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THE U.S. ARMY RESEARCH LABORATORY (ARL) received the first salvos in the battle for cybersecurity 
as early as three decades ago. In terms of technology history, it was an astonishingly long time ago. 
Before most people ever heard of the Internet. Before there were web browsers. Long before the 
smartphones. Back in 1986, the laboratory withstood attacks by Markus Hess, a Soviet-sponsored 
hacker who had successfully penetrated dozens of U.S. military computer sites. In his bestselling 
book, The Cuckoo’s Egg, the pioneering U.S. cyber defender, Cliff Stoll, describes how he monitored 
the hacker’s networks activities in the fall of 1986: “He then tried the Army’s Ballistic Research 
Lab’s computers in Aberdeen, Maryland. The Milnet took only a second to connect, but BRL’s 
passwords defeated him: he couldn’t get through” (Stoll 1989).	 Continued on next page 
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Two years later, the laboratory faced the legendary Morris 
Worm. Around midnight on November 3, 1988, system 

managers at the Army’s Ballistic Research Laboratory noticed their 
computers slowing down to a crawl as the worm stole precious 
computing processing time. Fearing a foreign attack, they pulled 
their computers off the nationwide network predating the Internet, 
called ARPAnet.” (Hess, 2016) 

The Army’s Ballistic Research Lab, an ancestor of 
ARL, was the home of the ENIAC, the world’s 
first electronic digital computer in 1946.  It 
was also where the “ping” program was written 
in 1983, and where many other milestones of 
computing and networking took place.  The 
encounters with the Soviet-sponsored hacker 
and with the Morris Worm were among such 
milestones. 

Since those early beginnings, the history of ARL’s 
efforts in cyber defense was exciting and challenging 
(Fig. 1). Although ARL is the Army’s corporate 
laboratory that focuses on fundamental and early 
applied research (in the Department of Defense lingo – the research 
of 6.1 and early 6.2 types), the fundamental science endeavors are 
closely integrated with extensive operationally-oriented programs. 

These range from providing continuous cybersecurity defense 
services to multiple organizations, as well as cyber survivability and 
vulnerability analysis of Army systems.   

A remarkable feature of ARL’s business model is the great degree 
of collaboration with the academic community. One example is 
the Cyber Collaborative Research Alliance (CRA) (see the article 
“Cyber Collaborative Research Alliance” in this issue) that brings 

together, in closely integrated collaborative projects, 
ARL scientists with academic researchers from 
dozens of U.S. universities. Cyber CRA aims to 
develop the fundamental science of cyber detection, 
risk, agility, as well as the overarching challenge 
of human factors in cyber security. Similarly, 
the Network Science Collaborative Technology 
Alliance (see http://www.ns-cta.org/) integrates 
ARL and academic research efforts towards a 
broad understanding of how multi-genre networks 
of humans and information and communications 
devices influence each other and undergo complex 
dynamic transformations. 

ARL collaborations are not limited to U.S. universities. ARL is also 
actively engaged with international partners.  ARL’s Open Campus 
business model (http://www.arl.army.mil/) helps such wide-ranged 

Fig. 1 ARL cyber research was always informed by real-world environment
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collaborations by providing facilities and organizational support 
for enabling scientists and engineers from the U.S. and abroad to 
come to ARL for a period of time to work in partnership with 
ARL scientists. 

Complementing its close ties with academic scientists, ARL 
research is also intertwined with practical, day-to-day operational 
responsibilities. Scientists are in direct communications with cyber 
analysts from the ARL Cybersecurity Service Provider (CSSP), 
a Tier II organization that defends networks of hundreds of 
customers belonging to all U.S. Military services, other government 
organizations, and even industrial entities (e.g., see the article 
“Information Security Continuous Monitoring (ISCM)” in this 
issue). ARL has a strong reputation in the area of threat analysis 
and forensics. The laboratory’s experts in these fields are in high 
demand as they support cyber-related investigations 
conducted by law enforcement and counter-
intelligence bodies.  Vulnerability and survivability 
assessments of systems and networks that are 
either already deployed or are still in acquisition 
process, are another major area of ARL practical, 
hands-on contributions to Army cybersecurity. 
ARL’s highly experienced teams of experts 
perform Cooperative Vulnerability and Penetration 
Assessments (blue team assessments) as well as 
Adversarial Assessments (red team assessments). 
Practical operational insights and needs obtained in 
operational activities are provided to scientists. They, 
in turn, utilize observations and data to develop new 
theories and models, and eventually to develop tools 
that transition into operational use. 

Although participants of a broad cyber research 
community, ARL cyber scientists are largely driven 
by challenges unique to the ground operations of 
the Army. A key example is the exceptionally large attack surface of 
Army networks: the Army operates in environments within close 
proximity to allied and civilian assets and adversaries, comprising 
a complex cyber ecosystem. Forward-deployed network assets 
are vulnerable to cyber entry or physical capture and subversion 
of information and devices. Another distinct feature of Army 
cyber environments is the relatively disadvantaged assets, as the 
Soldiers’ computing and communication devices are energy and 
weight constrained, with limited bandwidth and computational 
capacity.  The large number of nodes and fast changes of Army cyber 
environments are also quite distinct. Soldiers operate in a mobile 
environment, in complex terrain, with rapidly changing connectivity. 
Lastly, these networks are often interspersed with civilian, allied, 
and adversarial networks. 

These challenges inform and focus of ARL’s research areas. One 
key area of research is the understanding the cyber threat.  The 
topics in this area range from inferring influences and relations 
within a command and control organization from its encrypted 
communications, to novel uses of stylometry for identifying authors 

or origins of malware (Caliskan-Islam and Harang 2015), to tools 
and techniques for forensic analysis, and even to the study of cultural 
factors and personality that influence patterns of behaviors of cyber 
actors (Cho et al 2016).  

Understanding the threats contributes to the characterization of 
risk experienced by a system or network. ARL’s research in risk 
characterization includes such topics as statistical analysis of factors 
affecting the anticipated frequency of successful cyber attacks and 
theoretical approaches to network risk computation (see the article 
“Risk analysis with execution-based model generation” in this 
issue; also (Cam 2015). It also includes applied efforts to develop 
better procedures for risk inspection programs; tools for continuous 
monitoring of risk, cyber situational awareness (Kott et al 2014), 
and decision support systems for cyber risk assessments.  

Knowing the risks helps focus the detection efforts 
(Kott and Arnold 2013). The comprehensive 
portfolio of ARL’s research in detection of hostile 
cyber activities is based on close integration with 
practical network defense operations. It provides 
data and insights, and leads to the study of topics 
like the impact of packet loss in realistic cyber 
sensors on effectiveness of intrusion detection 
(Smith et al 2016). Other topics include special 
issues of detection in cyber physical systems; use of 
machine learning for detection methods suitable for 
mobile, resource-constrained devices (Harang et al 
2015); cognitive models of human analyst’s process 
of detection (Acosta et al 2016); and synergistic 
approaches to human-machine intrusion detection 
(see the article “Synergistic Architecture for Human-
Machine Intrusion Detection” in this issue).    

Ultimately, whether detected or not, the hostile cyber 
activities must be defeated. ARL explores approaches such as active 
cyber defense (Marvel et al 2014), post-intrusion triage for optimized 
recovery (Mell and Harang 2014), and cyber maneuvers that limit 
lateral propagation of hostile malware (Ben-Asher et al 2016). 

These research projects are supported by a network of experimental 
facilities and laboratories dedicated to cyber research. For example, 
the ARL Cybersecurity Service Provider performs double duty: 
it supports large-scale operational cyber defense, but also acts as 
a laboratory for collection of real-world data for research, and a 
platform for insertion and testing of novel cyber defense tools 
continually invented and developed by ARL scientists. 

Another example of a laboratory is the virtual laboratory called 
CyberVAN. It is an environment for design and execution of cyber 
experiments using virtual machines, real Army applications, and a 
network simulator capable of realistic portrayal of sizeable Army 
units in mobile operations in complex terrain.   CyberVAN is 
particularly well suited for experimental validation of theoretical 
results by academic researchers, including international collaborators. 

Soldiers 
operate in 
a mobile 

environment, 
in complex 

terrain, 
with rapidly 

changing 
connectivity
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Additionally, the Army Cyber-research and Analytics Laboratory at 
ARL serves as an environment that supports various industrial and 
federally-funded partners of ARL. Its functions range: personnel 
training, product integration, systems engineering, and integrated 
testing using real-world data. A unique CHIMERA laboratory 
specializes in the study of human factors and human-information 
interactions in cyber defense; it helps to explore the 
human dimension of cybersecurity. 

All this research yields results, many of which 
transitioned to practice as tools and systems. 
For example, Interrogator is an ARL-developed 
suite of network monitoring, intrusion detection 
and intrusion analysis tools. Used at ARL, as 
well as at a number of other organizations, 
its architecture is optimized for government 
cyber security operations, for defense against 
sophisticated threats, and for rapid insertion 
of research tools as plug-ins. Another example,  
Interrogator-in-a-Box, was developed for defense 
of mobile tactical networks.  In addition, DShell 
is a framework for forensic analysis, popular 
with users at government agencies. ARL researchers attracted 
multiple, valuable international collaborators – and a good 
number of comments on social media – when they developed 
an open-source version of DShell and placed it on GitHub 
(see GitHub.com/USArmyResearchLab). Other examples 
of practical tools developed at ARL include COBWebS, a 
simulation tool that incorporate cyber warfare elements into 
training exercises, and a decision support tool for cybersecurity 
assessments, which helps perform assessments using public 
knowledge sources and custom data.

Looking further out, our long-term campaign of cyber research 
is guided by the vision of the future Army battlefield. In the year 
2040, it will be a highly converged virtual-physical space, where 
cyber operations will be an integral part of the fight (Kott et al 
2015). Cyber fires are the activities that will degrade, disrupt, 
deny, deceive and destroy not only informational, computational 

and communication resources of the adversary, 
but also the physical capabilities of its platforms, 
weapons, robots, munitions, and even of personnel. 
Cyber maneuver refers to activities that will rapidly 
move and transform the friendly informational-
computational resources to deny the adversary an 
opportunity to attack, while imposing on him a 
new unsolvable problem (Fig. 2). Cyber fires and 
maneuver will rely on effective cyber intelligence 
collection capabilities. 

Operating on multiple time scales, often far 
faster than human cognitive processes, in a highly 
dynamic, non-contiguous battlefield, these fires 
and maneuvers will join the conventional, kinetic 
fires and movements. Future cyber capabilities will 

have to support continuous (real-time, not just deliberate) planning 
and execution  of highly agile, daring, aggressive cyber fires and 
maneuvers This will be performed in a way that is necessarily highly 
automated and reliant on machine intelligence, and  yet responsive 
to human intent and guidance.

For these reasons, our cyber research efforts will increasingly focus 
on developing the models, methods, and understanding to overcome 
existing barriers to the realization of effective cyber fires and 
maneuvers in a tactical environment. The goals of this work are to 

Fig. 2 ARL cyber research is increasingly focused on cyber fires and maneuvers in tactical environments
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pursue near-autonomous detection and identification of malicious 
activity directed at friendly networks; methods to rapidly respond 
to adversarial activities; predictive characterization of network 
vulnerabilities; and a robust framework to assess networks. Moreover, 
our research program will focus on the realization of methodologies 
for the reliable reconfiguration of friendly cyber assets to evade or 
recover from attack; covert means for collection and predictive analysis 
of enemy actions; and methodologies to degrade or destroy adversarial 
cyber assets with high certainty and predictable probabilities of kill. 
The articles assembled in this special issue reflect some of the steps 
ARL is taking towards this ambitious vision.  

ACKNOWLEDGEMENTS: Iris Saunders helped prepare the 
manuscript, Jerry Clarke built the presentation that served 
as the outline of this introduction, and Latasha Solomon 
orchestrated the development of all articles for this issue. 
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THE CYBER SECURITY 
COLLABORATIVE RESEARCH ALLIANCE: 
Unifying Detection, Agility, and Risk in Mission-Oriented 
Cyber Decision Making

BY: Patrick McDaniel, Institute for Networking and Security Research, Penn State University, University Park, PA
Ananthram Swami, Army Research Laboratory (ARL), Adelphi Maryland

ABSTRACT: For military networks and 
systems, the cyber domain is ever-
increasingly contested and congested 
space. Defenders of these systems 
must fight through adversary action 
in complex tactical and strategic 
environments. Just now completing 
its third year, the Cyber-Security 
Collaborative Research Alliance 
has sought to develop approaches 
for understanding and countering 
adversaries. The goal of this work is 
to develop a new science of cyber-
decision making in military networks 
and systems. In this article we 
introduce the conceptual framework 
for this new science and consider its 
core research elements of detection 
(situational awareness), risk 
(measurement and assessment), and 
agility (adapting systems to evolving 
threats); overlaying this is the 
human dimension of users, defenders 
and attackers. We conclude by 
articulating a vision for future 
military cyber-operations.
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The Cyber Security Collaborative Research Alliance: Unifying Detection, Agility, and Risk in Mission-Oriented Cyber Decision Making

Cyber systems have changed the nature of warfare and the 
military.  Real-time intelligence, autonomous and semi-

autonomous systems, and improved command and control provide 
strategic advantages that save lives and make operations more 
effective, efficient and economical.  Such systems are now essential 
to strategic networks supporting day-to-day military operations 
and tactical networks operating in hostile environments.  The 
ever increasing reliance on cyber and cyber physical systems to 
conduct the Army’s mission has in turn led to increasing number 
and sophistication of attacks on military cyber networks.  Future 
Army networks will be a heterogeneous converged mix of wired 
networks, mobile cellular and mobile ad hoc networks.  Nodes 
will consist of a variety of sensing, computing, actuating and 
communicating devices with diverse capabilities, and will be 
relatively disadvantaged. They may be embedded in backpacks, 
clothing, vehicles, weapon systems, munitions etc. Links on such 
networks will also be diverse, drawing upon 
multiple communication modalities.  Soldiers 
and their assets will operate in a dynamic 
contested and congested environment, and 
must cope with advanced persistent threats.  
Army cyber security is further complicated, as 
it must often use and defend networks that it 
neither owns nor controls directly (e.g. mobile, 
fixed, and SCADA networks). The Army must 
often construct mission networks rapidly, with 
a variety of partners and allies. Thus Army 
networks face numerous challenges including 
a large attack surface, relatively disadvantaged 
assets, large scale, high dynamics, and advanced 
persistent threats (APT).  

The military (and the entire computing world) 
have yet to develop the basic principles of 
how one identifies, understands, and counters 
adversaries in the digital domain.  Indeed, 
providing such principles and the operational procedures to support 
them represents one of the grand challenges for military systems 
moving into the future [1].

The Cyber Security Collaborative Research Alliance (CRA) is 
one aspect of the ARL Enterprise approach to Cyber Security for 
future Army networks [29][31]. The overall objective of the  CRA 
is to develop a fundamental understanding of cyber phenomena, 
including aspects of human attackers, cyber defenders, and 
end users, so that fundamental laws, theories, and theoretically 
grounded and empirically validated models can be applied to a 
broad range of Army domains, applications, and environments.  
Entering its 4th year, the goal of the “Models for Enabling 
Continuous Reconfigurability of Secure Missions (MACRO)” 
Cyber CRA program [9][31] is to understand and model the 
risks, human behaviors, and maneuvers within Army cyber-
operations.  More practically, the goal of the Cyber CRA is to 

provide models for making decisions that “optimally” support 
the mission-oriented goals. Such models will enable defenders to 
detect and thwart attacks as well as allow operation progress in 
the face of ongoing and evolving threats, e.g., “fighting through” 
in contested and congested digital domains. From a pure research 
perspective, the overarching scientific goal of this effort is to 
develop a rigorous science of cyber-decision making that enables 
military networks to (a) detect the risks and attacks present in 
the environment, (b) understand and predict the motivations 
and actions of users, defenders, and attackers, (c) alter the 
environment to securely achieve maximal operation success rates 
at the lowest resource cost.  

The Cyber CRA consortium is led by Penn State University, with 
Applied Communication Sciences Inc. (ACS), Carnegie Mellon 
University, Indiana University, the University of California Davis 

and the University of California Riverside 
as consortium members.  The Alliance is 
a collaborative partnership between the 
consortium, the Army Research Laboratory 
(ARL) and the Communications-Electronics 
Research, Development and Engineering 
Center (CERDEC). 

The conceptual approach is to focus on 
cyber-defender decision-making.  Winning 
or losing in the cyber-battlefield is dependent 
on defender action—but any defender action 
should be based on a careful analysis of the 
totality of the relevant environment, risks, and 
potential future states.  Practically speaking, 
the goal is to enable defenders to answer the 
subtly complex question, “Given a security and 
environmental state, what cyber-maneuvers best 
mitigate attacker actions and enable operation 
success?” Note that this is not a discrete and 

momentary analysis, but one that must be continuous and 
adaptive within evolving situational awareness and mission 
goals.  Like its physical counterpart in traditional kinetic warfare, 
the waging of cyber-warfare requires constant reevaluation of 
threats via reconnaissance, interpretation of adversarial intent 
and capability, and adjustments to strategy and resource use. 

The Cyber CRA envisions future operational environments 
in which models of operations, users, defenders, and attackers 
guide the reconfiguration of highly diverse security and network 
infrastructure on a continuous basis. Operation survivability 
is achieved by altering the security configuration and network 
capabilities in response to detected adversarial operations and 
situational needs of users and resources and tools available to 
defenders. Cost and risk metrics are used to select optimal 
strategies and configurations that maximize operation success 
probabilities while mitigating adversarial actions. Models of user, 
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defender, and attacker actions and needs are used to derive the 
operation state, as well as to identify those configurations that 
increase the probability of operation success. A simplified view 
of this conceptual framework is as follows:

In pursuing such a vision, it is important to remember that decisions 
cannot be made solely based on an understanding of cyber systems—
one must factor in the needs and motivations of the people, i.e., users, 
defenders, and adversaries.  Here, efforts in the Cyber CRA Cross-
Cutting Research Area (CCRI) reasons about situational factors 
that may substantially alter user, defender, or attacker performance. 
For example, we have explored how to best present environmentally 
relevant information to defenders under times of stress to elicit the 
best outcome, i.e., what are the best details and formats to present 
a defender about potentially multiple simultaneous attacks. We 
are developing models of attackers to gauge intent and to identify 
countermeasures that will mitigate their impact on operation 
outcomes. By understanding how an attacker, user or defender is 
acting (or will act in response to a stimulus), we can predict the 
actions they will take.  The vision is to estimate the type of attack, 
the goals of an attack, and the expected response taken by a user 
or defender, and thus estimate risk and predict future behavior. 
Ultimately, we will use these predictions to influence and control 
cyber-operation evolution and adversarial action. 

