s attention, as well as concern
about how to protect their software, the Secure
Coding class would follow to begin teaching
secure coding techniques, reinforced with more
hands-on activities. Additionally, Software
Assurance highlights would be presented before
both Hacker 101 and Secure Coding to help
introduce the topic as well as illustrate the connection between
software assurance, cybersecurity and secure coding. Finally, the
Software Assurance class would be presented in more depth to round
out the week with new processes and testing tools the developers
could adopt to help them code more securely.

Setting the Stage

The final version of the training ended up encompassing over 850
slides with many hands-on activities. The Cyber Defense Vulnerability
Insight Laboratory (Cyber DeVIL) was set up to accommodate
groups of students with each student having a computer with virtual
machines, network connections to the attack server, the hands-on
activities and follow-along steps so no one would fall behind. Two
pilots of the classes were advertised across two different geographical
locations to maximize the variety of developer knowledge bases. The
goal of the pilot classes was not only to train developers but also to
find out what developers already knew about secure development,
what would need to be added or removed from the training to make
it more viable across the Navy, and most importantly, to find out
if it was interesting. If the training wasn’t interesting, the software
assurance game would be lost before the movement even started. The
pilot classes received more candidate requests than there were seats to
accommodate people, so the selection was based upon two criteria. The
first criterion was experience with software development. Software
developers were chosen with a range of experience from recently out-
of-school to seasoned professionals. This would provide a sense for
what skills were being taught in universities as well as what had been
learned during a significant career length. The second criterion was
prior knowledge of software assurance. Developers were chosen with a
range of software assurance knowledge from none to some. This would
help know how well the training compared to other information as
well as providing feedback about the style of training. Additionally,
it would validate the assumption that most developers were unaware
of software assurance as well as observe how well they responded to
the topic and the extra work that this effort was going to demand. All
three topics were created with open-source information and provided

those resources to the attendees for further use. The final day included
a guest speaker who shared his substantial experience as a software

assurance tester and what he had seen work to
greatly improve security in government software.

 KNOW YOUR ENEMY - HACKER 101

The purpose of the Hacker 101 class was
twofold. First, the class was meant to illustrate
the mindset of the hacker and what they could
do with weaknesses in code. It was important
for students to understand that functionally
correct code can provide an attack pathway
into the overarching system if it has even minor
security oversights. Second, the class allowed
the developers to play at being a hacker. This
concept piqued their interest, got them to sign
up for the class, and provided a fun approach to

a new critical topic. It also gave them the impetus to take ownership
to find and fix the weaknesses that could be in their code.

The introduction to the class quoted experts stating that security
weaknesses in code are rampant and that software security is not
understood as an essential priority alongside functionality. The topic
of Software Assurance as a component of Software Engineering was
introduced. Also discussed were the National Defense Authorization
Acts, which Congress had mandated to direct the Department of
Defense to perform software assurance to better secure our military
systems. The unclassified open-source Mandiant report4 was noted
as an example of real-world attack activities.

The class covered the different phases of an attack: Reconnaissance,
Network Scanning, Exploitation, Post-exploitation, Maintaining
Access and Covering Tracks. Several demonstrations were given to
show how an entire attack would look across the phases for a more
in-depth look into an activity which would require a higher skill
level and extended time to fully complete. The students used Kali
Linux, Metasploit and the command line for tools such as Nmap
across the phases to get hands-on experience. An overview of each
hands-on activity was presented at the end of each topic discussion
(ex. Figure 1) followed by detailed steps.

Figure 1: Example of Student Hands-On Activity

developers
understand the

hacker’s mindset,
satisfying Sun

Tzu’s concept of
understanding

your enemy

hACKER 101 & SECURE CODING: A GRASSROOTS MOVEMENT TOWARDS SOFTWARE ASSURANCE – CON'T

WWW.CSIAC.ORG | 23

Reconnaissance

The Reconnaissance section discussed how hackers gain information
against their targets by using a variety of websites for open source
information gathering, tools and social engineering tactics. Armed
with this information, hackers can send phishing emails or use help
desk personnel to get accounts and passwords. In this manner, attackers
build their information base of a target’s potential weakness areas.

Network Scanning

The Network Scanning section let the students try their hand
at identifying the operating system information, open ports and
available services of their target. The hacker would then recreate a
company’s infrastructure based upon the information they found.
This would be completed on their own equipment so they could then
laboriously search for vulnerabilities and experiment with creating
exploits against them until they had success with an effective attack
against this test infrastructure. Only once flawlessly successful, would
they try the attack against the actual target.

Exploitation

The Exploitation section emphasized how
software vulnerabilities such as stack/heap
overflows, Structured Query Language (SQL)
injection, cross-site scripting and other code
weaknesses, are a gold mine for hackers and
provide critical pathways to achieve success. The
activities centered on using Metasploit, which
is a hacking framework designed to streamline
the attack process. Metasploit has a library of
prebuilt exploits against applications and services
and corresponding payloads for those exploits to
support attacks. The hacker community creates
and shares successful exploits for others to use.
Using the information they gained in the previous phases, even novice
hackers can use Metasploit to look for a service like a SQL Server
or a product such as Adobe Flash and use a prebuilt attack against it.

In the hands-on portion of the Exploitation section, the students
used Metasploit to attack the provided lab entities with the same
exploit used in the Stuxnet attack. Additionally, a full exploitation
demonstration was performed for the class using WarFTP to show
how to use tools such as fuzzers and debuggers to crash an application,
find weak code, and then create or inject malicious code for a successful
attack on a system. Again, this stressed the necessity for developers
to understand how code could be exploited and how to prevent the
associated weaknesses so they could remove the paths hackers use.

Post-Exploitation & Maintaining Access

Hackers can remain active after an attack. In the Post-exploitation
phase, the students reviewed network traffic, obtained passwords,
moved to other systems and hid their traffic. Once an exploit is

successful, hackers want to maintain access. They want to ensure that
they can easily get back into a system and not be dependent on using
their initial entrance to the system in case the initial path was detected
or patched. For example, perhaps a watchful administrator responded
to an intrusion detection system noting an unusual log-in. By the
time the administrator closes the door the attacker came through,
the attacker may have already created other accounts, installed a
backdoor Trojan to easily get back in, set up callbacks to be able to
send data out from the system back to themselves, or started stealing
and cracking passwords to get into other areas of the system.

Covering Tracks

Finally, an attacker wants to cover their tracks so their existence
within the system is not discovered. They do this by changing log files
and other artifacts to remove traces of their activities. The students
were given an opportunity to use the sum of the knowledge they had
gained and tackle a mini Capture-the-Flag challenge, as well as other
activities such as bypassing a firewall. A handout of references and
topics was given to the students at the end of the class.

Hacker 101 – Summary & Take Away Message

Skilled attackers can relatively easily thwart our
current security perimeter defenses that have been set
up to keep them out. Unfortunately, an administrator
and protector of the perimeter defenses has an
overwhelming set of tasks to accomplish; an enemy
with ever-changing tactics; and tools that can only
address a part of the problem, are only successful
against already known attacks and which may have
been created with insecure code themselves. Once an
attacker has obtained access to any part of an entire
system of systems, they can then begin to install
their own software. This software could potentially
let them back into the system, control parts of the

system, and/or move to more critical components in a system. While it
is important to apply additional rigor to the more critical components,
if a supporting non-critical component has access or connections into
the system, it could be the weakest link and the key to the back door of
the entire defense system. This is why securing code is so important. It
is the main target and the last defense.

 KNOW YOURSELF – SECURE CODING

The purpose of the Secure Coding class was to introduce the topic
of secure software development and illustrate what developers could
do to find and fix weaknesses in their current code and prevent
weaknesses in the future. While this topic has been around for
more than a decade and there are volumes of information available,
developers have not been trained in this topic in their undergraduate
programs; know how to use it or even that it exists.

The introduction to the class highlighted the significant amount
of open-source and Department of Defense (DoD) information

Skilled attackers
can relatively
easily thwart
our current

security perimeter
defenses

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

24

on secure coding. It delved deeper into the
resources by presenting the Common Weakness
Enumeration (CWE) and its Top 25 security
issues, the Open Web Application Security Project
(OWASP) and its Top 10 issues, the Common
Vulnerabilities and Exposures (CVE), National
Vulnerability Database (NVD) and the Common
Attack Pattern Enumeration and Classification
(CAPEC). The CAPEC is a classification of
common attacks and helps identify risks to a
system (what an attacker would do). In order to
better familiarize the developers with this large
body of knowledge, the discussion covered what
the purpose for each is, what the differences are
between them, how they all fit together and how
they could help developers. Additional resources
were mentioned such as the State of the Art
Report (SOAR) on Software Security Assurance,
CERT Coding Standards, and the body of work
the Department of Homeland Security (DHS) has produced in the
Software Assurance Pocket Guide Series. Finally, the introduction laid
the context for the class. The class would cover the top 27 CWEs that
developers needed to know and understand. The CWEs are hosted
by the MITRE Corporation, cosponsored by DHS.

Setup - Insecure Bank & Common Weakness Enumeration

During the class, the CWEs were presented in a single context of
a fictitious banking application with various functionality modules
similar to the ones that developers may code themselves. Each module
(ex. Create user or Account summary), would exhibit two to four
CWEs detailing how the weaknesses could be leveraged by an attacker
in that area and how developers could help securely code that function.
The bulk of the class went through each of the 27 CWEs presented
in its own vignette. For each CWE, eight items were discussed to
cover the topic fully. A depiction of this structure and the discussion
items are listed in Figure 2. As an example, a subset of the vignette
on CWE-120, Buffer Overflow is shown in Figure 3.

