Data & Analysis Center for Software

ITT Systems & Sciences Corporation
Griffiss Business & Technology Park

775 Daedalian Drive

Rome, NY 13441-4909

An Overview of
Object Oriented Design

30 April 1991

Prepared for:

Rome Laboratory
(RL/C3CB)
525 Brooks Road
Griffiss AFB, NY 13441-4514

Prepared by:

ITT Systems
(formeriy Kaman Sciences Corporation)
P.C. Box 1400
Rome, NY 13442-4905

“ta&Anatvsic Cender for Softwars

The Data & Analysis Center for Software (DACSE is & [Lepanmento® Defense (DoD) Informaticn
Analysis Center (IAC). administerec by the Deteise Techn.car 'information Cenier (DTIC), For
Belvoir, Virginia), techni¢ally managed by Air For:e Research 'ahoratory (AFRL), Rome, New
York. {TT Systems & Sciences Corporation manages and ozeraies the DACS, serving as 2
source for currentiy readily available data and infctmetion concerning software engineering and

software technology.

REFPORT DOCUMENT. ATION PAGE

Form Aocorovead
OPM No. 0704-0188

h.u—-'-—-m-._tco—-n._- ' s

.m—ﬂu-\-“t_-—u—.c-
P O o veroamn oW ASpLsEw Alary. Ohae o

e oC Jo8&.

LN K . X T 7,3
e Acawra. 1210 BéwwEs Qous segremsy. S0 1700, MNPEA, WA 227024301, ow »

e oar

2 REPORT DATE
April 30, 1991

1. AGENCY USE OMLY (Laswe Slanx)

3. REPORT TYPE ANO DATES COVERED

N/A

4. TITLE AND SUBTITLE

An Overview of Object Oriented Design

5. FUNDING NUMBERS

F30602-89-C-0082

€ AUTHOA(S)

Robert Vienneau

7. PERFORMNG ORGANIZATION NAME{8) AND ADDRESS(ED)

Kaman Sciences Corporation
258 Genesee Street
Utica, NY 13502

8. PERFORMING ORGAMNIZATION
REPORT NUMBER

N/A

9. SFONSORINGAIONTORING AGENCY NAME(S) ANO ADDRESSER

Defense Technical Info Ctr Rome Laboratory
DTIC/DF RL/COEE

10. SPONSORING AMOMITORING AGENCY
REPORT NUMBER

Cameron Station Griffiss AFB, NY 13441 N/A
Alexandria, VA 22314
1. SUPPLEMENTARY NOTES
Available from: Data & Analysis Center for Software (DACS)
258 Genesee Street
Utica, NY 13502 Phone (315) 734-3696
12. DISTRIBUTION COOE

122 OISTRIBUTIONAVARABLITY STATEMENT

Approved for public release, distribution unlimited

12 ABSTRACT /Mazsnaw 200 woreny

of Object Oriented Design (OOD) and some of its features.

detail. Languages covered include Modula-2, Ada, C++,

and Eiffel.

related papers and reports,

This report, An Overview of Object Oriented Design, provides a basic understanding

summarizes the history of 00D, includes a description of an OOD methodology, and
defines and discusses various concepts and terminology used in OOD.

support that various programming languages provide for OOD is discussed in some
Object C, LISP, Smalltalk,

Section 4 discusses how OOD interacts w1th areas of current software
engineering research, especially software reuse and alternative life cycle models.
The report also 1nc1udes a glossary of OOD terms and an annotated bibliography of

The report briefly
The level of

14 SUBECT TERMS] 15. MUMBER OF PAGES
Object Oriented Design, Computer Software, Computer Programming, 83
Software Technology, Software Engineering. 1tPHC!ﬁ$2x
17. gEEmfv CLASSF ICATION 18. gc#.an CLASSF ICATION | 19 SECA%:‘N CLASSF ICATION 20 LMITATION OF ABSTRACT
REPOAT . PAGE TRACT
Unciassified Unclassified Unclassified UL
NESM 7340-01.280-8300 :..."“.:':2‘.‘."““&“.%

TABLE OF CONTENTS

1. INTRODUCTION TO OBJECT ORIENTED DESIGN 1
1.1 0rigins Of OOD ...ttt 2

2. METHODOLOGY ..ottt 4
2.1 Abstract Data Types (ADTS) .ot 6

2.2 Designing Object Oriented Systemscccocvvevverereeeeveeercenes 8
2.2.1 Identify the ODJECES ...eeeeeeeeeeeeriiiiiiiiittiicceeceecrtee e e e 9

2.2.2 ldentify the Operationscccccceveeercerrerneeerreeeeeee e ece e sanes 9

2.2.3 Establish ViSiDility ..cccceceerreeeeeiiiiiiniiiiiiiiiiiieeeteee e eeeeeeeens 9

2.2.4 Establish INterfacesueeeeemeiiimiirmmrieiiiiiiettreeccceveeaees 10

2.2.5 Implement EAch OBJECE ..cucvuemieiiiirieriiteiiiciiiceeeeteeecceenneee 10

3. LANGUAGE SUPPORT FOR QOOD .., 11
3.1 A Scaie For Measuring Object Oriented Languages 11

3.2 Classical LanguUagescccccvercrceneeeererccerenecieneseeessaneeesssasesees 14

3.3 Data Abstraction LANGQUAGES ...ccccereeveereneereeeinieeieiere e esesaenas 14
.31 MOGUIE-Z ettt ee e e se s e e e e ae s e e ne 14

332 AQ@ e ceee ettt e e et e et aee s e s s e e e s ae s e ee e e e e anas 15

3.4 Object Oriented Extensions of Classical Languages 17
3.4.1 C EXIBNSIONS ..eereeiiinetieeereeeceeeecneeenientteeseseecrneesassassssnsassnsnsnnes 17