This article describes the vision and current results of the Cyber 
CRA research focusing on elements of this vision including the 
operational model, risk, detection, and agility research areas. We 
begin in the next section by presenting a motivating cyber-mission 
used throughout the article.

Example Mission

Military networks present unique challenges.  The diversity of 
strategic and tactical networks and the wired and wireless media over 
which operations are performed introduce diverse requirements on a 
science of security. The resources, configuration, and attack surface of 
tactical networks change from moment to moment, requiring agility 
to be responsive to shifting trends and goals. Such tactical networks 
may afford more restrictive security policy and configurations. 
Conversely, strategic “enterprise” military networks tend to be like 
traditional non-military wired networks in that they are static but 
heterogeneous in terms of size, topology, services and devices. 

Consider an operation in a tactical network environment in which 
data are collected from vehicle-mounted cameras.  This data is 
captured at regular intervals (every few seconds) as enabled by the 
driver and sent back to an intelligence-gathering facility several 

continents away (in the U.S.).  The data 
is transmitted from the vehicle across a 
battlefield, to a regional operations center, 
and finally to the United States.  The 
requirements of the operation are that it (a) 
reliably and (b) securely deliver the data from 
the battlefield to the intelligence facility in 
(c) a timely matter.  In this setting, securely 
means that data confidentiality and integrity 
are retained (an adversary cannot obtain the 
image, nor can they alter it).

Operational Model

Operations with the Cyber CRA are modeled as state progression 
structures for reasoning about cyber-maneuvers and security goals 
and strategies [7].  Operations are broken into subtasks that progress 
temporally to a final operation success end-state. Each subtask is 
defined by a set of security requirements, security outcomes (the 
change in security state consequent of the subtask completion), 
risks, costs, and payouts.   At the technical level, we formalize 
the operational model as discrete-time, finite-horizon Markov 
Decision Processes (MDP) [3][4]. This model enables us to obtain 
multiple maneuver sequences, to evaluate the cost associated with each 
sequence, and to make optimal choice of a maneuver sequence that 
accomplishes the operation under various attacks.   In this, we adapt 
established control theory systems to Cyber-decision making. The 
operation model represents a formal specification of a cyber-scenario, 
e.g., the actions needed to complete an online task as described in 
the preceding section. We model an operation as a directed graph 
where the nodes are the states of the operation, and the edges are 
the state transitions needed to complete the mission. Each transition 
can represent atomic actions, abstractions for sub-operations or 
discrete time intervals [32]. However, based on the scenario, a choice 
of several maneuvers is possible. One cannot predict with certainty 
the consequence of these maneuvers given the current system state, 
but may model it as a stochastic event with many possible outcomes. 

Consider a vastly simplified view of the example vehicle image 
transmission operation outlined in the preceding section.  A model 
of that Cyber-mission (called an operation in this context) would 
proceed to (a) establish communication over local and global 
communication links, (b) transmit that data over the network and 
(c) terminate the communication.  Note that this mission appears 
superficially to be a linear progression of states, but actually each 
step can be carried out in many different ways and may require 
mitigating attacks, using alternate methods when media is either not 
secure or too costly.  Hence each of these steps can be represented 
by a complex flow of alternative approaches to implementing 
that higher level goal.  The operational model is used to navigate 
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these states and continuously select the approach with the highest 
probability of reaching a successful end state within a cost budget 
(e.g., the optimal control result).  In this way, the Cyber system is 
adaptive to changing environmental states, resources, and resilient 
in the presence of adversary action. 

Highlighted throughout, the operational model is built upon three 
interdependent inputs; detection state, risk metrics, and agility 
maneuvers.  The detection state is the collection of all inputs from 
sensors and inferred states of the system (i.e., the situational awareness 
derived from the environment).  The risk metrics is an assessment of 
the set of possible outcomes, their impacts on the operation and the 
environment, both as weighted by the probability of their occurrence.  
The set of maneuvers is the set of actions that will enable mission 
progress.  The output is the best maneuver that has the best probability 
of moving the state towards the best mission goal (end-state). 

Note that the end-state of the operation or operation strategy must 
change as the environment changes. For example, if it is found that 
an attacker has launched an attack that may prevent completion of 
the operation, other means to ensure success must be found. If success 
is no longer possible, other operation goals (with lower payout) and 
subtasks (with different security apparatus and configuration) may 
be defined or the operation aborted entirely.  For example, in the 
event that an attacker successfully prevents the 
delivery of the high-resolution image (e.g. via 
DoS attack), the system may choose to send an 
image to another location (such as a local HQ) 
or may send a lower resolution image.  In both 
cases a favorable outcome is achieved whereas the 
original goal could not be.  This ability to find 
alternate strategies and outcomes is the key to 
fighting through adversarial action.

Detection

The goal of the detection thrust is to develop 
theories and models that relate properties 
and capabilities of cyber threat detection and 
recognition processes/mechanisms to properties 
of a malicious activity, and of properties of 
Army networks. More concretely, the goal is 
to determine whether there is an ongoing cyber-threat that can 
negatively affect the operation and provide assessments on: (i) 
what is the most likely threat; (ii) what impact will it have on the 
operation (e.g., leakage of data, system breakdown, etc.) in terms of 
increase in cost or decrease in payout; and (iii) the confidence in the 
process (based on evidence collected). Detection is influenced by (i) 
the actions of the attacker, and (ii) the dynamics of the environment 
(which can itself influence the attacker to behave in certain ways).  
The CRA’s efforts in detection to date have been focused on three 
areas addressing the needs of operations: (a) advancing traditional 
intrusion detection, (b) understanding defender’s decision processes, 
and (c) developing a science of evidence collection.

Note that collection of data and transmission to a central fusion 
center can place demands on already constrained communications 
media in tactical networks. Even collecting and local processing 
may pose challenges in the often energy and computing constrained 
environment. Strategic networks may have greater resources, but 
support a larger diversity of operations. One of the key investigations 
within the CRA is the calibration of detection apparatus based on 
the resource cost for the target (tactical or strategic) as based on an 
understanding of operational requirements.

The operational model uses inputs from intrusion detection systems 
to infer the model state.  However, current systems are limited in their 
accuracy and false-positive rates [25].   The team is looking at several 
alternate models and scientific challenges to traditional detection.  
One alternate model developed within the CRA is diagnosis-
enabling intrusion detection (DEID) [20]. Departing substantially 
from traditional signature and anomaly-based detection, DEID 
infers high level attacks and effects using correlations, automated 
reasoning, and forensic techniques. In DEID: (i) A large volume of 
data that encompasses all levels of operation at each node (human 
actions, sensors, applications, OS, network behaviors) and across 
a multitude of monitors is collected. (ii) The observed, correlated 
evidence are examined and an attempt is made to map them onto 
expected correlated behaviors derived from the models of both the 

system and human actors; the mappings allow 
the determination of normal/attack behaviors 
with high accuracy (diagnosis). (iii) If the 
system is unable to map the observed correlated 
behaviors to known attacks (e.g., may be a zero-
day attack) appropriate information is exported 
to the human defenders.

Another effort seeks to expand and formalize 
the science of detection by exploring the 
vulnerabilities and countermeasures inherent 
to the underlying machine learning algorithms 
upon which most detection systems are 
based.  In particular, we are developing 
intrusion detection techniques that will be 
robust in the face of adversaries, work with 
limited information, and greatly reduce the 
attack surface that adversaries may leverage 
undetected. For example, we have developed 

novel algorithms and defenses for adversarial samples—adversarially 
crafted detection sensor inputs that use model error to bypass 
detection [39][30].  In defining the new science of this area, we 
introduced a taxonomy formalizing the space of adversaries targeting 
deep neural networks used for classification tasks [35]. We then 
investigated the case of source-target misclassification: forcing the 
targeted classifier to misclassify samples from any source class into 
any chosen adversarial target class. Our algorithms exploit a precise 
understanding of the sensitivity of the mapping between inputs and 
outputs using the forward derivative---the Jacobian of the model 
learned by the DNN classifier. Adversarial saliency maps build on the 
forward derivative to compute a score indicating the likelihood that 
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each input component contributes to the adversarial goal of source-
target misclassification. Perturbations are iteratively selected using 
adversarial saliency maps and added to the sample until it becomes 
adversarial---misclassified by the deep neural network.  We extend 
that work to create defense against such attacks [36]. The intuition 
is to make the models learned by deep neural networks smoother 
to increase the average minimal perturbation magnitude an attacker 
needs to introduce to craft adversarial samples. This minimal 
perturbation characterizes a neighborhood around points in which 
the model’s decision is constant, which in turn defines a robustness 
metric for detection models. We proposed the use of defensive 
distillation to increase model robustness. Thus, distilled models are 
harder to attack: adversarial samples need to be more perturbed in 
order for the model to misclassify them.  We are applying similar 
approaches and validation techniques to other ML techniques and 
measuring the resilience of detection systems again these attacks.

A challenge for intrusion detection systems 
is the integration of hard-earned information 
relevant to an attack, but that is not measurable 
at run time. Recent advances by CRA PIs in 
Learning Using Privileged Information (LUPI) 
[40] provide some insights.

Beyond the detection algorithms, the CRA is 
exploring the “evidence” collection processes 
and systems—the quality of any detection 
system is critically defined by the completeness 
and accuracy of its sensor inputs. There are several challenges 
addressed by the CRA in configuring evidence collection in military 
systems. First, monitor placement is often ad hoc and accidental.  
Large, complex environments can contain thousands of devices 
and services with subtle interactions and behaviors.  How one 
places sensors in these environments is key to getting an accurate 
vision of the environmental state.  The team is studying measures of 
coverage and developing algorithms for sensor placement (minimal 
number, optimal locations), e.g., [26].  The team is exploring several 
strategies including max-coverage, min-resource, and game-
theoretic strategies for placement algorithms.  Such algorithms are 
being developed both as static and dynamic placements —the latter 
of which is a form of system agility discussed below.

Risk

The accepted definition of risk in Cyber-systems is the probability 
of some negative outcome times the “cost” of its impact.  Decision 
making under risk takes into account these probabilities and impacts 
when forming the optimal maneuver, e.g., maximizing payout 
while minimizing impact costs. For example, if the use of one kind 
of transmission medium for the image transfer in our example 
mission would introduce a high risk of failure or compromise, 
then another must be selected.  Identifying these risks and 
making decisions based upon them are key to achieving successful 
outcomes (and avoiding negative side effects).  Within the CRA, 
we are developing theories and models that relate fundamental 

properties and features of dynamic risk assessment algorithms to the 
fundamental properties of dynamic cyber threats, Army’s networks, 
and defensive mechanism. These risk models and metrics will 
then be integrated into risk calculations in the operational model. 
Here we combine traditional system and network risk metrics 
with human oriented risk metrics. In the latter, individuals (users, 
defenders, and attackers) and human-resource interfaces are directly 
integrated as a component of risk valuation. Attackers create risk; 
defenders mitigate risk; and users both create and mitigate risk. In 
the operation-based framework, each operation will include users, 
defenders, the user/defender interacting team, and attackers. Based 
on the probability of being attacked and that attack being detected, 
each combination of operation/user/defender/resources must select 
an appropriate mitigation path within the operation model.  Thus, 
the risk related to an operation state transition is a vector of outcomes 
with consequences that may impact not only the task itself, but also 

the infrastructure, users, and other operation 
activities. This evaluation of risk requires us to 
model and verify not only individual risks, but 
also the interplay of risk at multiple layers and 
sources, and under different contexts. 

CRA research has identified risk metrics for 
system level, human factors, and software 
vulnerabilities [42]. We have used human 
factors frameworks to identify defender trust 
metrics and attacker culture metrics [18][33][5] 
. Expertise surveys and extensive data collected 

during the National Guard CyberShield exercises (2015, 2016) are 
being used to develop defender models [19].   We have developed 
a Bayesian network analysis approach for risk quantification and 
decision-making, and demonstrated that it can capture the dynamic 
change in risk magnitude due to state change [17].

Having identified early candidate models, the CRA team is 
developing experiments for validating user metrics, systems and 
network metrics, risk quantification, effective representations of risk, 
and optimality of risk assessment vectors. For human related models, 
each model and sub-model are evaluated for predictability of the 
outcomes derived from test subjects in controlled and operational 
environments. These subjects will be tested as individuals and 
as teams (e.g., during Cyber-training events).  The team is also 
experimenting with risk metrics in physical networked environments 
to measure their accuracy in multiple tactical and strategic networks 
and in the presence of attacks.

Agility

Agility refers to the context and operation-aware reconfiguration of 
the system or the operation autonomously or by the defender with 
respect to a potential attack or perceived risk. Such reconfigurations 
of environment or operation strategies are referred to as cyber-
maneuvers.  Maneuvers, often called moving target defenses, seek 
to continually alter the attack surface as perceived by an adversary.  
Within the CRA, the research effort focuses on developing models 
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and algorithms that reason about the current state, the universe of 
potential security-compliant cyber maneuvers (i.e., “maneuver” in 
the space of hardware, software, network and system characteristics 
and topologies) and end-states, and how these maneuvers are 
affected by and impacts human users, defenders, and attackers. 
Building on recent advances in moving target defenses [21][22], 
we are exploring game-theoretic models that select maneuvers that 
mitigate adversarial actions on operation outcomes. Note that some 
maneuvers may be offensive (such as deception techniques) in that 
they launch counter-measures that impact would-be attackers.

Broadly speaking, in an agile operation environment the system state 
needs to be continuously analyzed based on detected threats, assessed 
risks and human feeds on operation evolution. Subsequently, the 
system must be reconfigured towards: (i) preventing and mitigating 
attacks, thereby maximizing outcome utility in our operation 
model; (ii) completing the operation in a secure 
and resource-optimal way given the current 
state and the dynamics of the end state; (iii) 
minimizing risk and accounting for deception; 
and (iv) integrating the human factors that 
impact the cyber-security operations. An 
adversary’s perception of the attack surface 
can be altered by maneuvers in different layers, 
e.g., software, network, and system layers. Not 
surprisingly, one can also formulate agility 
problems in a game-theoretic setting. 

Our study of software maneuvers seeks to 
develop the science of software agility. 
The objective of software agility is to pick the optimal tasks to 
execute, and the optimal software configuration in which these 
will execute, given desired security outcomes, risks, and current 
state of the system (e.g., attacks, defenses, including psychosocial 
factors). We achieve this objective by (1) using a proactive 
approach to software agility to withstand and thwart attacks, 
and (2) continuously analyzing the systems software state and 
if/when needed, performing software reconfiguration, based on 
detected threats, assessed risks and human feeds on operation 
evolution. Our early efforts were focused on reactive approaches 
for reconfiguring a key-value server and mobile apps, and moved 
on to study of proactive reconfiguration, cost/payout metrics, 
and approaches beyond smartphones and key-value servers. The 
cost/benefit analysis balances security, capability, availability and 
resource consumption.  The Agility team has made advances 
in several directions, such as the quantification of the cost of 
reconfigurations [28], theory and practice of cyber-maneuvering 
[38], and characterizing root-provider attacks [41].  Over the 
next two years we will generalize to more powerful models of 
maneuver in a formal quasimetric space, reconfiguration, and cost; 
and formal guarantees of attack resistance. Agility mechanisms are 
one form of deception, and a formal approach to this, including 
psychosocial metrics of deception, warrant study. We proposed 
software “wrappers” as a flexible mechanism for dynamically 
changing programs and runtime environments and have used it for 

changing data structures on-the-fly in server-side processing [27], 
changing the OS state [38], and bytecode rewriting to survive faults 
[1].  Recent work in the CRA is developing a unified approach to 
encoding configurations, and formal mechanisms for controlling 
transitions. A related validation study is analyzing existing and new 
side channels (e.g., TCP stacks, [6]) to understand the limitations 
of software randomization strategies. 

A key issue in game-theoretic approaches is to determine the appropriate 
models of interactions between the defender and attacker. While it is 
conceivable that the two may choose their strategies simultaneously, 
it is more likely that each of them will choose their strategies in 
response to the “observable actions” by the other. The tradeoff 
between leading/following depends on the specific payoff functions 
as well as the penalty of delaying a player’s action (e.g., missing 
an attack opportunity).  In this, we are exploring various dynamic 

game formulations, with different leader/
follower roles for the attacker and defender. 
For example, the defender may lead the game 
by invoking his/her proactive security measures. 
The attacker will then respond with his/her own 
actions. The roles can be dynamically switched, 
depending on each player’s payoff (e.g., shortly 
after taking an action, the defender may decide 
to take a subsequent action without waiting 
for the attacker action; this decision may be 
triggered by more updated statistical analysis of 
adversarial responses). Such dynamism enable 
us to capture the bounded regimes of rationality 
of human adversaries.   Other recent work on 

game theoretic approaches include models for stealthy attacks, 
involving two-player differential games, and asymmetric versions 
of the FlipIT game where the feedback may be delayed. We have 
characterized best response strategies [13][14]. Our three-player 
game models build on this, including now a third player – the 
insider – who may be helpful or harmful. We have characterized 
Nash equilibria in this three-player sequential game. 