Figure 2: Class Presentation Structure and Discussion Items to Support
the Top 27 CWEs

Figure 3: Subset of the CWE-120 Buffer Overflow Vignette

The idea was to break up the volume of knowledge into easily
understandable pieces that applied to functions with which
developers were already familiar. Additionally, maintaining a single
banking application context for all of the CWEs kept the focus
on the coding issues rather than focusing on the details of the
underlying training applications. This setup would also provide
an easy conceptual reference for the future when they wanted to
review the information.

The class also covered other topics. Common terms were
discussed such as dynamic testing and privilege escalation and
the difference between a weakness, vulnerability and exploit.
Web programming basics were also covered. While only three of
the twenty-seven CWEs were solely for web applications, these
basics would support other essential topics such as client-server
paradigms when their respective security issues were discussed.
Finally, different automated static source code analysis tools
were also mentioned.

Secure Coding – Summary & Take Away Message

A summary included the important concepts the developers should
take away from the class (Figure 4). The class was highly interactive
to support the activities and questions from the students. The
class covered over 650 slides in two days. However, the students
were actively engaged by the structure of the class and remained
interested throughout which is a significant success on its own.
At the end of class, a handout of references and topics were given
to the students as a takeaway. This class is essential for software
developers as it introduces the subject of secure coding, widens
their aperture and instills ownership to ensure code, applications
and systems are developed securely.

hACKER 101 & SECURE CODING: A GRASSROOTS MOVEMENT TOWARDS SOFTWARE ASSURANCE – CON'T

WWW.CSIAC.ORG | 25

Figure 4: Summary of Important Secure Coding Concepts

 SOFTWARE ASSURANCE – SECURITY
THROUGHOUT THE LIFECYCLE

Just as Hacker 101 set the stage for the importance of Secure Coding,
both the Hacker 101 and Secure Coding classes were designed
to lead into the final class on Software Assurance titled Secure
Software Design, Lifecycle and Testing. The goal for the week was
to introduce the concept of Software Assurance and the lifecycle
activities which support it. Secure software design, architecture and
development processes as well as testing are at the heart of software
assurance. Software assurance is defined as the level of confidence
that software functions as intended and is free of vulnerabilities,
either intentionally or unintentionally designed or inserted as part
of the software, throughout the life cycle”. 5,6 Software Assurance
has been around for over a decade in industry. Guidance exists in
our DoD instructions and is mandated by congressional National
Defense Authorization Acts (NDAA). DoD instruction 5200.44
for Trusted Systems and Networks5 states that software assurance
will be used throughout the lifecycle to manage risk of key systems.
NDAA FY136 and subsequent NDAAs state that software
assurance will be implemented for the entire lifecycle for trusted
defense systems. Software assurance is the security component of
Software Engineering. Testing activities and tools can only find a

small portion of the weaknesses and vulnerabilities in our DoD
systems. Security software itself has been noted to introduce 1/3 of
the vulnerabilities7. Therefore, it lies with the software developers
and validators themselves to fundamentally understand the tenants
of secure software development, lifecycle processes, and tools in
order to best protect and defend ourselves from attacks. The benefit
from developers tackling this issue now is to be able to experiment
with, inform and select activities that fit well into their current
processes. These experiences could support their program manager’s
requirement to prove how they utilize software assurance on their
programs.

This class touched upon secure software development lifecycle
models and their components, secure coding recommendations
for each phase of the lifecycle, password security and software
security testing. As each one of these topics could support a class
unto themselves, they were introduced with examples to show their
importance and overall place in the lifecycle.

Lifecycle Models, Activities & Recommendations

First, the class introduced the notion of secure software development
lifecycle models such as Gary McGraw’s Touchpoints, Build Security
In Maturity Model (BSIMM), Microsoft’s Security Development
Lifecycle (SDL) and OWASP’s Open Software Assurance Maturity
Model (Open SAMM). The class noted examples from the
Microsoft SDL that covered the requirements and design phases.
Additional examples for the design, implementation, distribution,
installation, operation and maintenance and retirement activities
were also covered. Each of these topics could require their own
separate training so the topics were introduced with resources
and examples so that the students were aware of them and their
part in the secure development lifecycle. The requirements portion
included security requirements, risk analysis and prioritization
based on impact and likelihood. The design portion included design,
development and test requirements. Recommendations included
items such as keeping the code simple so that it is harder to inject
malicious code or unintentionally insecure code, using standard
libraries instead of creating your own (security by obscurity doesn’t
work), breaking down components into smaller modules to reduce
the scope of privileges each had available, and using Application
Program Interfaces (API) with pre-defined statements to control
user input. Design activities included analyzing the attack surface
to review settings, open ports, services and accounts for security as
well as threat modeling to break down the system into components
and data flows to identify areas an attacker could target. The
Implementation phase mentioned items such as not turning off
compiler warnings. Distribution touched on sending the key and
crypto checksum separately for additional security. Installation noted
configuration choices to support security and removing unneeded
components. Operation and Maintenance noted that updates need
to be given the same rigor as the initial development. Retirement
was mentioned as an issue because backward compatibility supports
flaws from past versions.

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

26

Passwords

Passwords were discussed as they are a significant
security problem, greatly misunderstood and one
that users can take action to improve. Random
character passwords are almost impossible to
remember and, as a result, are often written
down (usually on a sticky note under the
computer) which subverts security completely
(Figure 5). Unfortunately, people are not very
adept on their own at creating secure passwords.
Passwords are usually created by using family
member information; sports or hobby details;
quotes from books, television or movies; or
with leetspeak which is substituting numbers or
symbols for letters such as a “3” for an “e” or “@”
for an “a”. However, none of these methods are secure. The hacker
community has spent a great effort creating dictionaries to help them
uncover passwords when these methods are used. The class discussed
Diceware passphrases* and highlighted the need for a better password
creation paradigm to easily and greatly improve security.

Figure 5: Cartoon of Creating Passwords https://xkcd.com/936/

The issues of memorability, security, calculability and elevation
of security were discussed. The Diceware approach involves the
user rolling a set of dice and then matching the resulting group
of numbers to words in a large Diceware dictionary several time
to create a phrase. The Diceware website compares the security
strength of their type of password generation to normal techniques
to generate sixteen character random passwords. The Diceware
passphrase is much easier to remember by grouping the words
together in small sets or creating a sentence or small story they tell.
This method of selecting random words from a large dictionary

results in a mathematically significant number
of possible combinations. Selecting “random”
words from memory is actually not a large
enough dictionary as an individual will usually
select from about 2000 words. Additionally, the
Diceware words are not related to any specific
characteristic of the user which prevents the
passphrase from being guessed by an attacker
knowing information about the user. The
concept of password managers was discussed
as well to help solve the problem of the
considerable number of different passwords that
are needed today.

Testing Tools

Finally, the topic of testing tools to support secure code development
was summarized. There exist free open-source and commercially
available testing tools. Entities such as the National Security
Agency’s Center for Assured Software have spent effort comparing
these tools and identifying what types of weaknesses they do
and do not find. The bottom line is that no one tool will find all
the weaknesses in code so using two or three will find the most.
Additionally, a data correlation tool will help remove the duplicates
that the tools find and can present the data in a report format.
These tools can help a developer during the coding process to find
accidental issues similar to how compiler errors are used during
development. However, even with using multiple tools, a major
portion of the weaknesses are not found. This is why it is critical
for software developers to strive to fundamentally understand code
weaknesses so they can vigilantly work to keep them from existing
in the design, architecture and code in the first place.

Software Assurance – Summary & Take Away Message

At the end of the week, the students were surveyed on their
experiences with and opinions of the different classes. The responses
and discussions were unanimous in that most developers, even
experienced ones, had not previously been exposed to secure coding
practices or vulnerable code detection. Additionally, they had not
been aware of how software could be exploited, the impact of that
exploitation or how to detect and fix the vulnerabilities in their code.

Teaching the classes was rewarding as the students remained
engaged throughout the entire week and asked good questions. Also,
they indicated they were going to take what they had learned back
to their offices to check their code for vulnerabilities. Additionally,
they requested we provide the training to their team members. Most
importantly, they understood their role in the cyber problem; had
taken ownership; and would be moving forward to practice software
assurance during their daily development lives. Given this feedback,
the class had achieved its goals and the training was a success. The
next goal was to distribute the training far and wide and also support
training the program managers to plan for, budget and support
software assurance as a tool to defend our military systems.

strive to
fundamentally

understand code
weaknesses so

they can vigilantly
work to keep them

from existing in
the design

https://xkcd.com/936/

hACKER 101 & SECURE CODING: A GRASSROOTS MOVEMENT TOWARDS SOFTWARE ASSURANCE – CON'T

WWW.CSIAC.ORG | 27

Conclusion

Armed with the hacker mindset and safe coding strategies, a
developer can “know the enemy” and “know yourself,” which if one
agrees with Sun Tzu, is the key to being successful at securing our
national defenses to win the battles against the cyber enemy.

REFERENCES
[1] Feiman Joseph, “Maverick Research: Stop Protecting Your Apps;

It’s Time for Apps to Protect Themselves”. (https://www.gartner.
com/doc/2856020/maverick-research-stop-protecting-apps)

[2] Galvin, D., L. Giles, and G. Stade. “Sun Tzu: The Art of War.” (2003).