K 70 S R O USROS ORI 18

3.4.1.2 ODbJeCtive Ceeevrieeiiiiiinteecerctc et 18

3.4.2 Lisp Extensions: Flavors and LCOPS ...cccieeiviriiiieeeniiiceneeenne 18

3.5 Pure Object Oriented Languagescocecoveeeeeercneneneeeeecreneeneenes 20
.81 SMAAIK ettt e e e 20

B.5.2 BBl wioieeiteececeieieee et e ettt ettt e s 20

4. LARGER IMPLICATIONSooeeeeeceeeresieesseesssssaesesssassens 23
4.1 SOftWArE REUSE ..ottt sse e 24

4.2 Life Cycle Support for QODcceiereerrreseernrieesseseeeseeceeeenes 25

8. SUMMARY oot esase e sssassssssassasssnne 28
6. REFERENGCESo vnsssesesesess e s sasnsns 29
Appendix A: GLOSSARY ...eeeeeteeereesssssssasssssssssseasscsseenes 31
Appendix B: ANNOTATED BIBLIOGRAPHY ..., 35

FOREWORD

This report, An Overview of Object Oriented Design, provides a basic understanging of Object
QOriented Design (OOD) and some of its features. The repon triefly summarizes the history of OQQD,
includes a description of an OOD methodology, and defines and discusses various concepts and
terminology used in OOD. The level of support that various programming ianguages provide for OOD is
discussed in some detail. Languages covered include Modula-2, Ada, C++, Objective C, LISP, Smalitalk,
ang Eiffel. Section 4 discusses how OQOD interacts with other areas of current software engineering
research, especially software reuse and altemnative life cycle models. The report also includes a glossary

of OOD terms and an annotated biblicgraphy of related papers and reports.

1. INTRODUCTION TO OBJECT ORIENTED DESIGN

Object Criented Design (CCD) grew out of work in both design methodology and language design.
Q0D was developed to provide a rnatural methed cf structuring system architectures. The resuiting
architecture can be easily changea. Module interfaces (shiould) prevent changes from rippling througn
the system. Language concepts criginally cevelopea to support simulation were seen to provide
features that could easily be used to implement such an architecture. The integration of these insights

lays the foundation tor OQD.

The 1980s have seen an explosion of interest in Object Criented Design among professional
programmers. This is evident in the history of the Cbject Oriented Programming Systems, Languages,
and Applications (OOPSLA) conferences. The first such conference was organized by the Association
of Computing Machinery (ACM) in 1986. By 1988, only two years later, OOPSLA was the third largest

of ACM's many technical conferences.

Within the defense community, an interest in Object Criented Design (QOD) is aimost mandated
by the use of Ada. Ada is more than a programming language; proper use of Ada requires the adoption
of various software engineering techniques, including COD. On the other hand, some OQCD purists
argue that Ada does not truly support OOD. This issue, among others, will be explored in this report.

Among the wider community of programmers and computer enthusiasts, an interest in OQD is
demonstrated by a plethora of products. For example, Borland International and Microsoft Corporation,
the major distributors of compilers for personal computers, both market Object Criented versions of
several languages, such as Pascal. Graphical user interfaces, such as the Macintosh interface, have

been described as Cbject Oriented, aithough purists argue otherwise.

Certainly, OOD is beginning to influence many areas of computer science. OOD is currently
important in research in reusability, user interfaces, Ada, requirements and design methodologies,
programming environments, and Data Base Management Systems (DBMS). OOD proponents claim
OOD will dramatically increase the productivity and quality of software. For examplte, Brad Cox
compares OOD to the introduction of interchangeable pars into production [Cox 1986]. Just as that
innovation made possible mass production and “revolutionized manufacturing forever,” so COD
promises to transform the process of programming from the churning out of thousands of lines of code

to the assembling of systems from libraries of predefined modules.

1.1 Origins of OOD

The groundwork of Object Oriented Design was laid concumrently with the introduction of
structured programming in the 1960s. Certain languages ceveloped at that time provided features that

would become basic elements of OCD.

In particular, Simula’, a block structured language with @ main program and nested entities such
as subroutines, introduced classes, now thought to be key for OOD. A class, in Simula, is similar to a
data type. A class may contain routines, attributes, and instructions that are automatically executed
when an instance of that class is created. Variables of user-defined types reference instances of a

class. Instances of a class later came to be known as objects, the otjects that OOD gets its name

from.

The concepts introduced by Simula did not gain wide cumency for decades, even among
researchers. This lack of circulation may be largely because Simula was a solution in search of a
problem. Those features of Simula that support OOD were not clearly seen as supporting a general
purpose system design methodology. Rather, they were seen as supporting simulation, their original

justitication for being introduced.

The structured programming revolution was barely begun in 1972 when David Pamas began
criticizing its inadequate support for modularizing systems. In his "On the Criteria to be Used in
Decomposing Systems into Modules," he presents an example Keyword In Context (KWIC) problem and

contrasts two methods of modularizing the solution [Parnas 72].

The first solution, which might result naturally from top down design, contains input, circular shift,
alphabetizing, and output modules. This modularization results from considering the steps needed to
solve the problem. The second solution resuits from considering the data structures needed to solve the
problem. Each module provides access to a different data structure?. Unlike modifications to the first
solution, changed functionality in the second solution will typically resuit in modifications to only a couple
of modules. The interfaces prevent changes from rippling through the system. Furthermore, the
sequence of instructions necessary to call a given routine and the routine itself are parn of the same
module. Parnas’ ideas inspired research embodied in CLU, Modula-2, and Ada, programming

languages introduced in the late 1970s and early 1980s.

Simula, sometmes known as Simula-67 after the year in which it was introduced, was dasigned by Olg~Johan Dahl and
Krysten Nygaard at the University of Oslo and the Norwegian Computng Center. Simula is an extension of Algol 60 intended to
provide strong support for computer simutaton.

2 In shont, Pamas introduced the important concept of “informagan hiding” in which frequenty changed components of a
system are hidden in singie modules, not scaftared through many modules nor part of the module intenaces. Pamas argues that
modulanzaton on the basis of data structures will allow programs to be easily changed, modules to be ceveloped independenty,
and the system to be more easily understood.