Recent research on the psychology of decision making seeks to 
understand how humans make decisions from experience (DFE) 
rather than descriptions. Such an approach enables one to relax 
assumptions of rationality. PIs in the team have championed the 
development and use of Instance-Based Learning (IBL) models that 
do not need predefined implementations of interaction strategies [16], 
[15].  IBL can be integrated with automated tools and models of risk 
assessment in cyber security, e.g., [8], as recently demonstrated in [2]. 
Our current work addresses key challenges related to scalability with 
multiple players, and cognitive biases and judgment impairments 
(such as due to memory and recall limitations), and how attack and 
defense strategies evolve in repeated games, across multiple attack 
patterns.  Central to most game theoretic assumptions are assumptions 
of information certainty and human rationality (which includes, 
for example, ability to perfectly recall all relevant information). 
Assumptions of rational behavior on part of the attacker may lead 
to poorly performing strategies against a myopic attacker; and 
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assumptions of rational defenders may lead to defense mechanisms 
that are never realized in practice. We are augmenting our game 
theoretic approaches with IBL to model humans with bounded 
rationality. Psychological research suggests that risk variability 
in humans may be explained and predicted by cultural and other 
cognitive factors; and such factors have been observed in the cyber 
domain to gain insights into attackers [23][37].  Our current focus is 
on incorporating such personality and cultural factors, for individuals 
and groups, into behavioral models such as IBL and game theoretical 
approaches to account for individual variability and biases [13]. We 
are further incorporating tools to enable cutting edge analysis of 
individual decision-making [24] and exploring how system prompts 
and presentation effect security outcomes [40].  

Discussion & Conclusions

We have introduced a conceptual framework and research agenda 
for reasoning about cyber-maneuvers in military environments.  This 
model jointly reasons about situational awareness, risk assessment, 
and software, system and network agility to support ongoing cyber-
operations.  These factors are integrated into a unified operational 
model that defenders and automated systems can use to make 
“optimal” decisions about how to achieve mission goals and mitigate 
the activities of adversaries.

The inter-dependencies between the elements of risk, detection and 
agility are obvious. Resources spent on detection (how many monitors, 
how many samples, choices of algorithms) are dictated by assessment 
of threat and risk, and in turn feed into risk assessments. The outputs 
of detection (including our confidence in such detection outputs) 
provide inputs for agility maneuvers; in turn, agility decisions feed 
information about network configurations to detection strategies. 
Agility algorithms depend on the detection of potential attacks, the 
risks associated with the perceived attacks, the desired responses by 
the defenders and attackers, the perceived risk in transitioning from 
the current to a desired state; and accounting for human dynamics. 
Risk feeds both detection and agility; for both, it shapes the goals 
and focus of the algorithms. Thus, as is evident from our operation 
model, the goals of the models and algorithms for agility are integrally 
dependent on the risk, detection, and human dynamics.  

Experimental verification and validation have been and continue 
to be key components of CRA research. While all algorithms are 
typically tested on synthetic / simulated date, we make extensive 
use of the cyber experimentation testbed called Cyber Virtual Ad 
hoc Network (CyberVAN) [10]. 

The research towards reaching this vision is just beginning its fourth 
year, but we have already made great strides in analyzing target 
environments and developing preliminary models.  Our current 
focus is to bring together these disparate but complementary models 
into a comprehensive framework, and to measure its effectiveness in 
realistic military contexts.  These experiments will assess the accuracy 
and sensitivities of decision making process and provide guidance 
into its refinement.  
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MACHINE LEARNING AND 
NETWORK INTRUSION DETECTION: 
Results from Grammatical Inference

INTRODUCTION: Machine learning for network intrusion detection is an area of ongoing and 
active research (see references in [1] for a representative selection), however nearly all 
results in this area are empirical in nature, and despite the significant amount of work that 
has been performed in this area, very few such systems have received nearly the widespread 
support or adoption that manually configured systems such as Bro [2] or Snort [3] have. As 
discussed in [1], there are several differences between more conventional applications of 
machine learning and machine learning for network intrusion detection that make intrusion 
detection a challenging domain; these include the overwhelming class imbalance (see [4] 
for a detailed discussion of this issue), the high asymmetry in misclassification costs, the 
difficulty in evaluating the performance of an intrusion detection system, and the constantly 
changing nature of network attacks.
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However; these arguments, which largely stem from empirical 
observations about the distribution and impact of attacks, 

do not address a more fundamental question: whether or not it is 
possible from a theoretical perspective to use machine learning to 
construct a general and effective intrusion detection system.  This 
is the sort of fundamental question that we seek to answer with a 
“fundamental science of cybersecurity” [5], which has so far proved 
to be somewhat elusive.  In this article, we collect results from the 
field of grammatical inference to show that the use of machine 
learning for intrusion detection via deep packet inspection is 
inherently limited, and cannot be expected to generalize effectively 
even if the proposed algorithm can be shown to perform well on 
some particular task.  

Network inputs, file formats, and other automatically generated 
input structures (henceforth: ‘messages’) are by construction 
formal grammars, in which the message is both produced and 
interpreted according to a fixed set of rules. If we wish to identify 
a particular class of message as either “safe” or 
“malicious”, we are then implicitly attempting 
to learn a recognizer for the (perhaps merely 
implicit) formal grammar underlying that 
class of message format or protocol.  This 
places the problem firmly within the realm 
of grammatical inference, a field with a deep 
theoretical literature.  And indeed, we can find 
strong parallels, if not outright reductions, from 
many commonly encountered problems in 
machine learning for intrusion detection and 
grammatical inference. 

In the following, we present brief background 
on grammatical inference, explore some 
common approaches to network intrusion 
detection through the lens of computational and show how these 
results illuminate several common approaches to machine learning 
for network intrusion detection.  In particular, these results suggest 
that general purpose machine learning approaches to network 
intrusion detection are – from first principles – not computationally 
tractable, and in fact may be attempting to solve problems that range 
from cryptographically hard to NP-complete.

Key Concepts from Formal Language Theory and 
Grammatical Inference

The key concepts from formal language theory that we will require 
are “languages”, “grammars”, and “recognizers”. 

Grammars are defined as tuples: G =(N ,Σ ,R , i )  where N  is a set 
of nonterminal symbols,  Σ  is a set of all possible symbols (terminal 
and nonterminal), R  is a set of production rules indicating which 
symbols in the string can be replaced with other symbols (the ‘left’ 
and ‘right’ side of the rule, respectively), and i  is an initial symbol.  
A “production” of a grammar is a sequence of rule applications to 

a sequence until it consists of only terminal symbols; the (typically 
infinite) set of all productions of a grammar is the language L   
produced by the grammar, often denoted L (G ) .  A recognizer for 
a grammar is some algorithm which takes some input sequence as 
input, and either returns “accept” if s ∈L (G ) , or “do not accept” if 
S ∉L (G ) .

The various restrictions that are placed on the production rules 
place the grammar into one class or another.  The most commonly 
encountered classification of grammars – the Chomsky hierarchy 
[6] – classifies grammars in increasing complexity as regular, context-
free, context-sensitive, and unrestricted; each class being contained 
in the following one, having successively fewer restrictions on 
the production rules, and requiring a successively more powerful 
model of computation in order to recognize.  Regular grammars, 
for instance, may only have rules in which the left side contains a 
single nonterminal symbol, and the right side contains an empty 
string, a terminal symbol, or a terminal symbol followed by a 

nonterminal symbol.  The Chomsky hierarchy 
is of particular interest because each class within 
the Chomsky hierarchy corresponds precisely 
to a particular model of computation which is 
required to build a recognizer for a language in 
that class.  Regular grammars, for instance, can 
be recognized by finite automata, while context-
free grammars require the addition of a stack 
in order to be able to construct a recognizer for 
them. Context-free grammars are of particular 
importance as the Backus-Naur notation, which 
is frequently used to describe network protocols 
and occasionally file formats are itself a notation 
for context-free grammars. 

Grammars and recognizers then fix a set of 
production/recognition rules, and produce decisions about strings.  
Grammatical inference (see [7] for a broad review) tackles the inverse 
problem: given some set of data relating to an unknown grammar, 
can we produce decisions about properties of that grammar?

Example data available for training may include only 
str ings {s+ :s ∈ Σ *∩ L } in the language generated by a 
grammar – a “positive presentation” – or a set of strings 
s ={s+:s ∈Σ *∩L }∪{s - :s∈Σ * \L  }  combined with labels n :  {0,1} 
which indicate if s∈s+ or s∈s -  (a “complete presentation”).  The 
available data can in some cases also be obtained dynamically: 
the learning algorithm may have access to additional information, 
such as an oracle that when given a conjectured grammar G '  will 
either confirm its accuracy if G '=G , or provide a counterexample 
s ∈L (G )\L (G ' )  otherwise (“learning from a teacher”).  

One of the earliest formalizations for what it means to “learn” a 
grammar is “learning in the limit” [8], in which (informally) the 
learning algorithm requires only a finite amount of data to produce 
a correct answer from which it never then deviates.  Note that this 
is not a particularly strong model of learning: the amount of data 
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required can be arbitrarily large so long as it is finite, and it places 
no restriction on the size of the learned automata; it need not be 
minimal or even bounded.  More realistic models of learning include 
the “Probably Approximately Correct” (PAC) framework [9], rather 
than requiring L (G ' ) = L (G ) always, we might require only that over 
some distribution of strings  and some distribution of training data T , 
we require that PT(PD(s ∉L  (G ' )∩L (G ))<ϵ)≥1-δ ; in other words, 
the two grammars disagree on at most some bounded proportion  of 
strings (i.e. our proposed grammar is “approximately correct”) and 
that this “probably” occurs, learning such an approximately correct 
grammar on at least 1-δ  of all possible training sets.

Regardless of the family, general results considering these various 
models are not encouraging.  One of the earliest considered cases 
was examined by Gold [8]: that of learning in the limit from 
“presentations” as described above, where the learner is provided 
with data, cannot form its own queries, and 
must eventually converge to an equivalent 
grammar (it may only make finitely many 
mistakes).  In this area of learning by 
examples, Gold’s Theorem [8] demonstrates 
learning even regular languages is not possible 
from only positive examples (indeed, any class 
that contains all finite languages and at least 
one infinite language cannot be inferred from 
a positive presentation).  Given a finite set of 
both positive and negative examples, the work 
of [10] shows that the decision question of 
whether there is an n-state DFA that agrees 
with the finite data set is NP-complete.  
Through a reduction to Boolean formulas, 
the work of [11] shows that PAC learning 
of DFAs from both positive and negative 
examples – the standard “supervised learning” 
context perhaps more familiar to those with 
a background in machine learning – is at 
least as hard as factoring Blum integers, and so under current 
cryptographic assumptions does not appear to be polynomial-
time tractable.  As DFAs occupy one of the lowest levels of the 
Chomsky hierarchy, it immediately follows that any grammar 
that requires more power than that offered by a DFA must be 
at least as hard as a DFA to learn1.

Active learning – in which the learning algorithm can form some 
kind of query to narrow its search – provides slightly more positive 
results.  The closest counterpart to the notion of active learning 
encountered in (non-grammatical inference oriented) machine 
learning is the model of an “informant,” in which case the algorithm 
is allowed to construct query strings, and has access to an oracle 
which responds to membership queries for proposed strings.  When 
learning with an informant, context-sensitive grammars may be 
learned in the limit [8].  The more powerful model of a “teacher” as 
described above (an informant who will provide counterexamples 

1	Although see also [14], in which a class of languages that is polynomial-time learn-
able from examples is provided that is orthogonal to the Chomsky hierarchy.

to proposed grammars) allows for yet more powerful inference.  
Under the model of a teacher, some context-free grammars may 
be learned in polynomial time with respect to the number of 
states in the underlying automata [12].  Finally, the use of “simple 
examples” as training data allows for learning minimal DFA in 
polynomial time [13], however simple examples – informally – are 
training items carefully chosen to guide the learning algorithm 
to the correct answer, and so in addition to being specific to the 
learning algorithm and the grammar, do not correspond to a more 
conventional learning approach where the distribution of the input 
data cannot be controlled. 

In addition to variations in available input to the algorithm, various 
modifications of the grammatical classes to which the unknown 
language may belong have also been considered.  The class of 
pattern languages [14] can be shown to be learnable in the limit 

from positive data due to the property of “finite 
thickness” [15] – loosely, that there is no string 
that is found in infinitely many members of 
the class and therefore for any given subset 
of grammars in the class there must be some 
production which is unique to it – which is 
shown to be sufficient for identification in the 
limit. While pattern languages themselves are 
difficult to apply to many empirical problems 
in intrusion detection [16], the notion of finite 
thickness may in many cases be applicable.  
A related notion is that of elasticity [17].  A 
class of languages has “infinite elasticity” if 
and only if one can find an infinite sequence 
of productions such that for all n , the first n 
productions are found in some grammar in 
the class while production n +1  is not; if a 
class does not have infinite elasticity, then it is 
said to have finite elasticity and it can again be 
inferred in the limit from positive data.  Finally, 

if a class of grammars has a family of “characteristic sets” (‘condition 
1’ in [15]) such that each language in the grammar has an associated 
finite characteristic set, and showing that the characteristic set 
for language i  exists within language j  is sufficient to show that 
language i  is a subset of language j , then languages from that class 
are learnable in the limit.

Taken in whole, these results do not paint a particularly positive 
picture of grammatical inference.  Even the simplest classes of 
grammars we might encounter have extremely poor “learnability,” 
and rendering them easier to learn often requires some degree of 
interactivity or side information.  Significant restrictions on the class 
of grammars which we may wish to perform inference on allows 
for substantial reductions in complexity, however we have little 
guarantee for novel protocols that we may rely on such restrictions.  
In the following section, we briefly examine major classes of machine 
learning that have been proposed for intrusion detection, and relate 
the results in this section to the practical problems posed by such 
learning systems.
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Machine learning and Intrusion detection

The literature on machine learning and intrusion detection is vast 
(see references in [1] for a partial overview; also, short reviews by [18] 
and [19] which contain more details about specific machine learning 
methods that have been attempted); however, it divides broadly into 
the two main categories of “anomaly detection” and “signature inspired” 
[20] (in machine learning terminology, “supervised learning”).  Anomaly 
detection, including such systems as Anagram [21] and McPAD [22], 
focuses on constructing a “normal” model of traffic and producing 
alerts when traffic that does not fit this model is observed.  Supervised 
learning systems (see [23], [24], and [25] for representative examples) 
are provided with both malicious and benign traffic, and attempt to 
learn rules to distinguish them.  While less common in the domain 
of intrusion detection, active learning (i.e. interactive) approaches for 
outlier detection have been presented as well, as in [26]. 

In all cases, the general formulation of the 
problem is approximately the same. Network 
messages are – by construction – designed to be 
parsed and interpreted by a machine, and hence 
can be characterized as formal grammars which 
accept and reject on specific strings. Within 
the space of all possible strings M  received by 
the network service, there is the subset A⊆M 
of messages that are accepted by the network 
endpoint; this subset itself contains S⊆A  of  
“safe” messages that represent normal use of 
the endpoint.  In learning a function that can 
identify which subset of  a given message lies 
within – in particular for some string s  whether 
or not s ∈S  – we are constructing a recognizer 
for S , thus placing the problem exactly within 
the domain of grammatical inference.  

Consider, for example the case of a standard machine learning 
approach in which we are presented with samples of normal traffic 
from S, and hostile traffic from the set A\S, each appropriately labeled, 
and we wish to train a function to determine whether a candidate 
string  lies in one set or the other. This is precisely the problem of 
learning a grammar from a complete presentation, and as such we 
may readily apply existing results.  Even if we make the simplifying 
assumption that the protocol under consideration (or the union 
of protocols if deployed on a multi-protocol endpoint) is regular, 
we are still attempting to learn a Discrete Finite Automata from a 
complete presentation.  If we wish to learn it precisely (in the limit) 
then we have that the problem is NP-complete [10].  If we wish to 
learn it in a more practical sense (i.e. PAC), then we have that the 
identification problem is “merely” cryptographically hard [11].  This 
forces us to accept the conclusion that even if we obtain empirically 
good performance for a particular algorithm in a particular setting, 
we cannot be sure that it will generalize to a new domain.

If we consider (as in McPAD [22]) that only positive (‘normal’) data 
S is available, and continue to assume that we are observing then we 

are attempting to learn a grammar from its positive presentation, with 
all associated complexities. While specific examples of grammars are 
clearly at least PAC-learnable in this setting, as shown by the results 
of [22], it follows immediately from the difficulty of learning from a 
positive presentation that McPAD must fail to generalize to at least 
some classes of grammars; whether or not those grammars are of 
practical relevance to intrusion detection cannot be decided in any 
fashion other than empirically.  We are thus left with no foundational 
guarantee of correctness; simply empirical observations.

Clearly, when we consider a more realistic scenario in which several 
protocols may be present in the same set of network traffic, the 
problem often becomes significantly more difficult; the problem of 
learning the mixture of grammars is at a minimum at least as hard 
as learning the most complex one, and depending upon the closure 
properties of that class, may in fact be more difficult.  While most 
languages in the Chomsky hierarchy are in fact closed under unions, it 

is often not clear whether or not restricted classes 
(such as those that have finite thickness) may be.

While somewhat outside the realm of network 
intrusion detection, more powerful inference 
models such as learning from an informant 
have been shown to generate positive results 
in areas such as developing usable models of 
program execution (stateful typestates) [27].  
This approach obtains a direct generative model 
of program outputs which can be examined 
for various security properties.  Standard 
fuzzing techniques [28] are perhaps a more 
direct application within the security domain, 
in which a subset C⊆A  of inputs that lead 
to crashes is learned from interaction with a 
program, frequently combined with additional 

information about the execution of code paths [29], however these 
methods do not typically produce formal descriptions or generative 
models of incorrect inputs, and rather seek to enumerate a useful 
subset of them, typically (in defensive settings) attempting to reduce 
the size of the set A . The work of [30] explores methods to leverage 
attacker knowledge in constructing fuzzing inputs via a descriptive 
language, which could be used in an iterative fashion to eventually 
describe a subset of the target grammar.