[3] http://theinstitute.ieee.org/special-reports/special-reports/10-rec-
ommendations-for-avoiding-software-security-design-flaws

[4] http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf

[5] DoDI 5200.44 - Protection of Mission Critical Functions to Achieve
Trusted Systems and Networks (TSN) - (http://www.dtic.mil/whs/
directives/corres/pdf/520044p.pdf)

[6] National Defense Authorization Act for Fiscal Year 2013 (2013
NDAA S933) (http://www.dtic.mil/congressional_budget/pdfs/
FY2013_pdfs/AUTH_CRPT-112hrpt705.pdf)

[7] http://www.cyber.umd.edu/sites/default/files/documents/sympo-
sium/fisher-HACMS-MD.pdf

[8] http://world.std.com/~reinhold/diceware.html

ABOUT THE AUTHOR(S)

Carol Lee works at the Naval Surface Warfare Center in
Dahlgren, Virginia. She is the Navy counterpart lead for
the Joint Federated Assurance Center Software Assurance
Technical Working Group. Mrs. Lee has an M.S. in Computer
Science from Virginia Commonwealth University (VCU) and
over 15 years of experience in leading software development
teams and developing software products for the Navy and
DoD. She has developed code for mathematical algorithms for
the Statistical Modeling and Estimation of Reliability Functions
for Systems (SMERFS3) project; worked on web collaboration
software; and lead teams in the development of tactical
decision aids, a satellite operation center, mobile handset
command and control and cyber situational awareness
applications. Additionally, she created the vision for the
training in this article and has built a Software Assurance and
penetration testing team.

Jasen Moran is a computer scientist for the Department
of Defense. he has a Master of Science degree in Secure
Software Engineering and a Bachelor’s degree in Computer
Science, both from James Madison University. his professional
areas of interest include network security, digital forensics,
application hardening and all things Python.

Joel McCormick is a lead software developer with 15 years
of experience in the field, including significant time spent in
C and C++. he works at the Naval Surface Warfare Center in
Dahlgren, Virginia and has a degree in Computer Science and
certifications in exploit research and development.

Kolby Hoover is currently working for the Naval Surface
Warfare Center Dahlgren Division as a technical lead for the
newly formed NAVSEA Red Team. he has a B.S. in Computer
Engineering from Christopher Newport University and is
currently working on his Master’s Degree in Cybersecurity
Engineering from the University of Maryland.

Matt Hackman is a software engineer currently working with
the Department of Defense. he has fifteen years of experience
in the engineering and software development world. he has
lead and contributed to projects involving a wide range of
subject matter including: cyber security, machine learning,
chemical modeling, satellite communications, geospatial
modeling and analysis, and mission assurance. Mr. hackman
holds degrees in Computer Science and Chemistry and
certifications in cyber security incident response handling.

Paul McFall is currently working for the Naval Surface
Warfare Center Dahlgren Division as a technical lead for the
newly formed NAVSEA Red Team. he has a M.S. in Computer
Engineering.

Roger Lamb is a software developer at NSWC Dahlgren
Division working on cyber situational awareness tools. Mr.
Lamb has a Master of Science degree in Computer Science
from Virginia Commonwealth University and a B.S. in Computer
Science from University of Mary Washington. Mr. Lamb’s
experiences include software work in test development,
satellite radios, cyber situation tools, mobile development,
and various works in open source projects. he was has a
certificate from Virginia Commonwealth University in Cyber
security.

Scott Nickeson has a B.S. in Computer Science from Georgia
Institute of Technology and 15 years of professional software
development experience at NSWCDD.

IS OUR SOFTWARE
REALLY SECURE?
 By: Francis (Frank) Mayer

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

28

The answer to the question is NO – as noted in the DoD Director, Operational Test and
Evaluation FY 2016 Annual Report1 despite the significant progress the DoD has made in
improving the cybersecurity of DoD programs and networks “missions remain at risk when

subjected to cyber-attacks emulating an advanced nation-state adversary.” The challenge of assuring
that our software will only operate as intended is formidable given the ever-growing complexity
of systems and networks. Considerations include the globalization of the defense industrial base,
the cost-consciousness and competitiveness of many suppliers, concerns about the insertion of
malicious functionality in software and heightened awareness of adversaries targeting DoD supply
chains. “Black box” software functionality testing without knowledge of how the internal structure or
logic will process the input will not catch many of the critical defects in software.

IS OUR SOFTWARE REALLY SECURE?

WWW.CSIAC.ORG | 29

http://www.dote.osd.mil/pub/reports/FY2016/pdf/other/2016cybersecurity.pdf
http://www.dote.osd.mil/pub/reports/FY2016/pdf/other/2016cybersecurity.pdf
https://www.csiac.org

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

To address this challenge DODI 5000.02, Operation of the
Defense Acquisition System Incorporating Change 2, Effective
February 2, 20172, states that Program Managers will implement
the use of automated software vulnerability detection and
analysis tools and ensure risk-based remediation of software
vulnerabilities is addressed in Program Protection Plans
(PPPs), included in contract requirements, and verified through
continued use of such tools and testing (as required by section
933 of Public Law 112-239)3.

What is Software Assurance (SwA) and why should we care about SwA?

SwA is “The level of confidence that software functions as intended
and is free of vulnerabilities, either intentionally or unintentionally
designed or inserted as part of the software throughout the lifecycle.”
-- Committee on National Security Systems Instruction (CNSSI)
4009 – April 20154.

We need SwA because Mission Critical
Defense Systems (MCDS) built with
inadequate security and unknown but
critical flaws put military data, operations
and sensitive information at significant
risk, especially given that most of these
systems operate on the Department of
Defense Information Networks (DoDIN)5.
Successive National Defense Authorization
Acts (NDAAs) have identified the need for
SwA as evidence of US Congressional and
Presidential support for SwA. Section 933
of the 2013 NDAA mandated that the DoD
implement a baseline SwA policy.

Major DoD Baseline SwA policy and key
provisions of it are shown in Figure 1:

 i DoDI 5200.446, “Protection of Mission-Critical Functions
to Achieve Trusted Systems and Networks (TSN),”
Incorporating Change 1, Effective August 25, 2016.

 i DoDI 5000.02, Operation of the Defense Acquisition System,
Incorporating Change 2, Effective February 2, 2017

 i DoDI 8500.017, Cybersecurity, 14 March 2014
 i DoDI 8510.018, Risk Management Framework (RMF),

Incorporating Change 1, Effective May 24, 2016
 i CJCSI 6510.01F9, Information Assurance (IA) and Support

to Computer Network Defense (CND) , Directive Current
as of 9 Jun 2015

When acquiring systems managers are faced with the difficult task
of balancing software performance, cost, and schedule trade-offs
and the level of security needed to provide “survivability” of the
resulting mission capability. Managers and system owners address
survivability for hardware, such as for a combat vehicle, by engaging
experts to address the vehicle’s ability to withstand likely kinetic
threats and then checking that the vehicles coming off the assembly

line are built to meet the threat. While software is different, a similar
approach should work for software.

The current overly compliance focused approach often puts less
emphasis on building the software capability to address likely
advanced threats and expends considerable effort getting over the
regulatory “speed bumps” to meet the “schedule” at the end of the
Software Development Life Cycle (SDLC). Given the advanced
threat, the approach focused only on compliance may not be
effective. This potential ineffectiveness is indicated in the DoD
Director, Operational Test and Evaluation Reports, and DoD
Inspector General Reports10 specifically the, DoD Cybersecurity
Weaknesses as Reported in Audit Reports Issued From August
1, 2015, Through July 31, 201611, that identifies the need for
“implementing secure information systems on major weapons
systems throughout their lifecycle requires effective and continuous
software assurance testing.”

The DoD has developed a significant body
of information to aid in addressing the
challenge, for example the Program Manager’s
Guidebook for Integrating the Cybersecurity
Risk Management Framework (RMF) into the
System Acquisition Lifecycle12 helps program
managers (PM) and their staffs clearly
understand how to integrate cybersecurity into
their programs throughout the system lifecycle
in accordance with the Risk Management
Framework (RMF). This guidebook identifies
software assurance as a systems security
engineering activity that is a countermeasure
that mitigates cybersecurity risks.

An overall governance process that includes
c lear mandates for third party SwA
assessments, along with a set of practices

for ensuring proactive application security, provides the objective
perspective and motivation to maintain an effective program to
help address making sure the warfighters can trust the software
product. Objective assessments must be implemented early on and
continuously, to provide the powerful “forcing function” needed
to get the developer to implement a fully integrated software
assurance discipline throughout the SDLC.