Paralle! to these cevelopments came Smaitaik=. 2 language tnat buit on Simuia’s innovations 2na
further refined COD. Smalitalk borrowed heawviiy frocm Simuia. tut introduces some new notions such as
an aavanced implementation of inheritance, polymorcrism, ana dynamic binding. Variables can take on
many types; ambiguities are resoived at run time. in many ways, Smailtalk was the purest Ctject

Oriented language available in the 1980s.

More recently, the focus of OOD is on the integration of these separate sirands of design
methodology, modularization, and programming languages. Russeil Abbott and Grady Booch have
deveioped a OCD methedology for Ada, based in part on insights derived from Smalitalk ([Abbott 83],
(Abbott 86], [Booch 86], and [Booch 87b]). Cthers have attempted to integrate Object Oriented
concepts with current practice not by developing a methodology for widely used languages, but by
extending current languages with Object Oriented ccnstructs. Finaily, Bertrand Meyer has introduced
Eiffel, a pure Object Oriented language intended to be less research oriented than Smaiitalk.

Efforts to extend OCD continue. Researchers have begun to explore the role of "persistent
objects," objects that remain after a program’'s execution has ceased. These ideas have inspired Object
Oriented Databases, created as an alternative to the traditionai hierarchical, relationai, or entity-
relationship models. Much current research on user interfaces has an Object Oriented flavor.
Researchers are also studying how to smoothly integrate concurrency into Object Oriented programming

languages.

3 Smailtalk, was deveioped by Alan Kay, Adele Goldberg, and Daniei H. H. Ingalls at the Xerox Palo Alto Research Center
(PARC).

2. METHODOLOGY

The architecture of systems constructed with COD is based on objects. not functions. Cther
design methods, most notably top down design, focus on the function of the software.* Although Object
Oriented systems are structured around data. an object is something more than a data structure. Grady

Booch defines an object {Booch 86] as an entity that:
e has a state

e is characterized by the operations that can be performed on it and that it requires to be able to

perform on other objects
e is denoted by a name
e is an instance of a class
e can be viewed by its specification as well as by its implementation

In a sense, the state of an object is analogous to the value of a variable. However, important
differences exist between these concepts. Two objects can be represented by data with different values
and yet have the same state. For example, if a stack is implemented by an array and an index to the
top of the stack, two stacks might differ in the vaiues of those array elements which denote items that
are currently not members of the stack. Though represented by arrays with different values, these

stacks still have the same state, as shown in Figure 2.1.

ot fommnst
i Sl "X~ 1
o e et
Q! [y~ !
om——— R
Top of stack -->1"A" | Top of stack --> ["A" |
B s ot
"8~ | "B~ |
 anan oot
I"D" | "D~ |
oot ot

FIGURE 2.1: TWO STACKS WITH THE SAME STATE

4 Bartrand Meyer, the designer of the Object Oriented programming language Eilfel, argues (Meyer 88] that large systems
typically cannot usefully be charactenzed as performing a singie function. Rather, they perform an iqterrelaled group of func-
tions. Operagng systems and Management Informaton Systems are good illustrations of this thesis originaily propounded by Da-
vid Pamas (Pamas 72].

Pointers crevice anciner 1amitar examele of varniacles win ciifsrent vaiues. -Jt the same state. |
centain applications. two painters nave he same state if \hey access memory locations where equal

values are stored. even if the pointers ciffer in the aadresses to wnich they point.

QOD supports the concept cf information hiding by distinguisning tetween data values and the
state of an opject. Only aspects relevant to the state of an object shouid be made available in its

specitication.

Objects can access other objects by the operations made avaiiable in the specitication of the
accessed objects. Booch 87a, Meyer 88, and Stroustrup 88 ciassify these operations as either

constructors, destructors, selectors, or iterators.

Constructors and destructors modify objects: constructors either create an object or modify its
state while destructors destroy objects. The environment provided with some Cbject Oriented
languages performs automatic garbage collection. Hence, destructors are not needed in 'these
languages, a great convenience to programmers. The automatic invocation of cerain programmer-
defined constructers in some languages when an object is declared is another convenience. This

feature allows centain invariants to be automatically established.

Selectors and iterators are used to obtain information about the state of an object. For example,
an operation that returns the top of a stack is a selector, while operations that allow one to obtain the

value of every node in a tree are iterators. Iterators permit all parts of an object to be visited.

OOD has not yet developed a uniform terminology. Hence, not all writers and language designers

use the terms constructor, destructer, selector, and iterator.

The distinction between classes and objects also varies among Cbject Criented systems. In all
cases, an object is an instance of a class. An object might te a specific stack of characters; the
corresponding class is the class of all such character stacks. Cbject oriented systems allow the
programmer to provide names to refer to the objects. A further cistinction arises between objects and

classes. In Eiffel classes are defined in the program text; they co not exist at run-time [Meyer 88].

Objects, however, only exist at run-time.®

The manner in which objects perform operations on each other suggests one type of relation
between classes. Classes can form client-supplier pairs. A supplier provides operations which other
classes can use. The classes that use these operations are known as clients of the supplier. Classes
can also relate to one another ty forming ancestor-descendart pairs. A descendant class is an
extension or specialization of its ancestor. The concept of descendant derives from the concept of

inheritance, which some argue is crucial for QOD.

3 Smaiitaik does not make this disuncticn; Smaiitalk dasses can exist at run-ome.

2.1 Abstract Data Types (ADTS)

Classes can be regarded as implementations of Abstract Data Types (ADTs) ([Meyer 88] and
[Booch 87b]). An ADT detines the formal properties of a data type without defining imptementation
features. Hence, ADTs are one mechanism of formalizing the concept of information hiding. ADTs are

specified in formai languages, like those studies in mathematics, especially the predicate caiculus, rather

than the traditional imperative programming languages.®
For example, an ADT specification for a queue can be represented as shown in Figure 2.2.

The first part of the specification defines the data types for the user. This is a parameterized type;
X is the type of the elements comprising the queue. Note that the specification is totally impiementation

independent. Whether a queue is a linked list, an array, or not implemented at all is not shown here.