In many cases, we do not even require the results of grammatical 
inference to show that a particular classifier cannot (provably) learn 
a sharp distinction between malicious and benign traffic.  A key 
step in any machine learning process is that of ‘feature extraction’ 
in which the raw data that is to be classified is converted into some 
numerical representation that can then be operated on by the 
learning algorithm.  N-grams (and minor variations on the concept 
such as skip-grams) are the core feature representation used in a 
number of anomaly-based intrusion detection systems, including 
Anagram [21] and McPAD [22], in which every n-byte substring 
within the payload is tabulated (for instance, the string “learning” 
would have 3-grams of “lea”, “ear”, “arn”, “rni”, and so on).
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However such representations can be shown to be insufficiently 
powerful to distinguish between many members of the class 
of regular languages.  For example, the rather trivial regular 
languages   (ab ) x (ba ) y (ab ) z  and (ba ) x (ba ) y (ba ) z  cannot 
be distinguished from each other on the basis of 2-grams (note 
that the 2-grams bb  and aa  both appear exactly once in each, 
with variable numbers of  ab  and ba  tokens), while constructing a 
recognizing DFA for each is trivial.  Similar counterexamples can 
be constructed for n-grams of arbitrary length.  This immediately 
implies that any learning algorithm that first reduces a sequence 
to n-gram counts is a priori incapable of learning large subsets of 
the class of regular grammars, and as a consequence we may expect 
that – even if empirically good performance is shown on some data 
sets – this performance cannot be relied upon to generalize. 

Other feature representations are also used.  
Perhaps most widely known are those of the (now 
severely out-of-date but still regularly studied) 
KDD’99 data set [31], which parses the network 
traffic to extract a number of features suggested 
by expert knowledge to be of use.  In addition 
to “metadata” describing flow-based properties 
such as the duration of the connection and the 
number of concurrent connections to the same 
host, a number of content-based features are 
extracted from both the payload of the packets 
(e.g., the presence of a shell prompt, extracting 
FTP commands to obtain a tally of outbound 
ones, etc.) and headers of the packets (identifying 
the network protocol, various ports and addresses, 
protocol-specific flags, and so on). These features 
obviously make no attempt to model any 
significant portion of the content of the packets, 
and so make the prospect of inferring a grammar 
from them infeasible; at best, some of the manually extracted features 
act as “telltales” for specific attacks, and thus allow what is effectively 
signature-based detection.   

And indeed, the most effective current approach in intrusion 
detection remains (anecdotally at least) signature-based solutions 
[1] such as Snort [3].  The effectiveness of such solutions can be 
explained precisely within the context of grammatical inference, as 
a well-written content-based signature is equivalent to a production 
that is not (or is very rarely) a production of the grammar underlying 
“good” traffic, and hence form a telltale for the set A\S .  And indeed, 
Snort and Bro [2] both contain sophisticated pattern-matching rules 
that are capable of recognizing a wide range of malicious traffic, 
in effect acting as small recognizers for subsets of the malicious 
grammars under consideration.  It is worth noting, however, that the 
rule generation in this case is often done by hand, and even when 
done in an automated fashion is typically attempting to match a finite 
subset of malicious traffic for a specific attack, and then tested on a 
set of larger normal traffic to assess false positives; this is equivalent 
to the bounded version of the problem posed in [10], which can take 
place in polynomial time.  A key distinction here is that – rather than 

attempting to model all ‘safe’ or ‘malicious’ productions – any method 
that produces some form of signature is attempting to model a finite 
number of productions of a single protocol under heavily supervised 
conditions, and so does not address the question of novel attacks that 
machine learning-based solutions are often attempting to address [1].

Conclusion

The high performance of machine learning in other domains has 
stimulated significant interest in applying it to network security, 
however (as noted in [1]), despite the breakneck pace of major 
successes with machine learning in many other domains, and the 
large amount of effort spent to produce machine learning-based 
intrusion detection systems, in practice most major network defense 

providers focus continue to use signature-based 
methods which have been in active use since 
the late 1990’s.   

Drawing on the extensive literature on 
grammatical analysis, we propose that this 
is a reflection of a fundamental difference 
between more conventional domains of 
machine learning and network security.  
In particular, because network security – 
particularly network security applications that 
focus on analysis of packet contents – operates 
on the domain of formal grammars that are 
rigorously interpreted (as compared to the 
domain of natural language translation, where 
human intuition can often “fill in the gaps” 
in translation), it is an intrinsically difficult 
problem that a) is demonstrably intractable 
in the most general case, and b) cannot be 
addressed with the relatively crude features that 

appear to be most common in the literature.  While some modest 
success has been recently realized in applying sequence-to-sequence 
models (thus at least partially avoiding the question of feature spaces) 
for grammatical inference in specific instances of specific protocols 
[32], there remains no method to demonstrate that such methods 
will generalize even to different instances of the same protocol, let 
alone novel protocols in the same class.

In fact, results from grammatical inference show that there is quite 
likely no general method that can be applied to arbitrary data to 
separate benign and malicious traffic; any practical method should 
therefore be restricted to a particular domain, analyze that domain 
carefully, and at least attempt to investigate what properties of the 
protocol under analysis may allow it to be effectively learned.  The 
empirical effectiveness of Snort and Bro signatures suggest that the 
domain of malicious traffic is likely more tractable, and may be easier 
to learn.  The appearance of particular byte sequences in malicious 
but not benign traffic can be viewed (informally) as evidence that 
the class of malicious languages is of finite elasticity (due to the 
absence of a limit language) within the class of all protocols that 
can produce accepting inputs to the system under consideration, 

Manually 
extracted 

features act as 
'telltales' for 

specific attacks, 
and thus allow 

what is effectively 
signature-based 

detection
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thus supporting identifiability.  Feature representation is also 
important.  N-gram based features in particular will quite often be 
insufficiently powerful to model complex grammars or protocols; 
in some cases, sufficiently large values of n may be able to overcome 
this limitation for specific subclasses of protocols, however this is 
likely to be highly problem specific, and requires careful evaluation 
for any given proposed system. 

While significant open questions remain – such as methods for 
performing inference on the restricted classes of grammars that in 
practical terms make up many existing protocols – the immediate 
results of applying grammatical inference theory to machine learning for 
intrusion detection both help explain the lack of widespread adoption 
of such systems, and suggest appropriate avenues for future work.   
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ABSTRACT: Modern day detection of cyber threats is a highly manual process where teams 
of human analysts flag suspicious events while using assistive tools such as Bro and Snort. 
It is the analysts’ ability to discern suspicious activity and authority to make decisions on 
threats that place humans into central roles in the threat detection process. However, over-
reliance on human ability can lead to a high volume of undetected threats. As the tempo, 
diversity and complexity of cyberspace threats continues to increase, this shortcoming 
can only worsen. Therefore, there is a need for a new detection paradigm that is largely 
automated but where analysts maintain situational awareness and control of the process. We 
propose a synergistic detection process that captures the benefits of human cognition and 
machine computation while mitigating their weaknesses. The analyst provides context and 
domain knowledge, and the machines provide the ability to handle vast data at speed.

BY: Noam Ben-Asher and Paul Yu, Army Research Laboratory (ARL)

SYNERGISTIC ARCHITECTURE FOR 
HUMAN-MACHINE INTRUSION DETECTION
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While the primary role of the human analyst is to identify the real 
threats within a large volume of alerts, analysts are also required to 
gain and maintain cyber situational awareness [3]. More specifically, 
analysts uncover the meaning of the observed network behavior 
(e.g., what is that nature and origin of the behavior?) and project 
how this behavior might evolve and effect the mission (e.g., what 
the attacker will do next?). This information informs the decision 
of the analyst how to respond to the situation and what defense 
will be effective [4, 5]. Though the defense of the network is outside 
the scope of this article, we believe that the proposed detection 
framework will also improve the ability of the human analysts to 
acquire and maintain situational awareness in cyberspace.

The Need for Analyst-in-the-Loop Cyber Detection

The nature of cyber attacks has undergone significant changes 
in recent years, as evidenced by the emergence of more cases 
of destructive Advanced Persistent Threats (APTs). Leading 
government agencies and cooperations have experienced increasingly 
sophisticated attacks that exhibited distinctive characteristics 
compared to more traditional cyber threats. APTs are typically well 
sponsored and organized cyber campaigns with very specific and 
targeted objectives. One of the key objectives of an APT is to achieve 
a persistent foothold in a system for long period of time by using 
zero-day exploits, careful propagation, and a small footprint. All of 

these measures aim to increase the likelihood of 
remaining undetected (stealth), especially when 
the defender relies on automated detection 
tools. Detecting APTs require extensive human 
involvement and effort when conducting 
forensic analysis [6].

Throughout the detection workflow, the 
analyst should be able to utilize various 
decision support tools. These tools assist the 
analyst by filtering, mining, summarizing and 
visualizing data to speeding up the analysis. 
In some cases, where there is sufficient 
confidence in the automated diagnosis, tools 
can even determine the threat and initiate the 
appropriate response. However, in the current 
linear detection workflow (Figure  1), the 
analyst has no influence on the way evidence 
is collected or processed, and eventually 
is required to make decisions based on an 
externally imposed information flow. The lack 
of control and transparency can hinder the 

analyst’s ability to detect threats quickly and accurately. In mission-
critical settings such as threat detection, the analyst needs to trust 
the supporting tools and also have access to the reasoning behind 
the recommendations or alerts they generate in order to correctly 
determine whether or not to accept or reject a recommendation [7].

To detect APTs and ensure high level of mission performance 
by establishing trust in a decision support tool and compliance 
to the recommendation it generates, the analyst should have the 

Introduction

As the network takes an increasingly larger role in military 
operations, there is an increasingly urgent need to plan, execute, 
and assess operations in cyberspace. A key capability is the accurate, 
fast, and agile assessment of network actions that are performed 
by friendly and hostile participants. Of particular interest is the 
detection of threats, i.e., actions that harm the network.

Despite constant advances in automated threat detection, human 
analysts and decision makers continue to play critical roles in the 
struggle to ensure secure networks  [1]. A typical threat detection 
process, as illustrated in Figure 1, starts with observations of network 
activities that are then filtered by a set of detection tools [2]. The 
human analyst uses these tools and their output (i.e., information 
summaries and alerts) to inform the final decisions of what threats 
are present in the network and their possible impact on the mission.

Many features of the cyber environment challenge the capabilities and 
capacity of human cognition, including the ever-increasing volume of 
network data, the wide variety of data sources, and the frequent and 
unexpected changes in the network. The analyst assumes bears much 
responsibility for making quality decisions within the current detection 
process. As a result, much emphasis is placed on improving analyst 
training and experience. However, the quality of the decisions is limited 
by the quality of information presented to the 
analyst and by the ability to sufficiently process 
this information. The analyst may even impede 
detection as core human capabilities like memory 
capacity and processing speed cannot be easily 
enhanced to match the ever-growing volume of 
network traffic. Furthermore, changing the analyst 
decision making patterns requires a deliberate 
effort that can happen at a slower pace compared 
to the appearance of new cyber attack patterns.

We propose a framework for an adaptive 
detection process where the evidence collector, 
detection engine, and human analyst work 
together to share information and make 
higher accuracy decisions at higher speed. This 
framework aims to enable efficient investment 
of the analyst ’s valuable, though limited, 
cognitive resources into the detection processes. 
The goal of the framework is to establish the 
foundations for a protocol between detection 
components such that relevant information can 
be transferred amongst them in order to have an adaptive process 
that can detect new threats. In contrast to the threat detection 
workflow that depends heavily on the human, the proposed 
framework that depicts a process where the components support 
and complement each other. We introduce within our framework:

ii Varying levels of analyst involvement in detection
ii Adapting detection according to the threat’s life cycle
ii Characterizing the types of interactions 

between detections components

Detection 
framework will 
also improve 

the ability of the 
human analysts 

to acquire 
and maintain 
situational 

awareness in 
cyberspace
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ability to interact with the underlying detection mechanisms 
throughout the detection process (as illustrated in Figure 2) and 
not only at the very end [8]. Furthermore, by the agency of such 
interactions the analyst can infuse contextual information that can 
support and improve detection accuracy and speed. The analyst 
can also continuously tune the detection processes in response to 
emerging threats and provide instruction on how the detection 
processes should adapt to changes in the attack surface and 
attackers’ capabilities.

Recent studies on Human-Data Interaction (HDI) propose a 
human centric approach to understand and develop interactions 
with data, dynamic data flows, algorithms, automated reasoning 
mechanisms and visualizations [9]. HDI core characteristics of the 
interactions can be adapted to the cyber intrusion detection domain 
by situating the analyst as an influential component in each and 
every part of the detection process. Accordingly, in our synergistic 
analyst-in-the-loop framework we highlight three high-level 
aspects of the analyst interaction with detection. The first aspect 
is  legibility, encapsulating the notion that both data collection 
mechanisms and analytics algorithms should be transparent 
and comprehensible to the analyst. The second aspect is agency, 
concerned with the idea that the analyst should have the capacity 
to control and influence data collection and management processes.

Lastly, negotiability addresses the ability of the analyst to influence 
the data processing and analytics so that data can be processed using 
different methods, for different purposes and in different contexts.

Figure 1: Linear detection process Figure 2: Synergistic detection process

Varying levels of analyst involvement in detection

The attention of the human analyst is a valuable and scarce resource. 
As such, human attention and cognitive capabilities should be 
allocated in the most beneficial way that supports the most critical 
tasks. Other tasks, that do not benefit significantly from human 
analytical capabilities or play a less critical role, can be partly or 
completely automated. Parasuraman and colleagues [10] propose a 
model for types and levels of human interaction with automation. 

Among other implementations, this model can be used to assign 
different levels of automation to the four stages of information 
processing (information acquisition, information analysis, decision 
selection, and action implementation). Cyber intrusion detection 
relies upon information processing, where evidence collection 
is equivalent to information acquisition, the detection engine 
operation is equivalent to information analysis and the analyst 
decision and response stages correspond to decision selection and 
action implementation stages. Therefore, in each of the detection 
stages, analyst involvement can range from high to low. high 
analyst involvement corresponds to a low automation level where 
the analyst must take all decisions and actions, while low analyst's 
involvement corresponds to high automation where detection 
processes operate autonomously. With respect to the analyst 
decision of whether or not there is an intrusion, we consider four 
levels of collaboration. At the lowest end of the collaboration 
scale, the analyst operates unaided and detects threats in the raw 
packet level data. Automation can increase by adding detection 
mechanisms that provide recommendations (i.e., alerts) to the 
analyst. The actual level of automation depends on the definition 
of the analyst’s role when responding these alert. The analysts 
can acknowledge correct detections and detect additional threats 
that were missed by automated detection. Alternatively, when 
automation is more extensive and trustworthy, the analyst role 
can be limited to detecting missed threats and canceling false 
alerts. At the highest level, all aspect of detection is automated 
and analyst can direct full attention towards selecting the best 
response to detected threats.

Adapting detection to the threat’s life cycle

Threats may be characterized by how well they can be detected 
through automated methods. This tends to be highly correlated with 
the understanding of the threat. From the analyst’s perspective, the 
threats go through a progression of understanding which is also 
captured by the life cycle of a threat [11].

Initially the threat is unknown to the analyst; such an unknown 
threat often targets an unknown vulnerability and is referred to 
as a zero-day  exploit. Encountering such a threat requires much 
forensic examination and study of normal and abnormal network 
behaviors in order to isolate the threat and gain a preliminary 
understanding regarding its existence. There can be significant 
human involvement in this stage, from determining (i.e., labeling) 
the activity as malicious, to identifying the evidence that indicates 
the presence of the threat, to identifying its impact. As more 
examples of the threat are observed, more information is revealed 
to the human. Eventually, human understanding improves to the 
point where accurate detection mechanisms can be automated and 
programmed into the intrusion detection systems. This automation, 
in parallel to correction (e.g., patching) of the vulnerability, shifts 
the load away from the analyst. It is critical to provide the analyst 
support through automation in this part of the threat life cycle as 
following disclosure the volume of cyber attacks that utilize the 
specific threat can increase by up to 5 orders of magnitude [12].



WWW.CSIAC.ORG  |  27

Synergistic Architecture for Human-Machine Intrusion Detection  –  CON'T

At that point, the detection of the now well-understood a threat 
can be safely relegated primarily to automated mechanisms. The 
analyst remains responsible for making the final decision based 
on the automated detection outputs. However, the majority of 
the processing to ascertain the probability of the threat is done 
without human involvement.

The dynamics of the threat and detection life cycle highlight 
the need to allow different levels of automation in the detection 
processes. This ability is tightly coupled with the analyst’s ability 
to interact with the detection processes, understand how they 
operate, and influence their operation. Eventually, the needs 
and role of the human analysts can constantly change and as 
such, detection processes should be flexible enough to facilitate 
the operation of the analyst in constantly changing levels of 
understanding and awareness to cyber threats.

Synergistic Analyst-in-the-Loop Cyber Detection

To formulate and demonstrate the synergistic architecture for 
intrusion detection, we consider the following simplified detection 
process. Cyber  activity  impacts the environment. The state of 
the environment is measured by  monitors  and yields  evidence. 
Evidence is provided to a detection mechanism 
(Inference), which decides hypotheses by assigning 
them weights.

Based on existing research on intrusion 
detection and human data interaction, our 
hypothesis is that having each component 
interact and share relevant information with 
the other components allows better decisions to 
be made at higher speed about threats both new 
and old. We first introduce the components 
of the detection process and then discuss the 
interactions between them.

Components

The three central components of the detection framework 
are the Evidence Collection Mechanism (denoted by ℂ), the 
Detection/Inference Engine (D), and the human analyst (A) (see 
Figure 3). The ultimate decision of threats is made by A with 
support provided by D and ℂ.

ii ℂ , the evidence collector, manages the monitors that report 
information about the behavior of observable activities for use 
by the detection engine. The monitors can be deployed at the 
network level to inspect traffic (e.g., deep packet inspection) 
or at the host level to monitor processes. The information is 
then processed into the evidence that is requested by D  or A .

ii ℂ  is aware of the types of evidence that it can collect as well 
as the cost of doing so. The evidence has many properties 
such as update frequency, bit rate, variance, reliability, etc. 