At the system level, it is critical to first establish a coherent
and disciplined process by developing a plan and statement of
requirements for software assurance early in the acquisition
lifecycle. This requires us to incorporate Cybersecurity, which
includes software assurance, requirements into the requests for
proposal (RFP). Programs then need to use the plan to track
software assurance protection throughout the acquisition. The
progress toward achieving the plan needs to be measured by
actual results that are reported at each of the Systems Engineering
Technical Reviews (SETR) just as noted in 2014 Deputy Assistant
Secretary of Defense for Systems Engineering and Department

implementing
secure information
systems on major
weapons systems
throughout their
lifecycle requires

effective and
continuous software

assurance testing

30

http://www.dtic.mil/whs/directives/corres/pdf/500002_dodi_2015.pdf
http://www.dtic.mil/whs/directives/corres/pdf/500002_dodi_2015.pdf
http://www.dtic.mil/whs/directives/corres/pdf/500002_dodi_2015.pdf
https://www.gpo.gov/fdsys/pkg/PLAW-112publ239/html/PLAW-112publ239.htm
https://www.gpo.gov/fdsys/pkg/PLAW-112publ239/html/PLAW-112publ239.htm
https://www.cnss.gov/CNSS/issuances/Instructions.cfm
https://www.cnss.gov/CNSS/issuances/Instructions.cfm
http://www.disa.mil/~/media/files/disa/about/strategic-plan.pdf
http://www.dtic.mil/whs/directives/corres/pdf/520044p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/850001_2014.pdf
http://www.dtic.mil/whs/directives/corres/pdf/851001_2014.pdf
http://www.dodig.mil/pubs/index.cfm
http://www.dodig.mil/pubs/index.cfm
http://www.dodig.mil/pubs/report_summary.cfm?id=7235
http://www.dodig.mil/pubs/report_summary.cfm?id=7235
http://www.dodig.mil/pubs/report_summary.cfm?id=7235
https://acc.dau.mil/adl/en-US/722603/file/80119/Cybersecurity%20Guidebook%20v1_0%20with%20publication%20notice.pdf
https://acc.dau.mil/adl/en-US/722603/file/80119/Cybersecurity%20Guidebook%20v1_0%20with%20publication%20notice.pdf
https://acc.dau.mil/adl/en-US/722603/file/80119/Cybersecurity%20Guidebook%20v1_0%20with%20publication%20notice.pdf
https://acc.dau.mil/adl/en-US/722603/file/80119/Cybersecurity%20Guidebook%20v1_0%20with%20publication%20notice.pdf

Figure 1 - Baseline Software Assurance (SwA) Policy

IS OUR SOFTWARE REALLY SECURE? – CON'T

of Defense Chief Information Officer’s Software Assurance
Countermeasures in Program Protection Planning13 guide.

This level of rigor is economically justified
because it saves resources in the long run, as
noted in the Software Engineering Institute
Special Report: Making the Business Case
for Software Assurance14. This report provides
evidence of the business case for SwA.

At both the system and enterprise level
it is necessary to place more emphasis on
developing the capability and capacity to
leverage a broad range of software assessment
tools and techniques for our portfolio of
systems. For example, we need the capability for more “White
Box Testing” - structural testing with insight into the internal
logic and software structure such as static software code
assessments using multiple tools. We also need enhanced
capacity, to include enough well trained and motivated people,
to actually perform the testing consistently across our portfolio
of systems and to work with developers and maintainers to
implement effective solutions.

The third and critical step in succeeding in implementing an
enduring SwA program is developing, executing, and then
maintaining a SwA enterprise level strategic plan that addresses the

planning, execution, capability and capacity to
build security in15.

At the DoD and Army level action has been
taken to establish and support the Joint
Federated Assurance Center (JFAC)16. Section
937 of the National Defense Authorization
Act (NDAA) for Fiscal Year (FY) 2014
directed the Department of Defense (DoD)
to establish a federation of capabilities to
support trusted defense systems and ensure the
security of software and hardware developed,

acquired, maintained, and used by the Department. The JFAC
Service Providers that help deliver the capabilities of the JFAC are
available to assist program managers, developers, and maintainers
in implementing an effective software assurance program.

Communications - Electronics Command (CECOM) has taken
action by championing and supporting SwA. CECOM Software
Engineering Center’s (SEC’s)17 current software assurance program

Policy needs to
be not only just

enforced but also
supported by a

community

WWW.CSIAC.ORG | 31

http://www.acq.osd.mil/se/docs/SwA-CM-in-PPP.pdf
http://www.acq.osd.mil/se/docs/SwA-CM-in-PPP.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=8831
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=8831
http://www.acq.osd.mil/se/briefs/16950-2014_10_29_NDIA-SEC-Baldwin-JFAC-vF.pdf
http://www.acq.osd.mil/se/briefs/16950-2014_10_29_NDIA-SEC-Baldwin-JFAC-vF.pdf
http://cecom.army.mil/contactUs.html
http://www.sec.army.mil/secweb/
https://www.csiac.org

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

strategy that we developed using our lessons learned is based on
three Lines of Effort (LoE):

1. SwA Infrastructure: Establish a sound SwA Infrastructure
as a key enabler for SwA. Discover, develop, objectively assess,
and then implement “best in breed” software assurance,
mobile application, cyber-security and malicious code scan
tools. Using the “best in breed” tools and techniques, create
a common well-resourced enterprise software engineering
capability that team members can leverage, rather than
continuing with the current patchwork sets of capabilities.
Resource the infrastructure by planning, programming,
budgeting and executing the resources to put the infrastructure
in place and to keep it relevant and ready

2. Governance: As we all know, a major program needs good
requirements and senior leader support to succeed. SwA is no
different. To do this it is necessary to leverage the best practices,
requirements, emerging threat, and lessons learned from other
stakeholders to include Department Level Stakeholders
to include user representatives from the major commands,
the research community, the acquisition community, Chief
Information Officers (CIOs), the intelligence community,
United States Cyber Command (USCYBERCOM),
Department of Homeland Security (DHS), and National
and Security Agency (NSA) Center for Assured Software
(CAS) so that our governance approach remains relevant
and unified. Policy needs to be not only just enforced but
also supported by a community that stands ready to support
program manages and application developers and maintainers
with the formidable task of engineering in security and then
maintaining the security of the software baseline.

3. Workforce Development: Develop, educate, motivate, and
train the workforce. Conduct a strategic communications
campaign for our workforce, partners, and leaders to promote
the vision and purpose of SwA. Change the culture of our
workforce so that they embrace software assurance & cyber-
security. Provide educational experiences for the developers
and sustainers to address both the theory and engineering
application relevant to cybersecurity, which includes
software assurance. Provide formal training experiences to
the workforce, to include baseline cybersecurity certification
training and training on specific and relevant technologies.
Provide the workforce with professionally mentored “hands-
on” work experience in applying software assurance practices,
to include using cyber-security scan tools and implementing
Tactics, Techniques, and Procedures (TTPs). Document and
track training so that managers can make sure it is happening.
This includes making sure that properly applying software
assurance TTPs becomes part of performance objectives for
all software engineering employees and as part of what we
demand in contracts for our supporting contractor workforce.

In Conclusion, to effectively defend against the threats our systems
and networks face a collaborative approach is really needed to
understand the current and evolving threat, to develop and maintain

ABOUT THE AUTHOR

Frank Mayer has over thirty-seven years of service with the
United States Army (USA). he served as an activated reserve officer
assigned to Software Engineering Center (SEC) from 2001 until
2003. he has been a Department of the Army Civilian with SEC since
2003. he also has over seven years of corporate world technical
experience to include work in the areas of Independent Verification
and Validation (IV&V), software testing, project lead for the testing
of a software intensive system, and cybersecurity. he has held both
technical level positions and management positions as a Department
of the Army Civilian. he is a Certified Information Systems Security
Professional (CISSP) and holds a Master’s Degree in Systems
Management from Capitol College, Laurel Maryland, with a Graduate
Certificate in Technology Management, Systems Integration, Systems
Acquisition Management, Management of Research, Development,
Testing and Evaluation. he is an Acquisition Corps member and is
Certified Level III in both Systems Planning, Research, Development
and Engineering and Information Technology.

he is currently assigned to the Unites States Army Communications
Electronics Command’s Software Engineering Center Services
Directorate, can be contacted at e-mail francis.l.mayer.civ@mail.mil.

effective solutions, to proactively address weaknesses in both our
systems and software, and to make the smart trade-offs needed
between functional mission capabilities and a viable security poster.
Program managers, developers, system engineers, software engineers,
the intelligence community, the operational organizations that use
DoD systems and software, and expert service providers, such as the
JFAC Service Providers, need to embrace a spirit of collaboration
and team work because no single person or organization has all the
knowledge or capability needed to address the daunting problem of
assuring software by themselves. A successful program is about more
than just simply measuring compliance and making fixes; it needs
a unified team effort that is focused on real results that reduce risk
given the current threat in a way that contributes to both survivability
and mission effectiveness.

32

http://www.dhs.gov/
https://www.nsa.gov/
mailto:francis.l.mayer.civ%40mail.mil?subject=CSIAC%20Journal%20V5N2%3A%20Is%20Our%20Software%20Really%20Secure?