The second section in the specification lists the functions or operations available. The notation is
borrowed from advanced mathematics. Only the syntax of the operations is given, not their meanings.
Each function maps a domain to a range with these sets on either side of the arrow. The function
"new" has an empty domain as is shown by a nuil left side. The function "enqueue” takes two

arguments as shown by the cartesian product on the left side.

The preconditions and the axioms give the semantics of a queue. The preconditions show the
subset of the domain ot all queues to which the functions can be applied. The axioms characterize the
behavior of queues. The first element of an empty queue is not defined. Neither is the result of
dequeuing an empty queue. Consequently, the functions "first" and "dequeue" are only partial
functions. The first axiom shows that a new queue is empty, while the second axiom shows that
enqueuing an element resuits in a non-empty queue. The final three axioms characterize how items are
enqueued and dequeued. The notation t"(x) means apply the function n times in succession to the
variable x. Consequently, the third axiom shows the first n elements of an n element queue are
unchanged by enqueuing an element. The fourth axiom shows that enqueuing an item adds it to the
end of the queue. Finally, the fitth axiom shows that enqueuing an item increase the number ot items in

a queue by one.

Once this formalism is used to specify an ADT, it can be used to reason about programs. For

example, consider the following program fragment:

¢ ADTs predate OOD; they were an intermediate phase between Parnas’ modularization criteria and OQOD.

TYPES

Queue(X]

FUNCTICNS
is_empty: Cueue(X] --> Boolean
new: -—-> Queue(X]
enqueue: X x Queue(X] --> Queue{X]
dequeue: Queue(X] --> Queue(X]
first: Queue{X] --> X

PRECCNDITIONS
pre dequeue(q: CQueue(X]) = notis_empty(q)
pre first(q: Queue(X]) = not is_empty(q)

AXIOMS
for all x: X, q: Queue(X]

1. is_empty(new())

2. notis_empty(enqueue(x, q))

3. if is_empty(dequeue™(q)) then, for all k < n,
first(dequeue*(q)) = first(dequeue*(enqueue(x, g)))

4. if is_empty(dequeue™(q)) then
first(dequeue”(enqueue(x, q))) = x

S. if is_empty(dequeue?(q)) then

is_empty(dequeue™*'‘anqueue!x, G;))

FIGURE 2.2: AN ADT FOR A QUEUE

q := new():
enqueue!a. g,
dequeue(q);

After enqueuing and dequeuing a single item on a new queue. the
resuiting queue should be empty.

The first axiom states

is_empty(new())

Consider the fitth axiom with n set equal to 0. By convention,
applying a function zero times is equivalent to applying the identity
function. Hence, the fifth axiom implies

if is_empty(new()) then is_empty(dequeue(enqueus{a, new())))

By inference, one can conclude

is_empty(dequeue(enqueue(a, new())))

This proves that the code fragment results in an empty queue.

This exposition demonstrates that object-oriented design is the construction of software systems
as structured collections of Abstract Data Type implementations [Meyer 88]. ADTs are implemented as
classes. An Object Oriented system is a collection of classes. The collection is structured by the

supplier-client relationship and by inheritance.
2.2 Designing Object Oriented Systems
According to Grady Booch, OOD is performed in five stzps: ’
1. Identify the objects
2. Identity the operations
3. Establish visibility

4, Establish interfaces

5. Implement each object.

7 The broad outiine of the mathodology presented here is based on T:at deveioped by Grady Booch in various books and
papers ((Booch 86), [Boach 87a), [Boocn 87b]). Discussion of the details ct vanous sieps oraws on work by Russeil Abbort ({Ab-
bott 83], [Abbott 86]) and Bertrand Meyer ((Meyer 88], especiaily chapter 14).

2.2.1 lidentity the Objects

Identifying the ocjects is acwually performea by identifying the classes ot which objects are
memcers. T he pnysical system that the software is modeling snould crovide some obvious indications
ot canagidate objects: & physical object might provide a soitware object. For example, if a window-
basea user interface is teing designed. potential cbjects are mice, keyboards, screens, menus., and

windows.

Libraries of classes may exist which can provide the designer with candidate objects. Aside from
queues, stacks, linked lists, hash tables, trees, and other data structures in computer science
applications, these libraries might include application-oriented objects. For example, the Common Ada
Missile Packages (CAMP) includes Ada packages for Kalman filters, radars, and altimeters (CAMP 87].

Inheritance makes possible the existence of objects that may be very hard to identify. If several
classes share similar attributes or operations, a good design might abstract these general properties into
a new class. The original classes wiil inhert these properties from this new class. In fact, the new
class might be inapplicable in its own right; its only purpose for existence could be to provide properties

that more usable classes could inherit.

As a design progresses, one may identify additional objects. The decentralized nature of COD
should allow such objects to be easily added. Hence, OOD attempts to promote the learning process

that naturally occurs when designing any software system.

2.2.2 Identify the Operations

Objects often can be modeled as ADTs which should suggest operations. For example, a queue
might have operations fcr checking whether it is empty, creating an empty queue, enqueuing an
element, dequeuing an element, and returning the first element. Objects can also be modeled by means
of Abstract State Machines, their use suggesting operations. Such operations will include returning

information on the current state and switching from state to state.

Finally, one may think of the operations available on an object as a shopping list. It is allowable
for operations to be made available that no client buys (uses). Too many operations for a given class,

however, may suggest that the ctass be broken up into several classes.

2.2.3 Establish Visibility

Once the classes. objects. and operations are determined, relationships must be established
among them. Cbjects can relate in terms of either client-supplier or ancestor-descendant pairs. The

decision whether a class should be an heir or a client of another ciass requires judgment.

More researcn needs to be gone on how 10 structure relationsnips between ciasses. Scme Cziect
Oriented systems have no structure ievel at a higher level than classes. Yet a large system may nave

on the order of hundreds of classes at the same level, a questionable design.

Various ideas on the architecture of Object Criented systems have been proposed. Some have
suggested that Cbject Oriented systems be ageveloped as layers of vitual machines (eg. Smaiitatk
includes a metaclass as a higher level struciuring mechanism [Cointe 87]). Some have objected to
inheritance, proposing various relationships between objects to supersede or controi it ([Minsky 87],
[Stein 87], and [Lieberherr 89]).