It may set the frequency of the evidence collection to trade 
accuracy with storage or bandwidth requirements. It may also 
be aware of the reliability of the evidence, a metric that can 
vary in real-time (e.g., through interfering processes, network 
traffic, etc.) These capabilities allow ℂ  a variety of behaviors. 
For example, it can calculate the cost to deploy a proposed set 
of monitors, or it can message the analyst when the reliability 
of the collected evidence has been degraded.

ii D, the detection engine, processes the available evidence 
and generates likelihoods for possible threats. The 
important capability of D is the handling of vast quantities 
of information. It is able to refine its detection and adapt 
to changes in the environment through human interaction 
(e.g., supervised machine learning [13]).

ii For a particular threat, D understands to some degree the 
relationship between the likelihood and evidence, e.g., as 
necessary or sufficient conditions for a threat. It is able to 
provide the human with an understanding of how the threat 
likelihoods are calculated. This implies that its internal logic 
can be shared with the human in a legible format.

ii A , the human analyst, decides which threats are occurring, 
generally with consideration given to the likelihoods 
computed by the detection engine.

Rather than focusing on the structure 
of D and ℂ, this note focuses on how the 
human analyst can interact with D and ℂ. In 
the following, we introduce the supporting 
framework for these interactions.

Interactive Detection Workflow

Figure  3  illustrates the detection flow 
where solid arrows indicate on the 
direction of information from source to 
destination. The detection flow starts 
with network and host activities that 
are observed by a set of monitors. The 

evidence collector  ℂ  deploys the monitors and converts 
the gathered information into evidence. The detection 
engine  D makes inferences on which threats are likely given 
the provided evidence. The likelihoods are presented to the 
analyst as a set of weights.

The goal of the analyst A  is to observe the set of hypotheses 
and weights and decide what types of activities occur. In order 
to improve the performance (accuracy, efficiency, etc.) of the 
overall detection flow, the analyst can interact with ℂ and D as 
illustrated by the dashed lines in Figure 3. ℂ and D can also 
interact directly. Such interactions can be the propagation of 
analyst ’s interaction with one component to the other, or a 
result of the ongoing execution of a process. We formalize the 
interaction between the components of the detection processes 
in terms of queries and operations.

The state of the 
environment is 
measured by 
monitors and 

yields evidence
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Interactions

Interactions between detection processes fall into one of two possible 
categories:

1.	 Queries - Any type of request for information (i.e., a query) 
that does not change the operation of a process. A query is 
always followed by an answer.

2.	 Operation - Any type of request that changes how  processes 
perform. An operation is always followed by feedback indicating 
at least whether the operation was successfully completed or 
not.

Within a synergistic detection framework queries and operations 
can take many forms. Instead of enumerating all possible queries 
and operations, to illustrate the flow of interaction and of some of 
the most significant queries and operations we use the following  
simplified example.

1.	 ℂ deploys a set of monitors to track network activities.
2.	 Based on the collected evidence, D provides A alerts that the 

activities a1, a2 are likely, and that activity a3 is unlikely. Here, 
we let a 1 represent an unauthorized privilege escalation, a2 an 
ongoing SYN flood attack where large amounts of SYN 
packets is observed by ℂ , and a3 a malware beaconing to a 
control server.

3.	 (a1) Based on experience,  A  knows that the  D  generates 
accurate alerts for  a1  and as such confirm that  a1  is true. 
This type of update interaction provides feedback to D that 
reinforces the use of the mechanism that yielded  a1  with 
high likelihood.

4.	 (a2)  A   is aware of the current state of the network and the 
ephemeral tasks the network support. As such  A  is capable 
of using this contextual information to dismiss the alert 
regarding a2.  Again, this interaction provides feedback to D  and 
influences its future operation.

5.	 (a3) With respect to a3, A queries D for details regarding the 
type of evidence D used when making the decision. Given 
the high risk of overlooking malware activity, A can submit 
a query to  D  what additional evidence is required to state 
whether  a3  occurs or not, with higher confidence. Based 
on the response,  A  can instruct ℂ   through an operation 
to collect targeted evidence to resolve the ambiguity 
around a3. ℂ  processes the operation request and modifies the 
monitors to accommodate it. When complete, ℂ  informs A on 
the successful execution of the request and  D  on the 
modifications in the stream of evidence. Now, with the 
additional evidence, D can provide A a more confident alert 
regarding activity a3.

Figure 3: Synergistic detection process flow of information (solid lines) and interactions (dashed lines)
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Conclusions

Currently, cyber attackers have an asymmetrical advantage over 
defenders. This unfavorable and vulnerable position calls for robust 
and efficient intrusion detection mechanisms. While current detection 
workflow involves human defenders, and rely on their analytical 
capabilities, we argue that in order to improve detection and protect 
networks against sophisticated attacks there is a need for a non-linear 
and interactive analyst-in-the-loop approach. This approach posits 
that cyber defenders should have means to interact with and exert 
influence on each and every component of the detection processes. 
Furthermore, we posit that the role of the analyst is to lead and 
supervise automated detection processes, resolve ambiguity and 
provide contextual mission relevant information rather than handling 
large amounts of information and weeding out false alerts. Situating 
the defender as the controller of the detection process instead of a 
handler of alerts allows the defender to direct analytical capabilities 
to the tasks where their contribution has the maximal impact. 
Efficient allocation of the defender analytical capabilities improves 
the detection accuracy and speed. This study depicts an analyst in-
the-loop detection framework and provides a description of the types 
of required interactions between the evidence collection, inference 
engine, and the analyst. The use of queries and operations to improve 
detection is demonstrated and establishes the foundations for more 
detailed operational definitions of the interactions.  
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RISK ANALYSIS WITH 
EXECUTION-BASED 
MODEL GENERATION
BY:Jaime C. Acosta, Army Research Laboratory (ARL),
Edgar Padilla, University of Texas at El Paso,
John Homer, Abilene Christian University, 
Xinming Ou, University of South Florida

RISK ANALYSIS: Analyzing risk is critical throughout the software acquisition lifecycle. System 
risk is assessed by conducting a penetration test, where ethical hackers portray realistic 
threat on real systems by exploiting vulnerabilities. These tests are very costly, limited in 
duration, and do not provide stakeholders with “what-if” analyses. To alleviate these issues, 
system models are used in emulation, simulation, and attack graph generators to enhance 
test preparation, execution, and supplementary post-test analyses. 

This article describes a method for developing models that can be used to analyze risk in 
mixed tactical and strategic networks, which are common in the military domain. 
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Execution-Based 
Model Generation

ARL has developed a model 
creation methodology that uses 
data collected from several black-box 
emulation executions. The generated 
models take the form of decision trees or 
other complex algorithms and formulas. This 
approach differs from traditional workflows where 
models are created and tested before or alongside system 
development. Some issues with the traditional approach include 
lack of synchronization between the actual system and the models 
due to changes in requirements, high cost of manually developed 
high-accuracy models, and unavailability (either for legal reasons 
or due to non-existent models). The novel approach starts instead 
with the end-product (i.e., the executable code). This also makes it 
possible to extract additional, incidental behaviors such as resilience 
to adversarial attacks. This methodology has been used to develop 
models for predicting success or failure of traffic hijacking attacks in 
MANETs. Unlike previous work in MANET evaluation techniques, 
the developed models generalize across scenarios and can be used 
to assess risk in attack graphs.

MANET Security Evaluation

Apart from penetration testing, simulation and emulation are 
commonly used to evaluate MANETs. This consists of executing 
multiple scenarios with varying conditions, such as topology and 
routing protocol. During scenario execution, an attack is executed 

and performance data (delay, throughput, goodput, etc.) are 
measured (Pathan, Al-Sakib Khan, 2016). Although this approach 
is non-exhaustive, well designed scenarios may be credible sources 
for evaluating security (Andel & Yasinsac, On the credibility of 
manet simulations, 2006.) Simulation is usually faster, but is more 
prone to inaccuracies because many times performance gains rely on 
using abstracted or otherwise incomplete behavior of the network 
stack and other processes. Emulation is capable of executing real 
binaries in real runtime environments (operating system, network 
stack, etc.), but only in realtime. In either case, in addition to being 
non-exhaustive, results do not generalize to untested scenarios.

Other evaluation techniques include formal methods and machine 
learning. The former are exhaustive approaches that describe systems 
mathematically and then, through rigorous analysis, prove or 
disprove security goals; these methods work for only small and non-
mobile networks (Andel & Yasinsac, 2007.) Prior machine learning 
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approaches focus only on high-level survivability metrics such as the 
average number of critical links and surviving paths over multiple 
executions (Alsheikh, Lin, Niyato, & Tan, 2014; Wang, 2010.) The 
novel methodology developed by ARL also uses machine learning, 
but focuses on providing low-level details that are used to create 
attack graphs, assess risk, and identify mitigations.

MANET Attack Impact Prediction Models

The process for creating models to predict traffic hijacking consists 
of three steps:  collecting a dataset, designing a network description 
scheme, and building the prediction models (or classifiers). These 
steps are used in the experimentation workflow depicted in Figure 1.

Collecting a Dataset

The common open research emulator (CORE) (Ahrenholz, Danilov, 
Henderson, & Kim, 2008) allows analysts to design and run network 
scenarios using a graphical interface. Topologies are generated by 
dragging and dropping icons into a workspace. Scenario variables 
such as node positions, protocols used, and custom processing (for 
logging data during execution) scripts are stored in a configuration 

file. A dataset was generated by running combinations of several 
variables. The pseudo code along with the variables used for this 
process is shown in Figure 2.

Attack node number. This indicates which of the 10 nodes in the 
scenario will issue an attack.

Topology. In attempts to achieve a suitable data distribution, 
rather than using randomly generated topologies, which are 
sometimes either too sparse or compressed, 10 nodes were used 
to populate 7 different static topologies. The topologies were 
generated by first manually positioning nodes to fulfill the desired 
connectivity. Next, the position values were hardcoded into the 
execution script (Figure 2). The topologies are labeled chain, 
connected grid, cycle, star, tree, two-centroid, and wheel. These 
can be seen at the top of Figure 1.

Eventually, this work will investigate whether survivability 
predictions extend to mobile scenarios. At first glance, it seems 
likely; when nodes move, the topologies change. It may be the case 
that survivability predictions can be made for each topology formed 
during the movement. 

Figure 1 The experimentation workflow.

1	 for attackNode in 1…10
2	 		  for topology in “chain” “connected_grid" “cycle” “star” “tree” “two-centroid” “wheel”
3	 			   for protocol in “OLSR” “OSPFv3MDR”
4	 	 	 	 	 for attack in “forwarding” “spoofing”
5	 					     runScenario($attackNode, $topology, $protocol, $attack)

Figure 2 Pseudo code for scenario executions

32



Risk analysis with Execution-Based Model Generation  –  CON'T

Routing protocol. This is the underlying network layer protocol that 
will be used to communicate data necessary for route maintenance. 
The dataset contains OLSR and OSPFv3MDR protocols. Both of 
these protocols are proactive meaning that they continually publish 
route information, as opposed to reactive protocols, which publish 
route information when requested. The OLSR implementation is 
provided by NRL and uses IPv4 addressing. OSPFv3MDR is part 
of the Quagga suite of protocols. OSPFv3MDR is a modification of 
OSPF that is optimized for mobile ad-hoc networks. OSPFv3MDR 
uses IPv6 addressing.

Attack. The types of attacks are spoofing and forwarding, as 
described in the previous section. For the automated process, the 
attack scripts take additional inputs, start time and duration. 

The following parameters that were controlled across all emulation 
executions are described below.

Attack time. This parameter indicates how long a node must wait 
before executing the attack. This was a set to 60 seconds.

Scenario duration. Each scenario was separated into three phases—
before, during, and after an attack was issued. 

Data flow. During each scenario, nodes communicate using TCP 
and UDP data packets. Packets are 1280 bytes in size and are sent 
50 times per second. The traffic was generated using mgen (Multi-

Generator (MGEN), 2016). Each node opens six sockets, three 
outgoing and three incoming. Table 1 contains the data flows that 
were used during each instance.

Table 1. Traffic Data flows between nodes.

Node TCP Outgoing UDP Outgoing

1 10 2,3

2 1 3,4

3 2 4,5

4 3 5,6

5 4 6,7

6 5 7,8

7 6 8,9

8 7 9,10

9 8 10,1

10 9 1,2

Network Description Scheme

As the number of nodes in a network increases, so does the 
complexity of analyzing the impact of an attack on the network. 
Part of the reason for this lies in the fact that describing the live 
network (including nodes, traffic flows, routes, etc.) quickly leads 
to state-space explosion. 
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To avoid this, instead of describing the network as a collection of 
source and destination IP addresses, a set of parameters (based on 
attacker proximity) are used to describe traffic flows. Figure 3 shows 
an example where n1 is sending packets to n3 and n5 (denoted as 
n1/n3 and n1/n5); n3 is sending packets to n4 (n3/n4). 

The network is defined as the collection of flow descriptions over an 
entire emulation instance. Figure 3 demonstrates how both flows 
n1/n5 and n1/n3 can be described with the same flow description 
(helping to avoid state space explosion). Flow descriptions are 
composed of the parameters in Table 2. 

Table 2 Flow description parameters

# Parameter Description

1 fromHop Hops from the attacker node to the 
source.

2 toHop Hops from the attacker node to the 
destination.

3 dataType Data packet type.

4 distanceTraveled Hops from source to destination.

5 passThrough Whether this flow hops through the 
attacker.

6 beforeStats Packets statistics collected before an 
attack.

7 attackName Spoofing or forwarding attack.

8 hijackable Whether a flow is successfully hijacked 
during an attack.

9 srcIsSpoofed Whether the source address is spoofed.

10 destIsSpoofed Whether the destination address is 
spoofed.

11 hopsSpoofedToDest Hops from the spoofed to the destination.

12 spoofedBetweenAttacker Whether the spoofed is between the 
attacker and the destination.

13 spoofedBetweenAttackerGW Whether the spoofed is a gateway 
(directly connected) node on the path to 
the destination. 

14 destBetween 
SpoofedAndAttacker

Whether the destination is between the 
spoofed and the attacker.

15 destBetween 
SpoofedAndAttackerGW

Whether the destination is a gateway 
node on the path to the attacker.

16 attackerBetween 
SpoofedAndDest

Whether the destination is between the 
spoofed and the attacker.

17 attackerBetween 
SpoofedAndDestGW

Whether the destination is a gateway 
node on the path to the attacker.

18 srcBetweenSpoofedAndDest Whether the destination is between the 
spoofed and the attacker.

19 srcBetween 
SpoofedAndDestGW

Whether the destination is a gateway 
node on the path to the attacker.

20 altPathWithoutAttacker Whether an alternate path between 
source and destination exists without the 
attacker.

Defining parameters was an iterative process. Initially only 
parameters 1–8 were extracted from the dataset, but after a deeper 
analysis, it became clear that additional parameters were necessary 
(9–20) to improve network description accuracy. This deeper analysis 
consisted of the several steps. First, the data were captured and 
represented using the initial parameters. A python script generated 
a hash table (or dictionary) using all parameters, except hijackable, 
as keys in the key/value pair. The boolean parameter (taking on 
either true or false) hijackable was the value in the key/value pair. 
The python script went through each network description. If a 
collision was found and hijackable differed, these were considered 
conflicting flows. 

For each conflicting flow, the number of times that the hijackable 
parameter resulted as true and false was stored. In the case 
where there was an equal amount of true and false counts, the 
emulation instances associated with the flows were run again. In 
the case where the counts were not equal, the emulation instances 
associated with the minority were run again. Sometimes the 
emulation instance encountered an unknown error and all links 
randomly disconnected. 

More often, the reason for the conflicts resulted due to a lack of 
description of some network characteristic. Analysis of these cases 
led to the additional parameters. The network description was used 
to train a classifier to predict the hijackable parameter.

Building the Classifier

The dataset was formatted into the WEKA (Hall, et al., 2009) 
data-mining toolset file format and the REPTree algorithm was 
used to generate the classifiers.  A subset of the parameters was 
used as training attributes to predict hijackability (parameter 8). 
Initially, parameters 1−7 were used (called the partial set) and then 
parameters 9−20 were added (called the all set).

As described earlier, the dataset used for evaluation consists of all 
combinations of the following configurations: 

ii Routing Protocols: OSPFv3MDR, OLSR
ii Topologies: chain, connected_grid, cycle, 

star, tree, two-centroid, and wheel
ii Attacks: forwarding, spoofing

Additionally, there are 10 nodes with 3 outgoing connections (2 
UDP and 1 TCP). Each emulation instance contains one attacking 
node selected using a round-robin approach. In very few cases, a 
malfunction in CORE caused some nodes to stop capturing data 
and as a result, the dataset contains a small amount of noise.

Four REPTree classifiers were generated (OLSR forwarding, OLSR 
spoofing, OSPF forwarding, OSPF spoofing); performance was 
evaluated using 10 fold cross-validation. Table 3 and Table 4 contain 
the results for OLSR and OSPF respectively.
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Table 3 Classification of hijackability with OLSR

Attack Parameters 
Used

True 
Positive 

Rate

False 
Positive 

Rate

F-Measure

Forwarding
Partial 0.998 0.018 0.998

All 0.998 0.018 0.998

Spoofing
Partial 0.975 0.161 0.975

All 0.983 0.103 0.983

Table 4 Classification of hijackability with OSPFv3MDR

Attack Parameters 
Used

True 
Positive 

Rate

False 
Positive 

Rate

F-Measure

Forwarding
Partial 1 0 1

All 1 0 1

Spoofing
Partial 0.997 0.248 0.991

All 0.998 0.031 0.998

The results show that the classifiers perform well when the all 
parameters are used. To assess risk associated with traffic hijacking, these 
models are used in conjunction with attack graph generation software.

Attack Graphs

Attack graphs enable system stakeholders to understand the stepping 
stones or exploitation procedures that an adversary could potentially 
execute to impact the confidentiality, integrity, and availability of a 
network system. These graphs are used to assess risk and to determine 
components that, when hardened, contribute most to risk reduction. 
Attack graphs work by reading a system topology and a vulnerability 
scan of the nodes in a network. Vulnerability database information 
is used to determine the outcome of exploitation. Until now, attack 
graphs were incapable of representing traffic hijacking attacks. Success 
or failure of these attacks depends on specific implementations 
of routing protocols and on the operating environment. Through 
a collaborative effort, ARL has partnered with the University of 
Texas at El Paso (UTEP), Abilene Christian University (ACU), and 
University of South Florida (USF) to tackle this issue by leveraging 
impact prediction models and state of the art attack graph software.