ENDNOTES
[1] Operational Test & Evaluation Office of the Secretary of Defense,

Fiscal Year (FY) 2016 Report, Retrieved from http://www.dote.osd.
mil/pub/reports/FY2016/pdf/other/2016cybersecurity.pdf

[2] DODI 5000.02, Operation of the Defense Acquisition System Incor-
porating Change 2, Effective February 2, 2017, Retrieved from http://
www.dtic.mil/whs/directives/corres/pdf/500002_dodi_2015.pdf

[3] 112th Congress Public Law 239, U.S. Government Printing Office,
Page 1631, National Defense Authorization Act for Fiscal Year
2013, Retrieved from https://www.gpo.gov/fdsys/pkg/PLAW-
112publ239/html/PLAW-112publ239.htm

[4] Committee on National Security Systems Instruction (CNSSI) 4009
– April 2015, Retrieved from https://www.cnss.gov/CNSS/issu-
ances/Instructions.cfm

[5] Defense Information Systems Agency Strategic Plan 2015-2020,
Retrieved from http://www.disa.mil/~/media/files/disa/about/
strategic-plan.pdf

[6] DoDI 5200.44, Protection of Mission Critical Functions to Achieve
Trusted Systems and Networks (TSN), Incorporating Change 1,
Effective August 25, 2016 Retrieved from http://www.dtic.mil/whs/
directives/corres/pdf/520044p.pdf

[7] DoDI 8500.01, Cybersecurity, March 14, 2014, Retrieved from
http://www.dtic.mil/whs/directives/corres/pdf/850001_2014.pdf

[8] DoDI 8510.01, Risk Management Framework (RMF) for DoD Infor-
mation Technology (IT), Incorporating Change 1, Effective May 24,
2016, Retrieved from http://www.dtic.mil/whs/directives/corres/
pdf/851001_2014.pdf

[9] Chairman of the Joint Chiefs of Staff Instruction (CJCSI) 6510.01F,
Directive Current as of 9 June 2015, Information Assurance (IA)
and Support to Computer Network Defense, Retrieved from http://
www.dtic.mil/cjcs_directives/cdata/unlimit/6510_01.pdf

[10] U.S. Department of Defense, Inspector General, Consolidated List-
ing of Reports, Retrieved from http://www.dodig.mil/pubs/index.cfm

[11] Cyber Security, DoD Cybersecurity Weaknesses as Reported in
Audit Reports Issued From August 1, 2015, Through July 31, 2016
(Redacted) (Project No. D2016-D000RB-0139.000), Retrieved from
http://www.dodig.mil/pubs/report_summary.cfm?id=7235

[12] Program Manager’s Guidebook for Integrating the Cybersecurity Risk
Management Framework (RMF) into the System Acquisition Life-
cycle, Cleared for Open Publication, May 26, 2015 Retrieved from
https://acc.dau.mil/adl/en-US/722603/file/80119/Cybersecurity%20
Guidebook%20v1_0%20with%20publication%20notice.pdf

[13] Deputy Assistant Secretary of Defense for Systems Engineering
and Department of Defense Chief Information Officer, Software As-
surance Countermeasures in Program Protection Planning, dated
March 2014, Retrieved from http://www.acq.osd.mil/se/docs/SwA-
CM-in-PPP.pdf

[14] Mead, N.R., Allen, J.H., Conklin, W.A., Drommi, A., Harrison, J.,
Ingalsbe J., Rainey, J., Shoemaker, D. (University of Detroit Mercy),
(April 2009) Making the Business Case for Software Assurance,
Software Engineering Institute, CMU/SEI Report Number: CMU/
SEI-2009-SR-001 Retrieved from http://resources.sei.cmu.edu/
library/asset-view.cfm?assetid=8831

[15] Build Security In / Software & Supply Chain Assurance content is
no longer updated. The reference is provided for historical refer-
ence Retrieved from https://www.us-cert.gov/bsi

[16] Baldwin, K. (2014), Department of Defense (DoD) Joint Federated
Assurance Center (JFAC) Overview, 17th Annual NDIA Systems
Engineering Conference, Retrieved from http://www.acq.osd.mil/
se/briefs/16950-2014_10_29_NDIA-SEC-Baldwin-JFAC-vF.pdf

[17] CECOM SEC Software Assurance for the Acquisition Enterprise
(2017), Retrieved from http://www.sec.army.mil/secweb/corecomp-
CyberSA.html

IS OUR SOFTWARE REALLY SECURE? – CON'T

CSIAC offers free webinars on
a regular basis with experts

in the technical subject areas
of Cybersecurity, Software

Engineering, Modeling & Simulation,
and Knowledge Management/

Information Sharing.

CSIAC also maintains a network
of Subject Matter Experts (SMEs)

in their four primary domains
of technical responsibility. The

SMEs participate in a variety of
activities they are interested in

and provide support to the CSIAC
user community.

CSIAC maintains open invitations
for guest speakers and authors as
contributors to their webinars and
journals. CSIAC is also interested

in identifying more qualified
candidates to join their existing

SME network. If you’re interested,
please visit the CSIAC website
(CSIAC.org) or send an email to

info@csiac.org for more information.

https://www.csiac.org/

Open Invitations
Journals/Webinars/SME Network

WWW.CSIAC.ORG | 33

One of the important facets of their services is access to a huge trove of scientific and
technical information (STI) covering close to seven decades of military research and
development (R&D). This article, and succeeding articles in future CSIAC Journals,
covers one small area of STI and its roots in 20th century military R&D by identifying
early documents that addressed new concepts and ideas. These “hidden gems” are
interesting and relevant for two reasons – first, it highlights the early investments that
the DoD has made in virtually every aspect of science and technology; and second, it
provides a glimpse into the underlying fundamentals which we are still researching
today, including ideas and concepts that are surprisingly cutting edge and “ancient”
(in technology timelines) at the same time. Since this is a special edition of the CSIAC
Journal focusing on Software Assurance, here are a few hidden gems from the DTIC
treasure chest that might warrant a closer look from both the curious and the serious
researcher. Who knows, it might lead you in a new and different direction. To quote
Winston Churchill, the farther backward you can look, the farther forward you can see.

The Defense Technical Information Center (DTIC)
provides a host of products and services to the DoD
and to users in government, industry and academia.

Defense Technical
Information Center’s

HIDDEN
GEMS

34

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

DEFENSE TEChNICAL INFORMATION CENTER’S hIDDEN GEMS

http://www.dtic.mil/dtic/

Inherent in providing Software Assurance to
a community is a testing methodology that
provides a set of guarantees. Static Testing
is an approach to looking through code and
algorithms to find out what should happen,
and checking out what it should do in as
formal a way possible without executing the
code explicitly. Some of the first concepts in
this area came from military research. Our
first document is from 1976, 41 years ago,
and is titled “Protection Errors in Operating
Systems: Validation of Critical Conditions”,
available at http://www.dtic.mil/get-tr-
doc/pdf?AD=ADA026442. This document
recognizes and provides methodologies
for reasoning about validation of complex
software. There is also a very good
description on page 6 (page 14 from the
cover, pages aren’t numbered) of a basic
principle for validation of operating system
kernel operations at the time of invocation.
It identifies the possibility of incorrect
operation when the timing of invocation is
not consistent with the state of the entities
being acted on; something that much later
came to be called Time of Check/Time of
Use (TOCTOU) errors or attacks.

Just to show the inclusion of concepts
in early DoD guidance that we still find
ourselves grappling with or discovering
anew, the following two documents from
1972 and 1988 apply almost as well now
as they tried to apply then. The second
document we highlight is a DoD Manual
from 1972, the ADP Security Manual
DoD 5200.28-M (available from DTIC at
http://www.dtic.mil/dtic/tr/fulltext/u2/
a268995.pdf). Need a definition of risk
management applied to military computer
systems? Think risk management is a 21st
century concept? Look on page 2, where
the following information is provided:

The potential means by which a computer
system can be adequately secured
are virtually unlimited. The safeguards
adopted must be consistent with available
technology, the frequency of processing,
the classification of the data handled

or the information to be produced, the
environment in which the ADP System
operates, the degree of risk which can be
tolerated, and other factors which may be
unique to the installation involved… … it
is understood that all of the techniques
described in this manual may not be
economically justified after a cost versus
risk evaluation. Therefore, selected subsets
of the techniques included in this manual,
with appropriate trade-offs, may be used
to gain the level of security required for
classification category, etc., to be secured.

Not bad for 45 years ago. There are
additional ideas contained in this
document and many others that highlight
early perspectives on risk, malware,
network vulnerabilities, etc. In the
1960’s and 1970’s, many of the ideas
were not practically or technologically
implemented, but the germinal ideas and
coherent thinking about what was to come
in computers, software and networks
was well developed. Look at page 23
and 24 regarding the protections that
should ensue from the operating system
itself (although, at this point in time, the
difference between operating system
aspects and hardware-specific aspects
were a bit different…)

 i The execution state of a processor
should include one or more
variables, i.e., “protection state
variables,” which determine the
interpretation of instructions
executed by the processor. For
example, a processor might have a
master mode/user mode protection
state variable, in which certain
instructions are illegal except in
master mode. Modification of the
protection state variables shall be
so constrained by the operating
system and hardware that a user
cannot access information for
which he has no authorization.

 i The ability of a processor to access
locations in memory (hereinafter

to include primary and auxiliary
memory) should be controlled (e.g.,
in user mode, a memory access
control register might allow access
only to memory locations allocated
to the user by the O/S).

 i All possible operation codes, with all
possible tags or modifiers, whether
legal or not, should produce known
responses by the computer.

 i Error detection should be performed
on each fetch cycle of an instruction
and its operant (e. g., parity check
and address bounds check).

Where would buffer overflows be if the last
one had been integrated more completely
over the last 45 years?

If we chase this document lineage forward
to 1988, to DoD Directive 5200.18
from 1988, we can see the evolution of
awareness for security across computer
systems and networks. The document
is now titled “Security Requirements for
Automated Information Systems (AIS)”,
and it applies across classified, sensitive,
and unclassified information. Also note
the change from ADP to AIS. The earlier
document was geared specifically for
classified systems, thought at the time
to be the only computer systems needing
enhanced protections. This third document
can be found at http://www.dtic.mil/dtic/
tr/fulltext/u2/a272815.pdf. It reflects
the more advanced state of computers
and networks at the time, and includes
more guidance on risk management,
accreditation, information sensitivity, etc.

Of course, it is easy in hindsight to pick
the best parts and identify where they
could have been helpful over time; that is
not the intent here. We’d like to identify
documents that convey foundational
thought and concepts that help us place
“where we are” in a stronger context, and
point to ideas that are consistent across
generations. It is amazing what you can
find when you look.