2.2.4 Establlsh Interfaces

The step of establishing interfaces amounts to formally describing the public view of an object.
Ada package specifications, which serve this purpose, can be programmed and compiled® before the
corresponding package bodies are coded. Modula-2 provides a similar facility. Both the Ada package
specification and the Modula-2 definition module establish what is available to users of an obpject.
Package specifications are also useful as a project management tool; they allow many programmers to

work in parailel on the package bodies with minimal communication.

2.2.5 Implement Each Obiject

The final step in the OOD methodology is to actually implement each object. Principles of
structured coding should be used for the detailed design of each operation. Only a limited number of
constructs (sequence, iteration, selection) should be used, and in a manner that permits formal

verification.

This step can actually be argued to belong to the coding phase. In some sense. OOD decreases
the distinction between design and coding. The goal is to provide a natural method of representing
characteristics of the problem domain in source code. Inasmuch as OOD achieves this goal, the
transition from requirements to source code should not result in an abrupt change in technology at the

end of the design phase and the beginning of the coding phase.

' Some Object Oriented languages do not provide for separately compilable interfaces. Eiffel provides for deferred
classes, which serve the same purpose.

10

3. LANGUAGE SUPPORT FOR OQOD

Cbject Criented Cesign is a methocclogy that was ceveloped in the ccntext of various
programming languages. The interactions of otjects can make demancs of the language, as well as the
development environment itself. This section cefines a scale for measuring the degree to which a

language supports OOD and actually compares various fanguages on the basis of the scale.

3.1 A Scale For Measuring Object Oriented Languages

Bertrand Meyer has proposed seven leveis® that measure how well a programming language

supports COD.

1. Modularization on the basis of data structures

2. Ability to describe objects as implememntations of Abstract Data Types (ADTSs)
3. Automatic garbage cotfection

4. Equivalence of modules and (non simple) types

5. Inheritance

6. Polymorphism and dynamic binding

7. Multiple and repeated inheritance

(1) Modularization on the basis of data structures means the language allows the type
declarations, constants, and procedures pertaining to a particular data structure to be grouped together.
The collection of such declarations should be capable of being set off from the rest of the program in a

separaie file or module.

(2) Data abstraction is possible if the language allows the specitication of a data structure or
object to be separated from its implementation. This separation should allow the specification to be
regarded as an implementation of an Abstract Data Type. The language should automatically prevent

unauthorized access to implementation details that the programmer wants hidden.

(3) Automatic garbage coilection is an implementation feature convenient for programmers.
Garbage collection occurs when the underlying language system automatically reclaims space occupied

by inaccessible data items.

? Brad Cox, the inventor of Objecave C, compares OCD languages by means of eight characterisucs, four in Meyers scale,
the other four being commercial availability, the availability of libraries, and two technical properties related to polymorphism (Cox
86).

1

{4) Equivalence ot modules and types exists in languages that co Not distinguisn between the
declaration of types and modules. Meyer defines a language construct combining module and type

aspects as a class. Variables ot such types are known as objects.

(5) Inheritance allows a class to be defined as an extension or specialization of another class.
Inheritance resembles subtyping in more traditional languages. As an example of inheritance, consider
a system for a windowing user interface. For example, in a system for a windowing user interface, a
class of geometric shapes might be defined. Typically, operations would return the center and color of a
shape, expose it, hide it, save it, move it, and so forth. Classes for special shapes such as triangles,
squares, and circles would include specialized operations for areas and perimeters, as well as all of the
operations of a general geometric shape. Inheritance provides for implementing these classes without
duplicating the code for operations that apply to general shapes. The special shapes then are declared
as descendants of the class of general geometric shapes having all the properties and operations of a

shape, as well as their own special operations.

(6) Polymorphism and dynamic binding identifies the ability of an object to be a member ot
different classes at different points of time during the execution of a system. In more traditional
terminology, polymorphism is the ability of a variable to take on more than one type during execution.
Dynamic or late binding allows the version of an operation which will be applied to an object to be
chosen as late as run time. Ordinarily, early binding results from a decision on the version of an
operation to be applied at compile time; polymorphism prevents this. Polymorphism and dynamic
binding support software development by allowing source code to properly localize certain design

decisions, thus leading to more understandable and easily modified code.

(7) Multiple inheritance is achieved when a class can inherit properties from more than one class
with the possibility of inheriting properties from another class in more than one way. As an analogy,
consider the case where a father and mother are distant cousins. Any children of such an union can
refer to some of their ancestors under more than one description. Designers of Object Oriented
languages that support multiple and repeated inheritance must resoive any ambiguities on the
interpretation of an operation that may arise from repeated inheritance. Consider, for example, two
classes: one for integers and another for arrays. By defining a new class that inherits from both these
classes, one can create a class for arrays of integers [Wiener 89]. This example demonstrates that

multiple inheritance can be at least as powerful as generics, although maybe not always as convenient.

Current languages tend to ciuster in three locations on this scale (Table 3.1). First, classical
languages, such as Assembly, Basic, C, Fortran, Jovial, and Pascal, do not necessarily allow
programmers to modularize on the basis of data structures. Modern data abstraction languages such as

Ada and Modula-2 provide powerful data abstraction and information hiding facilities that allow one to

12

LEVEL: 1 2 3 4 5 6
Fortran
Pascal

Cc
Modula-2
Ada

C++

> >» >» >

Obijective C
Lisp extensions A

Smaiitalk A

> » O » >» >» >
> >» » » O

» >» » » >» 0O
> >» » >» >» 0O
> >» > > >

Eitfel A

Key:

Level:
1 = Modularization on the basis of data structures
2 = Data abstraction
3 = Automatic garbage collection
4 = Module-type equivalence
5 = Inheritance
6 = Polymorpnism and dynamic binding
7 = Repeated inheritance

A = Level achieved
| = Achieved in some implementations
D = Level achieved, but differences noted

TABLE 3.1: PROGRAMMING LANGUAGE SUPPORT OF OQD, SCALE SUMMARY

13

~I

imptement ADTs. et they go nct fuuy support CCD. Nerther do they sugpon colymorpnism. cynamic
binding, and inheritance, ner co they allow a type to be icenlitied as a module. Finally, full Object
Oriented languages that lie on the upper end of the scale may be panitioned into two groups:
extensions of classical languages (C+, Objective C, Flavors, and Loops) and pure object oriented

languages (Smalitalk and Eiffel).