Platform

One of our goals for this work was to augment an existing tool in 
order to leverage preexisting risk analysis capabilities. MulVAL is 
used as the platform because it is open source, scales well (O(n2)) 
with the size of the network, and the underlying reasoning engine is 
extendable by allowing users to introduce custom interaction rules.

MulVal reads a file with custom interaction rules and a file 
describing the scenario. The custom interaction rules enable 
extensible scenario specification. The scenario file models the 
network using primitives (unit clauses) to introduce facts, e.g., 
specify available services, known vulnerabilities, user accounts, 

access on a system, and identifying nodes as web servers, network 
file servers, etc. The standard and custom interaction rule sets 
specify how knowledge is derived from known facts.

Figure 4 shows a simple interaction rule that states that if a principal’s 
account on Host is compromised (e.g., through stolen credentials) 
and Host is accessible (e.g., through the network and a listening login 
service), an attacker may execute code on Host with the permission 
levels of the principal’s account. MulVAL generates the attack graph 
showing the primitive and derived facts leading to the attack goal.

1	  execCode(Host, Perm) :-
2	  principalCompromised(Victim),
3	  hasAccount(Victim, Host, Perm),
4	  canAccessHost(Host).

Figure 4 An execCode interaction rule

There were three major steps to generate attack graphs for network 
layer vulnerabilities: (1) develop MulVAL custom interaction rules 
to represent route hijacking, (2) incorporate the elements (e.g., node 
routes, attacker proximity, routing protocol used, traffic type) that are 
required to determine the success or failure of hijacking attacks, and (3) 
improve usability by automating the attack graph generation process.

The scenario in Figure 5 was the basis for the MulVAL rule 
development step. In this scenario, all nodes are gateways using 
OLSR for dynamic routing and the attacker is conducting an IP 
address spoofing attack (masquerading as the ftp server node) in 
order to hijack traffic from the ftp client.

Figure 5 Route Hijack Scenario

Custom Rules for Route Hijacking

One of the existing rules, principalCompromised, was overloaded to 
account for weak or null authentication in dynamic routing protocols 
(see Figure 6). This rule can be read as follows: the principal is 
compromised if it has an account, an active connection to a login 
service on a node, and OLSR is misconfigured. It is important to 
note that route hijacking does not require the attacker to be located 
in the victim’s subnet. 

WWW.CSIAC.ORG  |  35



JANUARY  2017  |  CSIAC JOURNAL OF CYBER SECURITY AND INFORMATION SYSTEMS

The impact prediction models are used to determine if a flow is 
susceptible to hijacking. This information is then used to generate 
the MulVAL attack graph input file that uses the custom rules to 
represent the hijacking behavior. Alternatively, instead of using 
the impact prediction models, a user may indicate hijacking 
susceptibility using different sources, e.g., theoretical models such 
as (Santiraveewan & and Permpoontanalarp, 2004). 

Data Pipeline for Generating Attack Graphs

To facilitate the development of these attack graphs, an automated 
and modular data pipeline was implemented (see Figure 7). This 
pipeline only requires that a user enter network scenario data at the 
start of the pipeline, although data can be modified or substituted 
at any point in between. 

All of the components in the pipeline read 
and write data in XML format. The Attributes 
Extractor reads information related to a network 
scenario including attack, attacker position, routing 
protocol, traffic data, and route tables (which can 
be manually entered or extracted from emulation, 
simulation, or field data). For this scenario, data 
were obtained using CORE to configure the 
scenario. During scenario execution, and after 
routes converged, the required data were extracted 
and copied from each node. These data are used to 
generate attributes (attribute details are described 
in the Network Description Scheme section 

of this article). The Model 
Evaluator uses the attributes 
to query the WEKA decision 
tree rules (that are converted 
into python scripts by the 
Model Converter) in order 
to determine which flows 
are vulnerable (i.e., can be 
hijacked).

Figure 7 Modular data pipeline for generating attack graphs.
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Figure 6 Custom Rule for Null or Weak Authentication in OLSR

1	 principalCompromised(Victim) :-
2	 /* The victim has a user account on the remote host */
3	 hasAccount(Victim, RemoteHost, User),
4	 /* nrlolsr is being used */
5	 networkServiceInfo(H, nrlolsr, olsr, _no_port, _user),
6	 /* nrlolsr is misconfigured allowing traffic hijacking */
7	 vulExists(H, nrlolsrVul, nrlolsr, remoteExploit, nrlolsrHijack),
8	 /* The User has an account on a login service on the remote host */
9	 logInService(RemoteHost, Protocol, Port),
10	 /* There is an active connection from the host to the remote machine */
11	 flowExists(H, RemoteHost, Protocol, Port, User).
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Figure 9 Attack graph for route hijacking scenario

For each vulnerable flow identified, 
the AG Input Generator will append 
a vulExists entry (associated with 
OLSR) to the MulVAL input file. 
The AG Input Generator also uses the 
data from the Attributes Extractor to 
encode network scenario information 
in the MulVAL file.

Figure 8 shows a sample MulVAL input 
file generated in this way. The topology 
information (lines 2–13) is calculated by 
the Attributes Extractor using the route 
information from the CORE execution 
(in our case). The network scenario 
configuration (lines 17–26) is provided 
as input by the user.

Line 29 is generated using the results of 
the Model Evaluator.

Executing the pipeline with the route 
hijacking input file produces the attack 
graph shown in Figure 9. In this 
figure, rectangles are facts specified in 
the MulVAL input file; ovals are the 
rules (either the built-in or custom) 
that applied to derive new knowledge 
(diamonds). This graph shows that an 
attacker can successfully hijack traffic 
from the ftp client and use the 
sniffed credentials to 
execute code on 
the ftp server. 

1	 /* Network Topology Definitions:*/
2	 	hacl(ftpClientHost, n2, _proto, _port).
3	 	hacl(n2, n3, _proto, _port).
4	 	hacl(n3, n4, _proto, _port).
5	 	hacl(n4, ftpServerHost, _proto, _port).
6	 	hacl(n6, n3, _proto, _port).
7	

8	 	gateway(ftpClientHost).
9	 gateway(n2).
10	 gateway(n3).
11	 gateway(n4).
12	 gateway(ftpServerHost).
13	 gateway(n6).
14	

15	 /* Flow Definitions: */
16	 /* Flow #1 :*/
17	 flowExists(ftpClientHost, ftpServerHost,’TCP’, 21, flow1Account).
18	 hasAccount(flow1Principal, ftpServerHost, flow1Account).
19	 networkServiceInfo(ftpClientHost, nrlolsr, olsr, NA_port_layer3, _NA_perm_layer3).
20	

21	 /* Attack Configuration */
22	 attackerLocated(n6).
23	 attackGoal(execCode(ftpServerHost, _)).
24	

25	 /* A cleartext loginService exists on the remote machine */
26	 networkServiceInfo(ftpServerHost, ftpd, ’TCP’, 21, flow1Account).
27	

28	 /* Vulnerable Flow */
29	 vulExists(ftpClientHost, nrlolsrVul, nrlolsr, remoteExploit, nrlolsrHijack.

Figure 8 MulVAL input file for Route Hijack Scenario
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Future Work
In the short term, ARL is working on generating models for other 
routing protocols, such as BGP and RIP that exist in the wired domain. 
Other work is looking at the effects of multiple (possibly collaborating) 
attackers, and using metrics from the models, such as confidence, to 
prioritize and prune attack paths. Longer term efforts will focus on using 
this work to build decision support systems and intelligent agents for 
improved assessment time, coverage, and accuracy.  
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BY: Edward J. M. Colbert, Ph.D., Army Research Laboratory (ARL), Adelphi, MD

ABSTRACT: Cyber Physical Systems (CPSs) are electronic control systems that control 
physical machines such as motors and valves in an industrial plant.  In a networked 
environment, the security of the physical machines depends on the security of the electronic 
control systems, but cybersecurity is not typically the main design concern.  The main 
concern for CPSs is the availability of the physical machines governing operations. As CPS 
owners continue to install remote network control devices and incorporate an increasing 
number of insecure Internet-of-Things (IoT) devices in their industrial processes, the 
underlying security of their operations becomes increasingly vulnerable.  This article outlines 
current cybersecurity issues of CPSs and potential concerns for future CPS designers and 
operators.  Secure future CPSs are necessary for keeping our critical infrastructure safe.
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Security of Cyber-Physical Systems

Introduction

The term Cyber-Physical System (CPS) is a generic term for a 
variety of other control systems, such as SCADA (Supervisory 
Control and Data Acquisition) systems, ICSs (Industrial Control 
Systems), BCSs (Building Control Systems), and the global 
electrical smart grid.  These control systems are comprised of 
computers, electrical and mechanical devices, and manual processes 
overseen by humans.  CPSs perform automated or partially 
automated control of physical equipment in manufacturing and 
chemical plants, electric utilities, distribution and transportation 
systems and many other industries.  CPSs integrate computational 
resources, communication capabilities, sensing, and actuation in 
effort to monitor and control physical processes. CPSs are found in 
critical infrastructure such as transportation networks, Unmanned 
Aerial Vehicles (UAVs), nuclear power generation, electric power 
distribution networks, water and gas distribution networks, and 
advanced communication systems.

A key difference between CPSs and traditional Information 
Technology (IT) systems is that CPSs interact strongly with the 
physical environment, and the availability of the physical devices 
is the most important security aspect.  However, CPSs are also 
cyber systems and are therefore vulnerable to cyber-attacks. This 
connection with the physical world, however, presents unique 
challenges and opportunities.

In traditional critical infrastructure systems, 
great efforts are expended to address concerns 
about safety and reliability, and to develop the 
appropriate techniques for fault detection, 
isolation, and recovery. In CPSs, however, 
the additional cyber element introduces 
specific vulnerabilities which are not directly 
addressed in traditional fault tolerance and 
reliable computing practices. Addressing the 
cyber element in the safety and reliability 
of CPSs is of utmost importance, since the 
introduction of highly integrated CPSs into 
critical infrastructures and emerging systems 
could lead to situations where cyber based 
attacks against CPSs could adversely affect 
widespread public safety (e.g. Cardenas, 
Amin & Sastry 2008).

CPSs monitor and control industrial processes across a 
myriad of industries and critical infrastructures on a global 
scale (Weiss 2010) and therefore must be protected. Besides 
controlling critical infrastructure such as transportation and 
energy production, CPSs are increasingly used by consumers 
and therefore influence our everyday personal lives.  Current and 
future CPSs are becoming widespread in our homes, automobiles 
and on our person, and will eventually be a large part of the 
“Internet-of-Things” in which an extensive array of physical 
devices will be heavily interconnected. 

Figure 1: Sample of a Simple CPS 

In Figure 3 we show a rough sketch of a simple Industrial Control 
System (ICS), which is a CPS used in an industrial setting. This 
control system has two Programmable Logic Controllers (PLCs), 
each of which are connected (upper panel) to a standard IT device 
network with a few Workstations.  The workstations typically 
run Microsoft Windows or Linux, as in a standard Enterprise 

network.  In the diagram, this “cyber” network 
is annotated as “Primary Bus.”  The traffic on 
this network is usually IP packet-based.

Downward from the PLCs are Secondary 
Buses that control field devices, such as boilers, 
electronic lighting, and packaging units.  While 
these buses or networks may be IP packet-based, 
they are usually serial links or simple hard-wired 
cables with specialized voltage or current control 
needed to run the field devices.  In other words, 
they are not meant to have a standard network 
communication protocol such as TCP/IP.  This 
is the “physical” component to the CPS.

Also, notice that most of the equipment in 
the ICS is NOT computer servers, network 
switches, or routers, such as you might find in 

an IT network.   Even the workstations connected to the Primary 
Bus (the cyber component) are doing atypical work.  They are not 
meant to be connected to the Internet to browse the web.  They 
are specifically configured to only perform their function in the 
CPS.  There is often little interest in following security measures 
such as installing anti-virus or keeping the operating system up to 
date because, ideally, the systems are not supposed to be accessed 
from the outside, and are not supposed to access the outside.  The 
field devices and PLCs in the Secondary Buses do not run standard 
operating systems or security protection applications, and most likely 
will never be modified to do so.

CPSs monitor and 
control industrial 
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and critical 
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The scope of a CPS may vary enormously. It can range from a single 
PLC controlling a motor to larger distributed system controlling 
many devices in a power utility generation plant, for example.  
CPS configurations also differ greatly. Configurations may range 
from a single component to a highly distributed configuration 
with wide area networks spanning a whole continent with many 
thousands of physical devices. 

In spite of such diversity, the basic building blocks of a CPS 
can be assigned to only a few classes. These include for example 
Programmable Logic Controllers, Remote Terminal Units, and 
Communication Gateways.  A CPS may be completely automated, 
but normally is controlled or at least supervised by a human operator. 
Therefore, human machine interfaces (HMIs) are important 
components of a CPS.

CPSs are traditionally operational systems, where process 
control is priority for the human operators (see Hahn 2016).  
Of the four components of security (Confidentiality, Integrity, 
Availability, and Safety), Availability and 
Safety dominate security concerns for CPS.  
Typically, Confidentiality and Integrity have 
high priority on IT networks.  Whereas 
IT systems have similar standard computer 
hardware and network infrastructure, human 
usage policies, performance requirements, 
and security defense methods, CPSs are 
diverse.  Their hardware, policies, and process 
requirements are typically unique to the 
system, so that a unique security solution for 
all CPSs is extremely difficult to develop.  As 
IT system technologies begin to converge into 
CPSs, it becomes more critical to understand 
and analyze these differences in order to manage expectations of 
future CPS security.  This is especially important if IT security 
methods are considered for defending CPSs from attack.

While strong concerns about security of CPSs, particularly in the 
context of critical national infrastructure, were expressed even in 
the early 2000s (US Department of Energy 2002; Luders 2005), 
it was not until the legendary 2010 Stuxnet episode (e.g., Langner 
2011) that security of industrial control systems entered public 
and government discourse and acquired today’s saliency (Executive 
Order 2013; Stouffer et al 2015).  

A recent overview of cyber-security issues in CPSs, specifically 
Industrial Control Systems, can be found in Colbert & Kott 
(2016).  Some pertinent aspects from that work are repeated here.

Attacks and Threats for Cyber-Physical Systems

Perhaps the most well publicized control system attack is Stuxnet, 
which was an attack on the uranium enrichment plant in Natanz, 
Iran.  The Stuxnet malware was discovered by security engineer 

Sergey Ulasen in 2010 (see, e.g., Zetter 2015).  Stuxnet was a 
sophisticated attack with many facets – it is not merely a piece of 
cyber malware.  The Stuxnet took advantage of both the physical 
nature of the Natanz control system and vulnerable security flaws 
in the unique cyber components used in the CPS. 

As mentioned, CPSs were traditionally designed around availability 
and safety.  Cyber security features were not part of the original 
design of CPSs (Luiijf 2016) because:

ii CPSs were based on specialized hardware, proprietary code 
and protocol standards. Only specialists knew about how to 
use them.

ii CPSs operated in a closed environment without any 
connectivity with other domains.  Physical security methods 
were adequate.

ii Since CPSs operated in a closed and assumed benign 
environment, there was no reason for creating secure and 
robust CPS protocols.

Current threats to CPSs remain numerous 
and broad.  These threats have enabled 
complex and specific attacks to be executed 
(see Sullivan 2015 for a current summary).  
The nature and efficacy of these attacks are 
largely determined by a complex mix of 
security deficiencies in CPS systems that 
aggregate architectures and approaches from 
several epochs of technological history.  For 
example, SCADA systems of the second 
generation were distributed, but used non-
standard protocols.  This enabled centralized 
supervisory servers and remote PLCs and 

RTUs.  Security was often overlooked in this generation.  The third 
generation of SCADA systems used common network protocols 
such as TCP/IP.  This generation added the concept of Process 
Control Network (PCN), which allowed SCADA enclaves to 
connect to the Internet at large.  This connection enabled operators 
to remotely manage the SCADA ecosystem and introduced 
malware to the enclaves.

Security by design was lacking and designers too often CPS 
designers on “security by obscurity” – relying on hopes that 
the attacker would lack knowledge about the inner structure 
and workings of the system.  Elements of common attacks (see 
Evancich & Li 2016 for details) include malware that used buffer 
overflow, code injection, and rootkits.  CPS attacks were very 
sophisticated and were commonly believed to require extensive 
development efforts and resources of a group sponsored by 
a nation-state. For example, rootkit-based attacks that hide 
malicious processes from detection by users requires significant 
development and testing. 

Stuxnet was a 
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Intrusion Detection for Cyber-Physical Systems

Even if the known threats, risk factors and other security metrics are 
well understood and effectively mitigated, a determined adversary 
will have non-negligible probability of successful penetration or 
intrusion of a CPS. Here we use the term “intrusion detection” to 
refer to a broad range of processes and effects associated with the 
presence and actions of malicious software and actions against a 
CPS. Once an intrusion has occurred, the first and necessary step 
for defeat and remediation is to detect the existence of the intrusion. 

In Colbert & Hutchinson (2016), we describe the history of intrusion 
detection in IT and CPS systems and discuss various methods and 
Intrusion Detection Systems (IDS).  These authors discuss the 
difficult question of whether insights and approaches intended for 
information and communications technology (IT) systems can be 
adapted for CPSs. To answer this question, they explore modern 
intrusion detection techniques in IT such as host-based techniques 
and network-based techniques, and the differences and relative 
advantages of signature-based and non-signature methods. 