WWW.CSIAC.ORG | 35

http://www.dtic.mil/get-tr-doc/pdf?AD=ADA026442
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA026442
http://www.dtic.mil/dtic/tr/fulltext/u2/a268995.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a268995.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a272815.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a272815.pdf
https://www.csiac.org

SOFTWARE
ASSURANCE

DEVELOPMENT AND TRANSITION OF

THE SEI SOFTWARE
ASSURANCE CURRICULUM
By: Nancy R. Mead and Carol C. Woody, Software Engineering Institute, Carnegie Mellon University

I n this article, we discuss the development and transition of the Software Engineering
Institute’s (SEI’s) Software Assurance Curriculum. The Master of Software Assurance
Reference Curriculum, developed under U.S. Department of Homeland Security

(DHS) sponsorship, was endorsed by the Association for Computing Machinery (ACM)
and IEEE Computer Society. Additional curriculum recommendations were made at the
undergraduate and community college levels. Subsequently, a transition effort was
undertaken that included more than 20 papers, keynote talks, and presentations. The
Securely Provision section of the National Initiative for Cybersecurity Education (NICE)
curriculum is based on the software assurance (SwA) curriculum work that preceded
it. Transition of the SwA Curriculum also included faculty workshops, a LinkedIn group,
transition to graduate programs, and course development. The SEI maintains a website
on the SwA Curriculum Project that includes all of the documentation, donated course
materials, and courses developed in-house. An important partnership between the SEI,
the Central Illinois Center of Excellence for Secure Software (CICESS), and Illinois Central
College (ICC) resulted in the creation of a two-year degree program in Secure Software
Development. That program incorporated an apprenticeship model and the SEI’s software
assurance curriculum recommendations at the community college level. Subsequently, a
one-semester course on assured software development at the master’s level was modified
and repurposed for delivery to the Space and Naval Warfare Systems Command, San
Diego (SPAWAR SD). The SPAWAR SD audience included trainers and developers. In the
future, we hope to continue our transition efforts with additional collaborations and course
development.

36

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

SOFTWARE
ASSURANCE

The Need for SwA Education

Although software is ubiquitous in modern systems, the complexity
of software and software-intensive systems poses inherent risk. This
complexity, along with our reliance on these systems, suggests that
attackers need to take down only the most vulnerable component
to have far-reaching and damaging effects on the larger system.
In this environment, attackers no longer need to possess technical
sophistication. Due to the growing supply of shared attack
strategies, an unsophisticated attacker can easily acquire and launch
a sophisticated attack.

On the bright side, in recent years considerable research has been
done to explore ways of developing assured software that is resistant
to attack and capable of recovering from one. However, much of that
research has not made its way into software engineering practice,
nor is it routinely taught at our universities.

To address this disconnect between research, education, and the
practical development of assured software, the U.S. Department
of Homeland Security (DHS) National Cyber Security Division
(NCSD) enlisted the Carnegie Mellon Software Engineering
Institute (SEI) to develop a curriculum for a Master of Software
Assurance degree program and to define transition strategies
for future implementation. The curriculum development team
that was assembled included a mix of SEI staff members and
university faculty, with editorial and administrative support
provided by the SEI. The development team members,
collectively, had a considerable background in software
assurance research, software engineering research and
practice, and software engineering education.

As noted in our curriculum report, the need for a
master’s level program in this discipline has been
growing for years [Mead 2010a]:

 i A study by the nonpartisan Partnership for
Public Service points out, “The pipeline of
new talent [with the skills to ensure the
security of software systems] is inadequate. .
. . only 40 percent of CIOs [chief information
officers], CISOs [chief information security
officers] and IT [information technology]
hiring managers are satisfied or very satisfied
with the quality of applicants applying for federal
cybersecurity jobs, and only 30 percent are satisfied
or very satisfied with the number of qualified
candidates who are applying” [PPP 2009].

 i The need for cybersecurity education was emphasized in
the New York Times when Dr. Nasir Memon, a professor
at the Polytechnic Institute of New York University, was
quoted as saying, “There is a huge demand, and a lot more
schools have created programs, but to be honest, we’re
still not producing enough students” [Drew 2009].

 i In discussions with industry and government representatives,
we have found that the need for more capacity in cybersecurity
continues to grow. Anecdotal feedback from the development
team members’ own students indicates that even a single
course with a cybersecurity focus enhances their positioning
in the job market. They felt that they were given job offers
they would not have received otherwise.

Another aspect of the need for cybersecurity education occurs
in educational institutions. Based on our collective experience in
software engineering education, we know it can be very difficult to
start a new program or track from scratch, and we want to assist
organizations and faculty members who wish to undertake such an
endeavor. Our objective is to support their needs, while recognizing
that there are many implementation strategies.

Recognizing that software assurance is not exactly the same
as software engineering or information security, one of our

first tasks was to review
existing definitions

o f s o f t w a re
assurance.

DEVELOPMENT AND TRANSITION OF ThE SEI SOFTWARE ASSURANCE CURRICULUM

WWW.CSIAC.ORG | 37

38

We evolved from a definition that was in wide use [CNSS 2009]
to one that we thought was a better fit for the curriculum work:
“Software assurance (SwA) is the application of technologies and
processes to achieve a required level of confidence that software
systems and services function in the intended manner, are free from
accidental or intentional vulnerabilities, provide security capabilities
appropriate to the threat environment, and recover from intrusions
and failures” [Mead 2010a].

This definition emphasizes the importance of both technologies and
processes in software assurance, notes that computing capabilities
may be acquired through services as well as new development,
acknowledges the need for correct functionality, recognizes that
security capabilities must be appropriate to the threat environment,
and identifies recovery from intrusions and failures as an important
capability for organizational continuity and
survival.

While information security is important,
academic programs in information security
typically focus on system administrator
activities for operational systems, whereas
our focus was on systems under development.
Software engineering provides ample excellent
foundational material, and all the curriculum
development team members have a software
engineering background. However, we
recognized that the development of assured software needs to go
beyond good software engineering practice, and indeed the resulting
curriculum reflects this.

In the remainder of this article, we discuss our sources, the
curriculum development process, our SwA education products,
transition/adoption strategies, and adoption.

SwA Curriculum Development Process

We followed this eight-step process to develop the curriculum
recommendations:

1. Develop Project Guidelines: We adapted a set of guidelines
similar to the GSwE2009 project to fit our needs. These adapted
guidelines helped to direct our work, especially when we were
developing Outcomes and the Body of Knowledge (see Step 6)

2. Identify and Review Sources: We reviewed about 30
respected sources of security practices, including well-known
textbooks and courses. These sources were particularly helpful
in expanding details of the defined topics (see Step 3) and
outcomes (see Step 6).

3. Define Topics: We expanded on the main topics from [Allen
2008] to identify important topics and practices throughout
the software development lifecycle (SDLC). These topics
served as a first step toward organizing all the material needed
in the curriculum.

4. Define SDLC Practices and Categories: We expanded each
topic (from the previous step) to the level of specific security
practices used in industry, government, and academia. The
sources identified in Step 2 were used to ensure that we
included as many different practices as possible. Then we
grouped related practices into higher level categories.

5. Solicit External Feedback: At this point, we asked
practitioners, managers, and educators for feedback on our
content so far. We were particularly interested in knowing
whether graduates who acquired the knowledge and skills we
had described would be valuable in their assigned positions.
Results from a three-page questionnaire were used to revise
our practices and categories.

6. Develop Outcomes, Body of Knowledge, Curriculum
Architecture, Course Descriptions, and Implementation

Guidance: We developed expected outcomes
for graduates of a software assurance program
starting with the categories we identified in
Step 4. We also elaborated the categories
and practices into a body of knowledge to
be mastered by students. We developed a
curriculum architecture and a set of example
course outlines to be used in creating an
academic program, and we produced some
implementation guidance for faculty who
might take on such a task.
7. Compare Knowledge Units from the

Body of Knowledge to SDLC Practices: We checked to see
that all the practices identified in Step 4 were adequately
covered by the knowledge units of our body of knowledge.
This analysis led to some minor revisions in both the body of
knowledge and the outcomes.

8. Conduct External Reviews and Make Revisions: Finally,
we solicited feedback from external reviewers in academia,
industry, and government and made appropriate revisions.

Figure 1 shows the relationship of project artifacts to our process.

Figure 1. Relationship of Project Artifacts to Our Curriculum Development
Process

Software
engineering

provides ample
excellent

foundational
material

38

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

WWW.CSIAC.ORG | 39

As an example, an important artifact of the process was the body of
knowledge, which included seven outcome areas. Brief descriptions
of the outcomes follow:

Name Description

Volume I: Master
of Software
Assurance
Reference
Curriculum

Provides material for establishing or revising a Master
of Software Assurance (MSwA) program: curriculum
development guidelines, graduate student outcomes,
recommended student preparation, an SwA body of
knowledge, a high-level MSwA curriculum architecture,
and implementation guidelines

Volume II:
Undergraduate
Course Outlines

Provides the syllabi for seven undergraduate SwA
courses: Computer Science I and II, Introduction to
Computer Security, Software Security Engineering,
Software Quality Assurance, Software Assurance
Analytics, and Software Assurance Capstone Project
(Each syllabus contains a course description, prerequisite
knowledge, a list of learning objectives/topics, sources
for the course, course delivery features, and course
assessment features.)