3.2 Classical Languages

In general, Algol style block structured languages fail to even reach the first level on this scale.
Examples of such languages widely used include Fortran, Pascal, and C. The primary structuring
mechanism in such languages is the procedure or subroutine. Some awkward implementation
techniques have been discovered for simulating certain OOD concepts such as classes and inheritance
in these languages {Meyer 88]. These techniques, however, violate the spirit of the language and result
in code that most conventional programmers would find fairly strange. In general, aithough one can
centainly implement an Object Criented Design in these classical languages, the resulting code fails to

reflect the structure of the design.

3.3 Data Abstraction Languages

Two influential languages, Ada and Modula-2, introduced during the early eighties, reflected much
research in language design. Although OOD was already used in certain small research communities
by the time these languages were designed, it had yet to gain the popularity it currently enjoys.
Consequently, these languages do not fully implement some Cbject Oriented concepts.

3.3.1 Modula-2

Modula-2 reaches the second level on the scale. It allows objects to be described as
implementations of ADTs, but it coes not provide for automatic garbage collection, nor for the

identification of types and modules.

Modula-2 provides a method of modularization above the procedure level and more rigorous than
that provided by an operating system's file structure. This methad, as provided by Modula-2 modules,
can be used to modularize on the basis of data structures. Modula-2 also allows the definition of a
module to be separated from its implementation. The resulting modules can be viewed as
impiementations of Abstract Data Types. For example, the definition module of a queue might look like

the following:

DEFINITION MODULE Queue;
EXPORT QUALIFIED Queue, New, IsEmpty, Enqueue, Dequeue, First;
(* Comments can provide axioms for these procedures.)

14

TYPE Cleue: * Cueue o1 CARTINALs. .
PROCZCURE IsEmpty(q: Cusuer: 8QOLEAN:
PROCZZURE Enqueua(x: CARDINAL: VAR q: Cueue);
PROCEZDURE Dequeue(VAR a: Cueue);

PROCEZCURE First(q: Cueue): CARDINAL;

END Cueue.

Unlike most languages, Modula-2 is case sensitive; ail keywords must be uppercase. This
restriction almost mandates a certain style for user defined entities. Note the deciaration of Queue in
the the above definition module for a queue. Modules and types are distinct in Modula-2, but this
exampie demonstrates the utility of a mechanism for combining these two concepts. Both the module
and the type share the same name. Queue is declared as an "opaque type,” Modula-2 jargon for types
made available in a definition module, but implemented in an implementation module. Modules that
import Queue may only reference it by means of the operations exported from the queue module.
Hence, Moduia-2 can be used to enforce information hiding and data abstraction techniques. |n many
implementations, opaque types suffer from a limitation; they can only be one word long. This restriction
is overcome for objects, such as queues, that require many words of storage by implementing such
objects as pointers. The pointer itself will be a word of storage, but the entity that it points {o can be
any length. Thus, to use Modula-2 to implement data abstraction techniques requires considerable use
of dynamically allocated memory. Since Modula-2 does not provide for automatic garbage collection,
the programmer must manage the heap himseif. Care is required in preventing aliasing and in allocating

and deallocating memory.

3.3.2 Ada

Ada does not fully nor completely support COD. Ada definitely allows objects to be described as
ADTs. Implementations are permitted o provide automatic garbage collection. Multitasking applications
can regard Ada tasks as both modules and types. Ada definitely does not provide polymorphism and
dynamic binding. Nevertheless, Ada introduces many powerful new features (whose capabilities are still
a matter of debate). OOD methodologies are widely known in the Ada community, are often taught with
introductory Ada courses, and are used by the NASA Goddard Space Flight Center and other designers

of large systems.

Ada reaches, at least, the second level on our scale. Ada package specifications. like Modula-2
module definitions, allow objects to be described as implementations of ADTs. For example, the Ada

package specification for a queue might look like the following:

15

senenc
type XType I1s pnvate:

cackage Cueue Is
type Queue;
procecure NEW(Q: in out Queue);

function IS_EMPTY(Q: in Queue) retum Boclean:

procecure ENQUEUE(X: in XType: Q: in out Queue);
— Raisas OVERFLOW if no more space can be allocatea for Q.

procedure DEQUEUE(Q: in out Queue);
- Raises UNDERFLOW it IS_EMPTY(Q).

funcgon FIRST(Q: in Queue) retum XType;
— Raises UNDERFLOW if IS_EMPTY(Q).

OVERFLOW : exception;
UNDERFLOW: exception;

private

type Queva_Node:

type Queue_Pointer is access Queue_Node:

type Queue_Node is record
X : XType;
NEXT. Queua_Pointer;

end record;

type Cueue is record
NUMBER_IN_QUEUE. Natural:
THE_QUEUE : Queue_Pointer;

end record;

end Queue;

This example illustrates several differences between Ada packages and Modula-2 modules. First,
the queue defined here is generic, with the type of items stored in the queue possibly diftering among
queues. No comparable feature is provided by Moduia-2; the Modula-2 example queue could only
contain cardinal numbers. Second, Ada provides user-defined "exceptions,” raised when anomalous
conditions arise. Control is returned to the calling procedure, but not necessarily at the point of
invocation. In effect, exceptions allow muiti-exit subroutines. Finally, packages that make use of
queues cannot access any entities declared in a private part (see example), but the compiler knows how
much space to allocate for queues because of the information in the private part. In effect, information

in the private part is invisible to users of queues.