After approximately 2010, CPS intrusion detection techniques 
began to focus on knowledge about the processes controlled by the 
CPSs rather than on direct detection or inference of the malware 
on the network. The design intent of a CPS is intended to (1) 
establish appropriate process values to produce desired output and 
(2) to allow operators to observe aspects of the plant to assure proper 
operation and safety and quality conditions. The sole purpose and only 
capability of CPS network traffic control messages is to support the 
synchronization of the PLC registers and to provide a local, HMI-
side copy of these registers, to effect control of the plant processes.  IT 
network traffic has a much wider variety of uses, but is not generally 
used for process control. While both CPS and IT computers have 
registers, only a CPS network can change and read register values. 
Register values directly affect process parameters and hence, the 
process.  Since CPS security is ultimately for safeguarding the process 
variables and not the network traffic itself, process-oriented designs 
for monitoring and intrusion detection became of interest.

For example, Hadziosmanovic et al. (2013) attempted to model 
process variable excursions beyond their appropriate ranges using 
machine-learning techniques.  These authors describe a novel 
network monitoring approach that utilizes process semantics by (1) 
extracting the value of process variables from network traffic, (2) 
characterizing types of variables based on the behavior of time series, 
and (3) modeling and monitoring the regularity of variable values 
over time.  Approximately 98% of the process control variables used 
in real-world plans are reliably monitored by their process-oriented 
method.  The remaining 2% of the variables remain challenging to 
model with this approach.  This novel approach demonstrates that 
process variables can successfully be modeled for ID.  However, as 
they mention, additional work is needed if all of the process variables 
are to be monitored reliably.  Semantic modeling of plant control 
variables in the control system process became a favorable and 
presumably effective intrusion detection method for CPS. 

Semantic Security Monitoring (SSM) by Hadziomanovic et al. 
(2013) used analysis of control-bus traffic messages to construct a 3rd 
copy of the plant-PLC registers for a new purpose: to detect events 
that suggest that plant operations may be out of specification, out of 
compliance, or out of a desired safety range.  An important caveat of 
using network data to construct a security model is that the network 
control messages were never intended for security monitoring.  The 
rates and precision of the information in the control messages are 
designed to be sufficient to accomplish control to maintain quality 
output, but they may not be appropriate or sufficient for security 
and safety monitoring operations. 

 
Figure 2: Three layers of a Cyber Physical System

A second method of semantic modeling, developed at the US Army 
Research Laboratory, was proposed by Colbert et. al (2016).  This 
method requires plant personnel input to define critical process 
variable limits instead of inferred input to the security model from 
network control traffic.

One can view the CPS as a three-layer system to better understand 
our process-oriented intrusion detection method.  As mentioned, 
CPSs inherently have physical and cyber layers, in which physical 
machinery and attackers and defenders operate, respectively (see 
Figure 2).  In our model, intrusion detection occurs on a third layer 
(the “process” layer), in which the system operator and system owner 
operate.  A process diagram, plant policies and procedures, and 
continuous system monitoring by the system operator determine 
the critical elements and requirements needed to keep the system 
operational.  

Our CPS intrusion detection research at the Army Research 
Laboratory (ARL) is based on the assumption that all of the 
process variables do not need to be monitored for alerting.  Rather, 
there are critical process variables (or, more generically, critical 
elements of the process) that need to be monitored for alerting.  
Abnormal values of the remaining variables are not significant 
enough to harm the underlying plant process.  We argue that 
identifying the critical values and determining the allowed ranges 
of those critical values is extremely difficult if only network traffic 
data is used.  We use a collaborative approach to constructing the 
security model which requires plant operator or plant SME input 
and potentially out-of-band (OOB) sensor data in addition to data 
from network packets.
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Our model recognizes that, just as in IT intrusion detection, 
reference information from plant sensors, configurations, 
semantics, and policies (acceptable security/safety value ranges) 
must be captured, maintained, shared, and made available to 
the security/safety monitoring analysts in timely, orderly, and 
priority-relevant means to enhance decision-making.  However, it 
also recognizes that CPS process sampling methods and process 
control methods (e.g. MODBUS) were never intended to feed 
security/safety analyses.   Thus, as stated earlier, many process 
parameters seen in network traffic may not be relevant, or may 
not be sampled at sufficient rate or fidelity.  Moreover, there may 
be other process variables that are indeed critical, but they are not 
represented in network traffic, i.e. they are out of band.  In this 
case, independent sensing of these parameters would be needed 
to create sufficient uplift in timeliness, accuracy, and relevance 
to the security/safety monitoring mission.  In the ARL model, 
the SME defines the critical security model variables based on 
his knowledge and analysis of the plant processes, and the IDS 
security engineer implements the appropriate security model.  We 
refer to this model as “collaborative” since the security engineer 
utilizes human input from the plant operator/SME input for 
constructing the IDS security model.

Our ARL intrusion detection development platform (e.g. 
see Long 2004) defines ‘alerting’ as automatic information 
generation to be sent to a human analyst for further 
consideration.  The analyst then examines the alerts and other 
relevant information and determines when to send an ‘alarm’ to 
the system owner.  An alarm is a notice of a possible compromise 
or other insecure situation, as determined by the human analyst, 

whereas an alert is automatically generated information from 
a sensor or algorithm.

Our collaborative intrusion detection model was implemented 
in the ARL intrusion detection development platform in a live 
testbed at ARL. General findings from our testbed experiments 
are described in Sullivan & Colbert (2016) and Sullivan, Colbert 
& Kott (2016).  In Figure 3, we show the implemented IDS 
architecture in our testbed.  A network tap (e.g. SPAN port on 
a switch) provides network capture data to one or more sensor 
nodes.  Some of the data are pre-processed on the sensor nodes 
into ‘detects’ (detect/alert information) and index data.  The 
Ingest node then forwards that data to a master node, which 
stores raw data and provides indexed information for analyst web 
tools.  More complicated analytics are executed by the Analysis 
Node, which again places results back on the Master Node for the 
web interface to display.  The Web Interface contains an HTTP 
web server with web analytics and web links for execution of 
additional analysis tools.  The Human Analyst then examines 
alerting information that resides in the system using various 
analytical tools.

In our testbed implementation, IDS alerting by the Sensor Node 
is generated from anomalies on the process layer by monitoring 
critical process values.  As mentioned, critical process variables are 
those that have been collaboratively defined to signify whether the 
control system is successfully operational or not.  Sensor nodes are 
modified specifically to monitor the value of all critical process 
variables.  For example, nominal values, and upper and lower limits 
for critical values, and criticality of the alert are programmed into 

Figure 3: Generic Intrusion Detection Architecture
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the sensor node.  This process-oriented intrusion detection method 
is meant to be used in parallel with anomaly-based and signature-
based intrusion detection methods that are available for CPSs (see 
Colbert & Hutchinson 2016). 

Security Models for Cyber-Physical Systems

There are five well known classes of methods for cyber risk 
assessment and management for CPSs (Henry et al. 2016).  
An Expert Elicited Model method involves computational 
models to assess risk based on expert elicited identification and 
characterization of cyber system attributes such as network data 
flows and the estimation of the susceptibility of those resources 
and data flows to different types of compromise. This approach 
possesses significant appeal for many applications, including 
cases involving complicated networks for which little design 
information is readily available and cases in 
which a relatively quick analysis is needed. 
One major drawback of this approach is 
lack of completeness.  Second, the Attack 
Graph method advocates construction 
of attack trees or graphs, either by hand 
or through automated interrogation of 
a system of interest.  This approach has 
many advantages.  Principal among these 
is a very light data requirement.  Models in 
this class do not suffer precision or fidelity 
shortcomings because they are constructed 
directly from system data without abstraction 
or aggregation.  Another advantage of this 
approach is flexibility. Third, game theoretic 
models explicitly account for the interaction 
of attackers and defenders in a game theoretic 
framework.  Models in this class are much 
more varied, and the approach is much less 
mature than the expert elicited and graph-based approaches 
described previously. Games can inform how the playing field can 
be better tilted in favor of the defender by adopting architectural 
changes and new access control policies.  The fourth method is 
Petri Net models, which are favored by the authors of this chapter.  
This chapter’s Petri net approach is derived from the Attack 
Graph school of thought.  A Petri net is a directed bipartite graph, 
in which a cyber attack is modeled as the successive exploitation 
of vulnerabilities on hosts to escalate and then exploit privileges 
on the network.  The final method described involves stochastic 
games overlaid on Petri nets, creating a much more powerful, 
and more challenging, approach. In this model, transitions based 
on attacks corresponding to network defense measures replace 
exploit-specific transitions. 

Security models can be useful for estimating risk and other 
security metrics.  Metrics are defined as measurable properties 
of a system that quantify the degree to which objectives of the 

system are achieved. Metrics can provide cyber defenders of a 
CPS with critical insights regarding the system. Metrics are 
generally acquired by analyzing relevant attributes of that system. 

In terms of cyber security metrics, CPSs tend to have unique 
features: in many cases, these systems are older technologies that 
were designed for functionality rather than security. They are 
also extremely diverse systems that have different requirements 
and objectives.  Therefore, metrics for CPSs must be tailored to a 
diverse group of systems with many features and perform many 
different functions.

As described in the previous section, in our ARL CPS research, 
we visualize three layers for the control system: physical, cyber, and 
process.  See Figure 2, for example, which we used to describe our 
intrusion detection methodology.  We use the same 3-layer model 
to construct a security model for CPSs.   Our current approach is to 

use game-theoretical methods similar to Zhu 
& Basar (2015), who have developed elegant 
game-theoretic methods for the physical and 
cyber layers (a 2-layer model).

Game theory has been successfully used for 
security models for cyber systems.  A simplistic 
cyber encounter between an attacker and a 
defender (security engineer) can be described 
by a zero-sum game between two players who 
both have complete information about the 
cyber system and their opponent.  The rational 
moves of the two players are well-defined by 
saddle-points (Nash equilibria points) once 
the costs and awards are defined over all 
game strategies.  There are some important 
differences between CPS attack scenarios and 
a simplistic security game.

As mentioned, CPSs are not merely cyber networks. They are 
connected to physical systems and are affected by the physical 
systems.  Attacks focused on the physical system can penetrate 
into the cyber network.  In addition, the operator of the control 
process is an important player to consider.  He or she dutifully 
monitors critical elements of the process and makes optimal choices 
to maintain system operability given policy constraints dictated by 
the system owner.  There are clearly more players and more systems 
to consider than the attacker and defender in the simplistic game.  
Our three-game model in which defender and attacker play in the 
cyber regime, physical control devices and perturbations (intentional 
or accidental) play in the physical regime, and operator and system 
owner play in an abstracted process regime.  All three regimes and 
all players can affect each other in this complex game.

Next, one nominally assumes that if all of the information in the 
game is readily available to the players, the players will choose 
the optimal path so that they suffer the least cost.  If cost is a 
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monetary measure, this may not be true, especially for state-
sponsored attackers.  Their defensive opponent however may 
indeed act to minimize monetary costs.  Even if cost measures 
were completely known of all players, players are inefficient and 
often not rational.  They can be coerced by psychological affects or 
swayed by political demands of their peers and supervisors.  For 
extended attacks, multiple humans may play the part of a single 
actor.  Human behavior can be modelled in some circumstances 
so that these uncertainties can be taken into account.

Lastly, assuming costs and behavior can be modelled well, the 
attacker will often not have complete knowledge of the three 
regimes when they begin their attack.  They may have done 
some reconnaissance work, but will be missing important 
pieces of information.  This lack of information will affect their 
instantaneous strategy, and their path taken through attack space 
may be highly dependent on the amount of information available. 
Incomplete-information game models using Bayesian methods 
can be used to accommodate this effect.

After the analytical model for the 3-layer games is developed, we 
can use linear methods to solve models for internal variables of 
the game-theoretical model.  As expected, the plant operator or 
plant SME will need to collaborate with the security engineer 
to configure the game parameters, but internal security model 
parameter can be used to construct security metrics which can be 
compared between systems.  This can be compared with security 
metrics based on hardware vulnerability assessments when the 
systems have diverse hardware.  

Cyber Security of the Internet of Things

IT and control systems manufacturers are seizing the opportunity 
of selling new novel hardware devices to consumers, as excitement 
continues to increase about the coming “Internet of Things” (IoT).   
As the number of devices continues to increase, more automation 
will be required for both the consumer (e.g. home and car) and the 
industrial owner.   As the number of devices in IoT and control 
system increases, software and hardware vulnerabilities will also 
increase.  It is not clear how all of these devices will be adequately 
protected.  Eventually the technology will need to be present in 
tactical environments in order to accommodate advanced cyber 
strategies of future adversaries.

Currently, data from IoT hardware sensors and devices are 
typically handled by proxy network servers (such as a cellphones) 
since current end devices and wearables have little or no built-
in security.  The security of the proxy device will be critical if 
sensor information needs to be safeguarded.  The number of 
sensors per proxy will eventually become large enough so that 
it will be inconvenient for a single user to manually manage all 
of the apps for their IoT sensors.  This implies new application 
technologies will be needed that controls many “things” and 
solves the data management (and vendor collaboration) problem.  

An exponentially larger volume of software will be needed 
to support the future IoT.  The average number of software 
bugs per line of code has not changed, which means there will 
consequentially be an exponentially larger volume of bugs for 
adversaries to exploit.

Until there are better standards for privacy protection of personal 
information and better security guidelines on communication 
methods and data/cloud storage, security of wearable and other 
mobility devices will remain poor.  More work needs to be spent 
on designing IoT devices before too many devices are built with 
default (little or no) security. The ability to create secure IoT devices 
and services depends upon the definition of security standards 
and agreements between vendors.  ISPs and telecommunication 
companies will control access to sensor data “in the cloud” and they 
cannot provide 100% protection against unauthorized access.  IoT 
user data will be at risk.   

Diversity of the hardware and software in the future IoT provides 
strong market competition, but this diversity is also a security issue 
in that there is no single security architect overseeing the entire 
“system” of the IoT. The “mission” of the entire IoT “system” was 
not pre-defined; it is dynamically defined by the demand of the 
consumer and the response of vendors.  Little or no governance exists 
and current standards are weak.  Cooperation and collaboration 
between vendors is essential for a secure future IoT, and there is no 
guarantee of success.

The growth of the IoT and the increase in the number of 
vulnerable commercial sensors has created a situation similar 
to the current situation of CPSs – a large number of unique 
hardware devices are interconnected with little or no regard 
to security, and with little or no communication and security 
standards.  It is not clear that these issues will be resolved before 
it is necessary to use some of the current and near-future IoT 
technologies on the battlefield.  

Some IoT technologies will necessarily migrate from the 
consumer arena to the tactical arena, where soldiers will entertain 
the interconnectivity of a large number of sensors and devices.  
One technique that can be used to approach the enormous 
security tasks of the IoT and the “Internet-of-Battle-Things” 
is to accept the inherent risks of IoT technologies and focus 
on the most critical areas to protect one’s asses.  As for our 
intrusion detection and security modeling methods, one can 
define the critical elements in one’s personal zone of influence 
and monitor or model only those particular elements.  Trying 
to monitor and measure all possible elements of the IoT system 
will be increasingly difficult and eventually impossible.  In effect, 
each person or soldier will be analogous to a CPS operator and 
the devices of interest will have physical, cyber, and process 
components, as illustrated in Figure 2.  Security research of the 
commercial IoT and the Internet of Battle Things is a current 
and future area of focus at ARL.  
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ABSTRACT: The ability for commanders to know and understand an organizational attack 
surface, its vulnerabilities, and associated risks is a fundamental aspect of command 
decision-making.  In the cyberspace domain, ongoing monitoring sufficient to ensure and 
assure effectiveness of security controls related to systems, networks, and cyberspace, 
by assessing security control implementation and organizational security status in 
accordance with organizational risk tolerance and within a reporting structure designed 
to make real time, data-driven risk management decisions are paramount.
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Information Security Continuous Monitoring (ISCM)

T he National Institute of Standards and Technology (NIST) 
Special Publication (SP) 800 137, Information Security 

Continuous Monitoring (ISCM) for Federal Information Systems 
and Organizations, defines Information Security Continuous 
Monitoring (ISCM) as “maintaining ongoing awareness of 
information security, vulnerabilities, and threats to support 
organizational risk management decisions.”

The Risk Management Framework (RMF) is the unified 
information security framework for the entire federal government.  
According to Office of Management and Budget (OMB), 
by institutionalizing the RMF, “agencies can improve the 
effectiveness of the safeguards and countermeasures protecting 
federal information and information systems in order to keep 
pace with the dynamic threat landscape.”[1] The RMF, developed 
by the NIST, describes a disciplined and structured process that 
integrates information security and risk management activities 
into the system development life cycle.  ISCM is a critical part 
of the RMF process.  As such, a foundational component of the 
ISCM strategy is the need to not only focus on monitoring, but 
also to support risk management decisions across the multiple 
mission areas of operations affected by the cyberspace domain.

To assist with the operationalization of ISCM across the 
entire federal government, the OMB released Memorandum 
M-14-03, Enhancing the Security of Federal Information and 
Information Systems.  The Memorandum provides guidance 
to implement ISCM across the Federal Government and help 
manage information security risk on a continuous bases.  In 
response to M-14-03, the U.S. Army Research Laboratory 
(ARL) team initiated a program to develop risk scoring at 
the scale and complexity needed for the DoD.   This project, 
named Information Security Continuous Monitoring (ISCM), 
is intended to provide a capability that not only allows for the 
identification of a system risk, but also to allow for that risk to 
be changed dynamically based on the threat or mission need.  
This project required a novel approach to risk scoring, as well 
as a platform that could ingest and visualize the various data 
types needed, all while fostering collaboration with our federal, 
academic, and industry partners.