Volume III: Master
of Software
Assurance Course
Syllabi

Provides the syllabi for nine graduate SwA courses:
Assurance Management, System Operational Assurance,
Assured Software Analytics, Assured Software
Development 1, Assured Software Development 2,
Assured Software Development 3, Assurance Assessment,
System Security Assurance, and Software Assurance
Capstone Experience (The syllabi are organized similar to
those in Volume II but also include a schedule of weekly
in-class activities, suggested readings, and out-of-class
assignments.)

Volume IV:
Community
College Education

Provides the syllabi for six SwA courses appropriate for
community college students: Computer Science I, II, and
III; Introduction to Computer Security; Secure Coding; and
Introduction to Assured Software Engineering

Outcome 1. Assurance Across Lifecycles: Graduates will be able
to incorporate assurance technologies and methods into lifecycle
processes and development models for new or evolutionary system
development, and for system or service acquisition.

Outcome 2. Risk Management: Graduates will be able to perform
risk analysis, tradeoff assessment, and prioritization of security
measures.

Outcome 3. Assurance Assessment: Graduates will be able to
analyze and validate the effectiveness of assurance operations and
create auditable evidence of security measures.

Outcome 4. Assurance Management: Graduates will be able to
make a business case for software assurance, lead assurance efforts,
understand standards, comply with regulations, plan for business
continuity, and keep current in security technologies.

Outcome 5. System Security Assurance: Graduates will be able to
incorporate effective security technologies and methods into new
and existing systems.

Outcome 6. System Functionality Assurance: Graduates will be
able to verify new and existing software system functionality for
conformance to requirements and the absence of malicious content.

Outcome 7. System Operational Assurance: Graduates will be able
to monitor and assess system operational security and respond to
new threats.

Ultimately, the Software Assurance Curriculum Project developed
the set of four volumes described in Table 1 [Mead 2010a, Mead
2010b, Mead 2011a, Mead 2011b].

Initial Transition Activities

It was clear to us from the outset that a comprehensive plan for
promoting the transition and adoption of the curriculum would
be needed. Introducing a single new elective course is a relatively
easy undertaking. However, introducing a track is ambitious, and
contemplating a whole new degree program can be a daunting
task. The barriers can range from a lack of interested students in a
particular geographic area, to a lack of qualified faculty, to a lack of
administrative support. We therefore put a transition plan in place
before the curriculum was published and executed. The activities
included the following:

 i Publicity: We prepared an announcement that was broadcast
via email to SEI subscribers and posted on the DHS and SEI
websites. We also developed a press release that went out to
a number of educational publications, professional societies
such as ACM and IEEE, and ACM and IEEE publications.
We developed a flyer that was distributed by team members
and their colleagues when they attend conferences.

 i Discussion group: We established a LinkedIn discussion
group that now has nearly 600 members.

 i Awareness: We also conducted an awareness-raising
workshop at the Conference on Software Engineering
Education and Training (CSEET) in 2010 and videotaped
it. We also recorded several webinars and podcasts to provide
an overview of the work.

 i Mentoring: Initially the curriculum development team
provided free mentoring to universities or faculty members
who wished to offer a course, track, or Master of Software
Assurance (MSwA) degree program.

 i Publications: We produced more than 20 papers and
conference talks, including keynote presentations.

 i Professional society recognition: We received official
recognition of the curriculum from the ACM and the IEEE
Computer Society.

As a consequence of our initial outreach activities, a number of
universities and training organizations adapted various aspects of
the curriculum work. Courses and tracks based on the curriculum
recommendations were developed and offered by Carnegie Mellon
University, Stevens Institute of Technology, The U.S. Air Force

WWW.CSIAC.ORG | 39

DEVELOPMENT AND TRANSITION OF ThE SEI SOFTWARE ASSURANCE CURRICULUM – CON'T

https://www.csiac.org

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

Academy, University of Detroit Mercy, University of Houston,
and the International Information System Security Certification
Consortium (ISC)2. In addition, Polytechnic University of Madrid
designed a Master of Software Assurance degree program.

The SEI developed three courses based on the
initial curriculum recommendations. These
included an Executive Overview course,
and from the MSwA Curriculum, academic
course materials for Assurance Management
and Assured Software Development 1. These
courses are available for free download from
the SEI website.

The SwA curriculum work influenced other
curriculum activities. For example, the Securely
Provision area of the National Institute of
Standards and Technology (NIST) NICE
curriculum draws on the SwA curriculum
work. More recently, the draft Cyber Security
Curricula 2017 (CSEC) reflects aspects of the SwA curriculum
work, particularly in the software security knowledge area.

In addition, a collaborative effort led to a successful community
college degree program in secure software development. We also
modified and transitioned our Assured Software Development 1

course materials to SPAWAR SD for in-house use in their own
training programs. These are discussed in subsequent sections of
this article. A timeline for the curriculum work and its transition
is shown in Figure 2.

SwA Community College Curriculum
Recommendations

In Volume IV [Mead 2011b], after studying
related degree programs, we introduced a suite
of six courses that could form part of a two-
year degree program in software assurance. The
first three courses modified existing courses
from the ACM Committee for Computing
Education in Community Colleges (CCECC)
to add a security emphasis. The other three
courses are more specialized. In the report,
we included prerequisites, syllabi, sources, and
Bloom’s taxonomy levels for each course.

The following is a list of the course names:

 i Computer Science I (modified from standard curricula)
 i Computer Science II (modified from standard curricula)
 i Computer Science III (modified from standard curricula)
 i Introduction to Computer Security (new course)

Figure 2. Developing and Transitioning the Curricula Work

a growing
awareness that
the U.S. could

reap substantial
benefits from this

model

40

DEVELOPMENT AND TRANSITION OF ThE SEI SOFTWARE ASSURANCE CURRICULUM – CON'T

 i Secure Coding (new course)
 i Introduction to Assured Software

Engineering (new course)

Subsequently, the project produced the Software Assurance (SwA)
Competency Model [Hilburn 2013]. Two of the objectives of this
model are listed below:

 i Enhance SwA curricula guidance by providing information
about industry needs and expectations for competent SwA
professionals.

 i Provide direction and a progression for the development and
career planning of SwA professionals.

From the viewpoint of the curriculum project, the four curriculum
documents and the competency model set the stage for transitioning
the work to educational institutions that wished to offer software
assurance concentrations or full-degree programs. Next, we discuss
the ways we tried to meet these two objectives
in a unique community college program.

The Illinois Central College Program

In September 2013, industry, government, and
academic stakeholders met in Peoria, Illinois
and proposed an initiative to create software
developer jobs and make the Peoria area a
national center of excellence for producing
software that is secure from cyber attacks. The
German apprenticeship model was proposed
to create a skilled workforce that is trained,
apprenticed, mentored, and certified in secure software production.
(There is a growing awareness that the U.S. could reap substantial
benefits from this model.)

Apprenticeships allow businesses to meet the growing demand
for skilled workers and lead workers to higher wages and better
employment outcomes. Furthermore, apprenticeships are a smart
public investment. A recent study in Washington State found
that for every $1 in state investment in apprenticeships, taxpayers
received $23 in net benefits—a return that far exceeds that of any
other workforce-training program in the state [State of Washington
2013, Olinsky 2013].

The initiative partnered with the school districts to encourage
graduating high school seniors to pursue software development
careers in the Peoria area. Ultimately the Central Illinois Center of
Excellence for Secure Software (CICESS) was formed to collaborate
on the community college/industry apprenticeship program.

The SEI collaborated with the CICESS and Illinois Central College
(ICC) to develop a two-year degree program in Secure Software
Development, incorporating an apprenticeship model. Part of the
reason we focused on community college education (in addition

to four-year undergraduate degree programs and master’s degree
programs) is that, according to the American Association for
Community Colleges, roughly half of U.S. undergraduate students
have attended community college [Mead 2010b].

ICC in East Peoria, IL is a comprehensive community college in
the Illinois Community College system. Approximately 10,500
students are enrolled in 58 applied degrees, 72 certificates, and
over 50 areas of study in associate of arts and associate of science
degrees for transfer. ICC has a close working relationship with
many local employers in central Illinois, particularly in the
applied sciences.

In the information systems programs, these partnerships are usually
in the form of student internships and work-study opportunities at
the college. Apprenticeship programs with employers involved in
the CICESS had not been considered in prior years. ICC faculty
presented the option as part of their Applied Science degree, in

which students would take approximately 42
credit hours of technical computer science
and database courses and only 18 credit
hours in general education. ICC had an
existing Associate in Applied Science (AAS)
degree in Computer Science and Database
Development that seemed to more closely fit
employer needs. The goal of the CICESS was
to provide apprenticeships in secure software
development; however, the new curriculum
needed to include computer security and
software assurance concepts.

This is the point at which ICC faculty members
began integrating the SEI Software Assurance Curriculum with
their own. The SwA curriculum recommendations for community
colleges [Mead 2011b] consisted of the six courses mentioned
earlier. ICC faculty consulted with employers to determine which
SwA courses were needed in addition to the SEI recommended
courses. Employers felt that students needed a good foundation in
SQL, C#, and Mobile Applications in addition to programming
and security courses.

The new AAS degree in Secure Software Development consists
of the following program requirements. Courses in bold were
modified or added as part of the new program, in collaboration
with the SEI.

 i CS I: Programming in Java
 i CS II: Programming in Java
 i CS III: Advanced Programming in Java
 i Structured Query Language
 i Introduction to Relational Database
 i C# Programming
 i Mobile Application Programming
 i Introduction to Computer Security
 i Secure Coding

ultimate goal was
to develop and

acquire software
that was better

able to resist
cyber attacks.