Garbage collection is an implemertation decision for Ada compilers'. Since implementations can
refuse to provide automatic garbage collection, programmers need to be able to explicitly control the
allocation of memory. The pragma CONTROLLED and the standard procedure
UNCHECKED_DEALLOCATION are used for this purpose.

'0 The Ada Language Reference Manual [ANSI 83] states "An implementaticn may (but need not) reclaim the storage oc-
cupied by an object created by an ailocator (pointer}, once this object has become inaccessible (Section 4.8)."

16

The next lever on ne scaie. the equivalence of moguies ana types. is aiso parually introcucea in
Ada. Ada packages are cenainly not types, as the Queue example illustrates. However, Ada tasks can
te thougnt cf as objects with cgerations implemented as task entries. Tasks are a natural way to
modulanize muititasking apptications. Moreover, tasks can be explicitly declared as task types. A task
can have muitiple entries, each providing some service. Consequently, Ada tasks provide features of
both modules and types. For Object Oriented language designers to adopt the Ada tasking model, Ada

tasks must be shown to be capable of simple and efficient implementation.

Inheritance is probably the most controversial requirement in considering Ada's support for OOD.
Ada has a complicated type structure with derived types and subtypes that can simulate inheritance
[Perez 88]. Ada’'s ability to define generic packages and procedures, however, is most closely related to
inheritance. Both generics and inheritance are mechanisms for making modules more reusable and

flexible!".

Ada definitely does not support polymorphism and dynamic binding, the next level on the scale for
measuring language support for OOD. Ada is strongly typed with binding performed at compile time.
Ada does allow liberal use of overloading; many procedures can be given the same name. In any given
case, Ada compilers decide based on the number and type of arguments what procedure is being

referenced.

3.4 Object Oriented Extensions of Classical Languages

As COD has become more popular, various classical languages have been extended to make
OOD more accessible to the broad mass of programmers. Traditional programmers should feel
comfortable using them to gradually evolve to Object Oriented Design. Portions of a system, for that
matter, can comfortably reflect classical designs and yet te fully integrated with Object Criented

portions.

3.4.1 C Extensions

Researchers have recently grafted Object Oriented concepts to a C base. The two most weil-
known languages resulting from these attempts are C++ and Objective C.

"' In fact. programmers have found generics so desirable that they have atempted to implement generics in Modula-2
([Reynoids 87] and (Wiener 85]). Bertrand Meyer conciuded that the appiicabons supported by generncs are only a proper subset
of these supported by inhentanca. Some applications, however, are most conveniently supported by generics. Inheritance is
more powerful, but a weil designed language might also support car@in aspects of generncs {Meyer 86].

17

3.4.1.1 C++

C++'2 reaches the upper reaches of the scale for measuring language support for OOD. The
programmer can introduce classes which compine types and functions. As in Ada, these classes can
have both a public and a private part, a specification and an implememntation. For example, the

specitication of a queue class might be given by the following:

class QUEUE {
private:
int thefirst, thelast, impi[MAXSIZE];
public:
void new();
BOCLEAN isempty();
void enqueue(integer);
void dequeue();
int first();
)i

Not shown in this example are friend functions, a new concept introduced in C++. Unlike the member

functions defined above, friend functions require an argument denoting the object to which they are

applied. Friend functions aflow C++ functions to be called from normal C code.

C++ has inheritance, polymorphism, and dynamic binding. Multiple inheritance was introduced in
Version 2. C++ does not provide automatic garbage collection, but the ability to automatically invoke

destructors removes much of the burden associated with memory deallocation.

3.4.1.2 Objective C

Objective C' is a preprocessed extension to C that fully supports OOD. It provides automatic
garbage collection, polymorphism, dynamic binding, and inheritance (inciuding multiple inheritance).
Obijects are supported by means of a new data type, an object identifier. Just as variables can be
declared as belonging to a C base type, so variables can be declared as an object identifier in Objective

C. Avariable of the object identifier can be used to hold an identifier for any type of object.

3.4.2 Lisp Extensions: Flavors and Loops

OOD might be regarded as a small twist to traditional procedural oriented programming. Instead
of regarding procedures as acting on data, OOD adopts the view that objects invoke methods in

response to messages, an important new method of designing system architectures. At the lowest level,

2 C4+ was developed beginning in 1980 by the same group at Bell Laboratonies that designed C. Interestingly, Biar_ne
Strousuup, the inventor of C++, states he was inspired to develop C++ pantly to develop a simulaton program, the applicaton
area of Simula. Furthermore, Stroustrup's experience with Simula exposed him to the power of Object Oriented languages
[Stevens 89].

'3 Objective C was designed by Brad Cox. now with the Stepstone Corporation, drawing on his experience with Smailtalk.
Becausa Dr. Cox is not affiliated with ATAT, hae feit himseif less free to modily the base language when grafting Object Oriented
concepts onto C than was done in Cee.

thougn, traattional structurat metnods are used. i least In data acstraction languages ang Ckiect

Qriented extensions to ctassical languages.

The fact that researchers have added Ctiject Criented extensions to Lisp, however, suggests that
QOQD is a dramatic revolution. Lisp'* has evolved cut of a completely different tradition than block
structured languages such as Fortran, C, Pascal, and Ada. Lisp is ubiquitous in Al research, tut rare
elsewhere. |t promotes a style known as functional programming {Backus 78]. Al researchers to
implement 3 wide variety of tools and environments in Lisp. Lisp encourages programmers to disregard
the distinction between programs and data and write short, highly recursive programs. As part of this

style, Lisp programs are weakly typed.

The most popular Lisp extensions supporting COD are most likely the languages Loops and
Flavors'S. These Lisp extensions give very complete support to QQD, all provide classes with aspects
of both types and modules. These classes, known as flavors in Flavors, provide a mechanism to
modularize on the basis of data structures. However, consistent with Lisp traditions, the resulting data
structures differ from those used in traditional block structured languages. Lisp data structures tend to
be recursive lists of lists. Accordingly, natural axioms for describing classes as Abstract Data Types may
difter.

Lisp itself relies heavily on automatic garbage collection, with Lisp programmers likely to work in
very advanced programming environments. Pure Object Oriented languages are aiso characterized by
advanced environments, but with somewhat different features. Garbage collection is only a small aspect

of such environments.