This article discusses the history of ISCM at ARL; the approach and 
current status of ARL’s ISCM capability; the data, entity creation, 
and risk scoring processes and models; and the next step and way 
ahead for ARL’s ISCM capability.
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History of ARL ISCM and Initial Approach

In 2011, at the request of the DoD, the ARL team began 
investigating how to enhance the situational awareness provided 
by the cyber security tools used in the defense of transactions on 
DoD information networks.  This was the DoD’s first major thrust 
into continuous monitoring based on the success of the State 
Department’s efforts [2].  The ARL team approached ISCM with 
the primary goal of developing a capability that could continuously 
correlate and aggregate disparately formatted events generated by 
intrusion detection, vulnerability assessment, and host-based security 
tools.  At the outset, the minimum bar for success required that 
ISCM satisfy the following:

ii Enhanced cyber situational awareness – The ability to ingest, 
aggregate, correlate and enrich cyber data from a variety 
of sources and provide an interface or dashboard view that 
enables commanders and mission owners to make higher 
confidence decisions.

ii Continuous monitoring – The ability to 
transform the historically static security 
control assessment and authorization 
process into an integral part of a dynamic 
enterprise-wide risk management process.  
Providing the Army with an ongoing, near 
real-time, cyber defense awareness and 
asset assessment capability.

ii Technical transfer – The ability for ISCM 
to be packaged and transitioned to other 
organizations with a similar cyber security 
mission and data sets.  In particular, it is 
important that ISCM be transferable with 
minimal software refactoring and systems 
reengineering.

Building off the success from the State Department’s continuous 
monitoring program, in 2011 the State Department’s source code 
was transitioned to the Defense Information Systems Agency 
(DISA) and National Security Agency (NSA), and was further 
developed and transitioned to ARL in 2012.  This initial ISCM 
prototype was named JIGSAW and was built atop Splunk [3].  
JIGSAW was a collaborative effort between ARL and the DoD 
High Performance Computing Modernization Program and 
consisted of a Red Hat Enterprise Linux server, running Splunk on 
12 CPU cores, 48GB of RAM and 3TB disk storage.  The JIGSAW 
pilot ran for the majority of 2012 and consisted of a variety of 
experiments ingesting and exploring approximately 50 gigabytes 
per day of vulnerability assessment data, host based security logs, 
intrusion detection events, and network flow data from the DoD 
Defense Research and Engineering Network. 

JIGSAW provided good insights into each individual data set, 
but its correlation and aggregation capabilities weren’t robust 
enough for our long-term vision.  In JIGSAW, there was no entity 
construct.  Every stored row was an event.  We could perform 

aggregations such as:  For all data sources indexed, show me 
all the results per hostname.  However, if we then attempted to 
associate a risk value with the hostname, it was not possible.  The 
aggregation per hostname only existed in the context of the original 
query results.  We potentially could have exported the results to a 
relational database, established the hostname risk association in a 
separate table, and then exported the hostname/risk object back 
to the JIGSAW as a new event.  However, we were not willing to 
contend with the complexity of a transaction that required layering 
database upon database in order to shore up the deficiencies in 
each.   Furthermore, the cost associated with scaling to the 1TB+ 
daily volume of data we were expecting to ingest and index made 
the JIGSAW solution unsuitable for our use case.  

Splunk was removed from the ISCM solution and replaced with a 
relational database backend, PostgreSQL [4].  A Python [5] frontend 
with a variety of Python libraries were adopted for visualizations 
and custom Python scripts was developed to perform the data 

parsing, data correlation, and aggregation.  This 
new configuration addressed entity construct 
and cost concerns associated with Splunk; 
however, the scalability issues persisted.  In 
relational databases, the notion of clustering 
and horizontal scaling is in support of high 
availability and not scalability or sharding of 
large data sets.  Server parallelism and increased 
data ingest rates, storage and processing of 
terabytes worth of data proved to be a difficult 
task.  Furthermore, achieving historical and 
trending analysis for several months' worth of 
cyber data was next to impossible, again due to 
the scalability limitations.  

There were many lessons learned from the 
ISCM prototypes and it helped refine our minimum bar for success 
to include the following requirement:

ii Scalable architecture – ISCM needed to be a scalable 
architecture that could quickly be augmented with minimal 
impact to uptime and support the storage and processing of 
large data sets at the Petabyte scale. 

ARL needed to adopt an architecture that could easily scale 
horizontally and support several months (100TB+) of historical 
and trending data.  Additionally, we needed to consistently 
ingest and process terabytes of semi-structured data in parallel.  
With JIGSAW, flow data could only be stored for a couple 
weeks before we had to delete older data to preserve disk space.  
This fact led us to commence an investigation of distributed 
computing and NoSQL architectures, specifically, the Apache 
Hadoop [6] ecosystem.  Several entities in the DoD had already 
begun to engineer big data frameworks using Hadoop in order 
to address their mission needs.  The ARL team made technology 
transfer requests in order to build upon existing source code 
and lessons learned.  

Developing a 
capability that 

could continuously 
correlate and 

aggregate 
disparately 

formatted events



WWW.CSIAC.ORG  |  51

Information Security Continuous Monitoring (ISCM)  –  CON'T

Two distributed computation frameworks were evaluated by 
ARL.  The first came from the U.S. Army Intelligence & Security 
Command and is called Red Disk [7].  The second came from DISA 
and is called the Big Data Platform (BDP) [8][9].  Many of the 
components of Red Disk and the BDP are similar.  At their core, 
they are both Hadoop clusters providing a distributed computing 
framework, with software components capable of ingesting, storing, 
processing, and visualizing large volumes of data from an assortment 
of information sources.  Both environments are comprised of open 
source and unclassified components, and also leverage technology 
transfer from other DoD entities.  During our evaluations, we 
compared the streaming ingest capabilities of each framework 
for ingesting cyber events via topology constructs (graphs of 
computations that contain data processing logic) in Apache Storm 
[10].  Red Disk experienced performance issues when attempts 
were made to ingest ARL’s sensor data into Apache Accumulo 
[11].  Its custom data processing framework and data-modeling 
construct averaged less than 1MB/s ingest rate.  The BDP performed 
substantially better with ingest rates that average 50MB/s, with 
peak rates near 100MB/s.

In the latter part of 2014, the ARL team adopted the BDP to build 
our ISCM solution as well as future cyber analytic capabilities.  
Based upon our evaluations, we determined that doing so would 
substantially reduce the amount of time the ARL team had to spend 
on architecting a custom Hadoop solution for ingest, storage and 
processing of our cyber data sources.  Additionally, adopting the BDP 
helped to satisfy requirement for technical transfer and enables a 
federated approach towards the creation of cyber analytic capabilities 
among other entities using the BDP.  With the BDP acting as the 
core framework for data ingest, storage and processing, cyber security 
researchers, scientists, and engineers can focus less on systems 

engineering and systems integration tasks and more on data modeling 
and application of statistical, algorithmic and analytic methods to the 
data in order to glean deeper insight. In the next section, we discuss 
the current status of ISCM and its supporting hardware.

Current Status of ISCM and SUPPORTING Hardware

The current ARL ISCM solution which is built atop of the BDP is 
based upon five individual widget/analytic capabilities, working in 
conjunction with one another to provide a dynamic cyber hunting 
capability and enhanced decision support via a risk categorization 
and prioritization capability.  As illustrated in Fig. 1 below, 
those individual capabilities include asset management, antivirus 
compliance, network management, vulnerability management and 
risk management.  The first four capabilities serve as the building 
blocks to generate the risk picture in the fifth capability.

The ISCM capabilities are based upon attributes and events 
primarily correlated from four cyber data sources:

ii Vulnerability scanning reports collected via the DISA Assured 
Compliance Assessment Solution (ACAS) [12]

ii Host Based Security System (HBSS) reports from tools such 
as Anti-Virus/Anti-Spyware, collected via Intel/McAfee 
Enterprise Security products [13] 

ii Network flow information from ARL’s Interrogator Intrusion 
Detection System [14]

ii National Vulnerability Database [15]

Producing the ISCM capability required building multiple instances 
of the BDP to support the various stages of the software development 
lifecycle.  We acquired hardware to support four medium-size (~30 

Fig. 1 ISCM capabilities summary
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node) clusters.  The clusters served the following roles: A testing 
and evaluation environment, an external collaboration environment 
for cyber researchers from academia and other government entities, 
an environment for capabilities ready for pre-production and a 
production environment for cyber security analysts at ARL and 
other stakeholders.  The hardware specifications for the various 
cluster environments are outlined in Fig. 2 below:

Fig. 2 ARL ISCM cluster hardware specifications

The dramatic increase in capability between production 1.0 and 
production 2.0 was primarily driven by a desire for enhanced 
historical and trending analysis by increasing the window of time 
elapsed before deleting data.  Furthermore, we had experienced I/O 
bottlenecks with the 1.0 version of production and determined that 
more spindles per node would alleviate that problem.  Finally, we 
wanted to leverage in-memory computation engines like Apache 
Spark [16], so we nearly tripled the available random access 
memory per node.  With the hardware in place, we were ready to 
tackle the ISCM data modeling and knowledge engineering tasks.

Data modeling

Figure 3 below illustrates the core of the ISCM data model, the 
entity construct.  At the core of the model is the host element, which 
is defined as a computer, printer or other managed network device 
(e.g. switch, router or firewall).

Fig. 3 ISCM entity model

ISCM leverages Storm’s stream processing capabilities to create 
entities and stores them in an entity-modeling construct in 
Accumulo.  Each line of input or raw data is processed for any 
relevant entity data and the attributes and relationships that go into 
that entity. Entities, attributes, and relationships are created without 
querying the entity model first. This may seem counter-intuitive 
because duplicate entities may already exist in Accumulo; however, 
duplicates are expected and if an entity is repeated, only the entity 
with the most current timestamp is returned during the table scan. 
Furthermore, only three of the same entity identifiers are preserved 
after the database has gone through compaction (written from 
memory to disk). This puts the responsibility of handling excessive 
duplication on Accumulo, allowing Storm to ingest and parse the 
data as quickly as possible. Finally, storing the state of the entity 
object (including some duplicates) over time provides the basis for 
historical and trending analysis in ISCM.  Currently ISCM can 
keep state for three months' worth of entity objects.

Some data sources, such as ACAS vulnerability assessment reports 
or HBSS system properties, allow for the creation of two entities 
and the bidirectional relationship between them. This is a simple 
case since the entities are available when the relationship is created 
and the entity is known to explicitly exist.

Other data sources, such as HBSS asset configuration compliance 
module (ACCM), only creates one entity and the relationships 
with the host presumed to be reported by another feed type; system 
properties in this example. Although we do not have a host entity 
because we derive the host ID from the given data, the software 
entity is created with all the normal attributes while a relationship 
is added. Furthermore, we can create the opposite direction of the 
relationship by creating an entity representing that host that will have 
the relationship added to it. This works even in the case of the ACCM 
data being processed before the system properties data because the 
entity model allows for hanging relationships (i.e. when the host is not 
actually stored yet). If one were to run a query and discover this, one 
would know the ID of the host, and some of the software relationships 
it has, even if all of the host information is not yet available.

In March of 2015, when the asset management widget (see Fig. 1) 
was completed, we noticed that querying the entity model from the 
web frontend, certain types of queries took several minutes to return 
results.  We realized that this was due to the fact that Accumulo 
was not designed to support query-focused datasets.  Operations 
such as order by, group by, and count could not be accomplished 
without pre-computing the queries via a Hadoop MapReduce [17] 
job.  This was unacceptable because our vision was to allow the 
adopters of ISCM the ability to ask any questions of the data that 
were of interest to them.  Question such as:  

ii How many assets are in a given enclave? 
ii Which assets are in a specific VLAN?
ii Which assets have outdated anti-virus signatures?
ii Which assets have vulnerabilities greater than 200?
ii Which assets have outdated scan results?
ii Which assets have communicated with 

a foreign country recently?
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As a result of this limitation in Accumulo, we further refined 
our initial minimum bar for success to include the following 
requirement:

ii Low latency queries – As a query focused capability, ISCM 
needs to provide rapid responses to simple and compound 
queries from both end users and statistic/analytic processes.

The ARL team petitioned the DISA BDP change advisory board 
to incorporate the Elasticsearch [18] into the BDP baseline.  
Elasticsearch enhanced the user experience and allowed for users 
to issue dynamic queries, and in many cases, receive sub-second 
responses.  This allowed for a much more dynamic experience. 

At this point, the BDP architecture satisfied all of our requirements 
and the remainder of 2015 was spent developing and integrating 
the three remaining widgets: antivirus compliance, network 
management and vulnerability management.  In November 2015, 
we began our investigation of how to illustrate the risk picture.

Risk Management Approach

Similar to first four ISCM widgets, 
the risk management widget (RMW) 
is designed to provide situational 
awareness from the command level 
down to the asset level.  The ARL 
team’s initial approach towards risk 
management provides a mechanism for 
stakeholders to prioritize the systems 
with the highest risk of compromise, 
based upon the NVD common 
vulnerabilities and exposures (CVE) 
and other factors.  Fig. 4 above illustrates 
how ISCM visually represents the 
count of hosts (line graph) and the 
count of risks (bar graph) associated 
with a particular enclave.  Each risk 
factor is a vulnerability identified 
through the installed software and 
CVE as depicted in Fig. 5.

The two primary functions of the 
RMW are risk identification and 
risk scoring. The functionality that 
determines the cause of the risk, 
identifies issues that are mitigated in 
order to eliminate a particular risk 
at the asset or site level. Issues are 
prioritized by their influence on risk. 
The relative risk scoring functionality 
uses vulnerability discovery results to 
estimate risk where risk score is based 
on the exposure of vulnerable services 
to external networks. Risk scores are 
presented by site, asset, or vulnerability. 

The ARL team began by leveraging the generic algorithm for cyber 
risk, where risk is a function of threats, vulnerabilities and impact, 
R = f (Tx Vx I ). We supplemented the equation with additional 
characteristics that were critical to the defensive operations mission, 
including:

Confidence Level: The belief that an asset is exposed to a 
particular vulnerability by taking into account all relevant 
observations (i.e. output from all tools: HBSS, ACAS, etc.)  
This value is a derived percentage, currently implemented using 
term frequency–inverse document frequency algorithm [19] and 
represents the certainty that the host in question actually has 
the factors deemed to be vulnerable (i.e. software version, patch 
version, operating system, etc.)

Threat Multiplier:  A factor associated with the exposure of 
a vulnerability to an external network for remote exploitation. 
Vulnerabilities exposed to a wide area network and remotely 
exploitable, produce the highest threat multiplier.

 Fig. 5 ISCM user interface - example host risk posture and score

Fig. 4 ISCM user interface - host count and risk score visualization
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Temporal Certainty Multiplier: A factor associated with the 
age and freshness of the vulnerability scan reports.  As scan 
information ages, the potential risk from vulnerabilities that 
cannot be confirmed as mitigated increases. The temporal 
certainty multiplier represents the increase as a factor, which is 
multiplied against the vulnerability instance risk score. The time 
period is determined by comparing the greatest last seen of all 
risk factors to current time.

Exposure Duration Multiplier: A factor indicating how long an 
unresolved risk was first detected. The time period is determined 
by comparing the earliest first seen of all risk factors to current 
time.

Exploit Threat Multiplier: A dynamic factor that allows a 
security analyst to amplify/decrease the weighting of a CVE risk 
score throughout the system. The value is set on the user interface 
through a RESTful service, which updates the entity model. 
The factor values can be very low, low, moderate, high and very 
high, depending upon the level of exploitation and other threat 
intelligence.  If no multiplier is stored in the entity model, then 
the default value is moderate as depicted in Fig. 5.

ISCM’s current approach to risk management satisfies its initial 
goal of aiding stakeholders in the comparison and prioritization 
of higher-risk versus lower-risk assets.  However, when looking at 
assets independently, the risk score does not provide the context 
necessary to assess the actual risk of an asset being compromised.  
The ARL team is actively implementing a probabilistic risk 
scoring widget, primarily based upon research performed at 
Massachusetts Institute of Technology – Lincoln Laboratory [20] 
and Johns Hopkins University Applied Physics Laboratory [21].

Future Direction

ISCM is not only a technical problem, it also requires policy 
actions in order to achieve and sustain its goals.  The ISCM 
program at ARL will continue to be incrementally improved 
with the appropriate rigor and assessment frequencies to support 
the mission/business requirements, risk tolerance, and security 
categorization. By leveraging an integrated operational and 
technical ISCM portal, the Cyber Security Service Provider 
(CSSP) operations process and knowledge management 
capabilities ensure sustained and continuous assessments can 
be synchronized across the Army. To support ongoing risk 
determinations and future risk acceptance decisions by senior 
leaders, policies supporting the following six steps are necessary 
for achieving and sustaining an effective ISCM:

ii Define an ISCM policy, strategy, and supporting doctrine 
based on risk tolerance that promotes clear visibility into 
assets, awareness of vulnerabilities, up-to-date threat 
information, and mission/business impacts.

ii Ensure its ISCM program determines metrics, status 
monitoring frequencies, control assessment frequencies, and 
an ISCM technical architecture.

ii Automate collection, analysis, and reporting of data where 
possible. Collect the security-related information required 
for metrics, assessments, and reporting.  

ii Analyze the data collected and report findings, determining 
the appropriate response.  It may be necessary to collect 
additional information to clarify or supplement existing 
monitoring data.

ii Respond to findings with technical, management, and 
operational mitigating activities or acceptance, transference/
sharing, or avoidance/rejection.

ii Review and update the monitoring program, adjusting the 
ISCM strategy and maturing measurement capabilities to 
increase visibility into organizational assets and awareness 
of vulnerabilities, further enable data–driven control of the 
security of an organization’s information infrastructure, and 
increase organizational resilience.

In 2017, ARL will release an ISCM Widget to support 
continuing re-authorization capabilities. This capability facilitates 
the NIST SP 800-137 requirement “that security controls and 
organizational risks are assessed and analyzed at a frequency 
sufficient to support risk-based security decisions…” 

In 2017, ARL will propose a widget(s) that could support Mission 
Assurance Continuous Monitoring (MACM), an integrated 
observation of mission-aligned ISCM with operational and 
technical information network operations capabilities to create 
and preserve information assurance on the DoD information 
networks and increase organizational resilience.

In 2018, ARL will propose a widget(s) that could support Cyber 
Defense Continuous Monitoring (CDCM), an integrated global 
observation of mission-aligned partners through passive and 
active cyberspace operations intended to preserve the ability to 
utilize friendly cyberspace capabilities and protect data, networks, 
net-centric capabilities, and other war fighting and support 
enabling systems.

ARL will continue to develop ISCM and ensure that its 
requirements are well informed and reflect the best practices, 
lessons learned, and efficiencies developed across the Army.  
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