WWW.CSIAC.ORG | 41

https://www.csiac.org

JULY 2017 | CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

 i Introduction to Assured Software Engineering
 i Database Administration
 i Structured System Analysis
 i two electives in computer programming, web, or

networking, depending on employer needs
 i 19 credit hours in general education courses

Developed courses were offered in a traditional 16-week semester
in 8-week courses and in an online format. Students who wished
to be eligible for the CICESS apprenticeship program took the
courses in accelerated 8-week sessions. In addition, employers
wanted to be assured that the student apprentices had an aptitude
for computer programming. Therefore, students who wanted to be
considered for apprenticeship had to take a commercial computer
programming aptitude test, the Berger Aptitude for Programming
Testing [B-APT], and achieve a minimum score of 20. The
B-APT assesses the student’s ability to do computer programming:
“Organizations use the B-APT primarily to identify high aptitude
candidates for programmer training. The examinee need have no
prior experience in programming, and those with some experience
gain no advantage over the inexperienced. The tutorial, which uses
a hypothetical language, equates the potential of the inexperienced
with the experienced.”

ICC implemented and launched the AAS degree in Secure Software
Development in the Fall 2015 semester with over 20 students in
the program. In Fall 2016, the number of incoming students more
than doubled and some of the students in the first cohort started
apprenticeships with industry partners.

Collaboration Between the SEI and SPAWAR SD

SPAWAR in San Diego contacted the SEI to discuss their interest
in in-house training. Their ultimate goal was to develop and acquire
software that was better able to resist cyber attacks. After several
conversations and meetings, and a review of the SwA curriculum
work, SPAWAR SD concluded that their needs could best be
served by modifying and delivering the existing Assured Software
Development I course. This course delivered the fundamentals of
incorporating assurance practices, methods, and technologies into
software development and acquisition lifecycle processes and models,
and provided rigorous methods for software assurance requirements
engineering in support of development and acquisition; using threat
identification, characterization, and modeling; performing assurance
risk assessment; and evaluating misuse/abuse cases.

The materials that were intended to support a one-semester
academic course would be modified and compressed into a two-
week workshop offering. Support for SPAWAR sponsorship of this
activity was obtained, and the work was executed over a six-month

period, culminating in a workshop offered at SPAWAR SD in
August 2016. The attendees were technical leaders and in-house
instructors at SPAWAR SD, and the full set of workshop materials
was provided for their internal use in training.

After joint review of the materials, it was decided that some of the
theoretical research topics needed for an academic audience would
not be useful to SPAWAR practitioners, so these were replaced with
SEI materials intended for immediate use. In addition, videos from
the SEI’s online courses were provided as part of the package for
SPAWAR staff to use as collateral material.

Class participants connected to all aspects of the SPAWAR
acquisition and development lifecycle, including development,
project management, quality control, enterprise and software
assurance, supply chain coordination, and testing. This broad base
provided an opportunity for class discussions to cover all aspects
of current software assurance and security practices to identify key
opportunities for improvement in applying the course lessons. Class
content was composed of a mix of lectures, selected videos, case
studies, and discussion.

The results for SPAWAR were immediate:

 i Class participants identified 10 immediate actions that
they could take to improve existing practices for SwA.

 i Class discussions generated five pages of ideas
for additional SwA improvements.

 i Partnerships among participating disciplines were
established with plans for a more integrated approach.

 i Analysis of available evidence provided a prioritized list
of where SPAWAR needed to focus immediate attention.

 i SPAWAR management, in their review of the
project, confirmed the success of the engagement
as excellent in timeliness, quality, and value.

Summary and Future Plans

We completed the development and publication of the textbook,
Cyber Security Engineering: A Practical Approach for System and
Software Assurance, which was released November 2, 2016 as part
of the SEI Book Series. For more information about the book, see
https://insights.sei.cmu.edu/sei_blog/2016/10/seven-principles-
for-software-assurance.html. Work is also underway for an online
certificate in cybersecurity engineering to augment available
resources.

Though we demonstrated strong success with the curriculum
materials developed so far, the model cannot reach its full potential
until we have full-course content (e.g., slides, instructor notes,

42

https://insights.sei.cmu.edu/sei_blog/2016/10/seven-principles-for-software-assurance.html
https://insights.sei.cmu.edu/sei_blog/2016/10/seven-principles-for-software-assurance.html

DEVELOPMENT AND TRANSITION OF ThE SEI SOFTWARE ASSURANCE CURRICULUM – CON'T

homework, exams, and case studies) developed for all courses. Seven
of the MSwA courses are still in need of material development.

In addition, courses for related disciplines where software assurance
is an elective, such as software engineering, computer science, and
information systems, are in need of materials. Undergraduate
courses, particularly for use with specializations in software
engineering, information systems, and computer science, are also
lacking in materials for broad use. Opportunities for inclusion in
high school instruction remain unexplored and students are learning
how to write code and field programs even earlier in their education
without the benefit of knowing how to do so securely.

Acknowledgments

We would like to acknowledge our colleagues, collaborators, and
sponsors who contributed to the Software Assurance Curriculum
Project and its transition to the community.

Copyright 2017 Carnegie Mellon University

This material is based upon work funded and supported by the
Department of Defense under Contract No. FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development
center.

NO WARRAN T Y. T H IS CARNEGI E MELLO N
UNIVERSITY AND SOF TWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS”
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] THIS MATERIAL HAS BEEN
APPROVED FOR PUBLIC RELEASE AND UNLIMITED DISTRIBUTION.
PLEASE SEE COPYRIGHT NOTICE FOR NON-US GOVERNMENT USE
AND DISTRIBUTION. DM-0004452

REFERENCES
[1] [Allen 2008] Allen, Julia H.; Barnum, Sean; Ellison, Robert J.;

McGraw, Gary; & Mead, Nancy R. Software Security Engineering: A
Guide for Project Managers. Addison-Wesley Professional, 2008.

[2] [B-APT] Psychometrics, Berger Aptitude for Programming Test (B-
APT) website. Available at http://www.psy-test.com/Baptd.html

[3] [CNSS 2009] Committee on National Security Systems. “Instruction
No. 4009,” National Information Assurance Glossary. Revised June
2009.

[4] [Drew 2009] Drew, C. “Wanted: ‘Cyber Ninjas.’” New York
Times, 2009. Retrieved December 29, 2009 from website,
available at http://www.nytimes.com/2010/01/03/education/
edlife/03cybersecurity.html?emc=eta1.

[5] [Mead 2010a] Mead, N. R., et al. Software Assurance Curriculum
Project Volume I: Master of Software Assurance Reference Cur-
riculum (CMU/SEI-2010-TR-005). Software Engineering Institute,
Carnegie Mellon University, 2010. Available at http://resources.sei.
cmu.edu/library/asset-view.cfm?assetID=9415.

[6] [Mead 2010b] Mead, N. R., et al. Software Assurance Curriculum
Project Volume II: Undergraduate Course Outlines (CMU/SEI-2010-
TR-019). Software Engineering Institute, Carnegie Mellon Universi-
ty, 2010. Website, Available at http://resources.sei.cmu.edu/library/
asset-view.cfm?assetID=9543.

[7] [Mead 2011a] Mead, N.R. et al. Software Assurance Curriculum
Project Volume III: Master of Software Assurance Course Syllabi,
(CMU/SEI-2011-TR-013), Software Engineering Institute, Carnegie
Mellon University, March 2011. Available at http://resources.sei.
cmu.edu/library/asset-view.cfm?assetID=9981.

[8] [Mead 2011b] Mead, N.R. et al. Software Assurance Curriculum
Project Volume IV: Community College Education, (CMU/SEI-2011-
TR-017), Software Engineering Institute, Carnegie Mellon Univer-
sity, September 2011. Available at http://resources.sei.cmu.edu/
library/asset-view.cfm?assetID=10009.

[9] [Olinsky 2013] Olinsky, B. and Steinberg, S. “Training for Success -
A Policy to Expand Apprenticeships in the United States,” Novem-
ber 2013, Center for American Progress. Available at https://www.
americanprogress.org/issues/economy/reports/2013/12/02/79991/
training-for-success-a-policy-to-expand-apprenticeships-in-the-
united-states/.

[10] [PPP 2009] Partnership for Public Service & Booz Allen Hamilton.
Cyber IN-Security: Strengthening the Federal Cybersecurity Work-
force. Partnership for Public Service, 2009. Retrieved July, 2009.
Available at http://ourpublicservice.org/OPS/publications/viewcon-
tentdetails.php?id=135.

[11] [State of Washington 2013] State of Washington Workforce Train-
ing and Education Coordinating Board, “2013 Workforce Training
Results by Program: Apprenticeship.” Available at http://www.wtb.
wa.gov/Documents/2_Apprenticeship_2013.pdf.

WWW.CSIAC.ORG | 43

https://www.csiac.org

Cyber Security and Information Systems
Information Analysis Center
266 Genesee Street
Utica, NY 13502

PRSRT STD
U.S. Postage

P A I D
Permit #566

UTICA, NY

To unsubscribe from CSIAC Journal Mailings please email us at info@csiac.org
and request that your address be removed from our distribution mailing database.

	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	Introduction
Design and Development Process for Assured Software - Volume 1
	Keys to Successful DoD Software Project Execution
	Software Assurance in the Agile Software Development Lifecycle
	Hacker 101 & Secure Coding:
A Grassroots Movement towards Software Assurance
	Is Our Software
REALLY Secure?
	Defense Technical
Information Center’s
Hidden
GEMS
	Development and Transition of
the SEI Software Assurance Curriculum