Object Oriented extensions to Lisp support polymorphism, dynamic binding, and inheritance.
Dynamic binding is another Object Oriented feature that's fairly trivial to provide to Lisp extensions. Lisp
environments are usually interpretive, with many dynamic properties. The weak typing provided by Lisp
has important implications for how inheritance is used. The resulting class hierarchies in, say, a Flavors
system can be quite different than those supported by a comparatly strongly typed language such as
C++ (Wolf 89].

Despite the high support for OCD of these Lisp extensions, adopting any one of them should be
carefully considered. Adopting a Lisp extensions would invoive leaming two new paradigms, not just
one. The interaction of these paradigms would invariably destroy the possibility of isolating the effects of

just one, COD, on any resutting projects.

14 John McCarthy intoduced Lisp in the late 1950s to support research in Artficial Intelligence (Al). Essentially, Usp is an
implementation of Alonzo Churcn's lambda calculus, introduced o investigale certain theoreocal questons in computability and
logic. Related work stems from Turing Machines and Godel's incompleteness theorems.

'8 Loops was developed at Xerox, originally as an Interisp vanant. Flavors was developed at the Massachuseas Institute
of Technoiogy.

19

3.5 Pure Object Criented Languages

Pure Object Oriented languages represent the state of the art of OOD. Naturaily, these languages

also fall in the upper end of the scale.

3.5.1 Smailtalk

Smalitalk'® almost defines the OOD paradigm and lies at the highest end of the scale for
measuring Object Criented languages. Classes and objects provide a natural basis for modularization.
Smalltalk provides garbage collection, polymorphism, dynamic binding, and inheritance (including
multiple inheritance). Smalitalk provides a good commercially available means of investigating COD, but

it is most widely viewed as a tool useful in producing prototypes, not in developing production system.

3.5.2 Eiffel

Eiffel is probably the most well known pure Object Oriented language introduced during the latter
half of the 1980s. Since Bertrand Meyer designed Eiffel as well as the scale used to evaluate OOD

language support, Eiffel naturally is at the top of the scale.

Eiffel supports all OOD concepts discussed. The basic modularization mechanism, the Eilfel
class, combines properties of both modules and types. An Eiffel system is a collection of classes:
Control is decentralized. In particular, an Eiffel program contains no main procedure, rather the user
declares one class to be the root. This class will create other classes and may pass control to them.
Classes can relate to one another through inheritance, including repeated and muitiple inheritance.

Polymorphism and dynamic binding are provided.

Eiffel borrows certain ideas from Ada including the ability to distinguish between class
specifications and implementations, generic classes, and exceptions. Some differences between the

use of these features in Eiffel and Ada are illustrated by the example of a queue:

class interface QUEUE[XTYPE]
exported features

isempty, number_elements, enqueue, dequeua, first
feature specification

isempty: BOOLEAN
- Is queue empty?

number_elements: INTEGER

'8 Smailtalk is the mest famous programming environment 1o emerge from the Xerox Palo Alto Research Center (PARC).
Mesa and Cedar are exampies of more recent environments produced by Xerox PARC.

20

enqueue(x: XTYPE)
- Enqueue x.
ansure
number_elements = oid numoer_eiements + !
daqueue
-~ Deleate first element in queue.
require
not Isempty
ensure
number_eiements = oid numoer_elements - 1
first XTYPE
- Value ot first element in queue.
require
not isempty

end interface —~ class QUEUE

This is a class interface specification similar to a package specification in Ada. Since interfaces
are not coded separately from implementations in Eiffel, the above is not even valid Eiffel code. This
queue interface is actually the output of a tool supptied with the compiler. In Eiffel, one codes a class as
one would ccde a package body in Ada. This tool, called Short, then generates an interface
specification to provide programmers with the information to use that class while satisfying principles of

information hiding and data abstraction.

However, Short does not support project management as do Ada packages specifications. A
Short specification is only produced from a completely implemented class. Eiffel does provide a
separate facility, the ability to defer the implementation of a class, that permits an Eiffel program to be

developed similarty to the Ada process model'”. But this facility is not integrated with Short.

As weli as supporting inheritance, Eiffel provides generics. !n fact, the sample queue specification
is a generic containing the generic parameter XTYPE. Eiffel generics are not nearly as {ull featured as
Ada generics. They are provided only to support those applications that are not quite as convenient to

implemert with inheritance.

Eiftel is purposely designed to allow exceptions 1o be reasoned about formally. Ada exceptions
can be used to create programs even more difficuit to reason about than those loaded with gotos. Yet
they address the need to gracefully handle malfunctioning sensors and interrupts. Eiffel formally
introduces preconditions and postconditions. These are seen in the "require” and "ensure” clauses of
the above queue exampie. When a precondition or postcondtion is not met, an exception is raised and
control is returned to the calling procedure. Eiffel clearly restricts use of exceptions; exceptions are not

allowed to propagate willy-nilly through an Eiffel program.

Eiffel demonstrates that support for a particular programming paradigm is not the only

measurement criteria in evaluating programming languages. Efficiency, ease of reasoning about

'7 Ada package speaficatons allow a few skilled designers to outine the interfaces ta the packages in a system before
many others actually implement them. With Ada and Modula-2, the separason of spedfications from implementation allows
coders to proceed in relatve isolation from one another.

21

programs. powertul abstracuon mecnamisms. and support for parallel crecessing mignt all be relevant.
Eiffel integrates pure Object Oriented capabilities with powerful advances brougt forth in Ada unrelated
to OCD.

22

4. LARGER IMPLICATIONS

Software is inherently complex, and no foreseeable technology can be expected to remove that
complexty'®. Despite this lack of foreseeable technological breakthroughs, some ongoing researcn
does ceal with the conceptual essence of software. CQD attacks essential difficulties in software
design. it also shows great promise in supporting software reuse. Finally, it has interesting implications

on alternative software lifecycte models.

Various criteria can be used to evaluate a software design methodology. The methodology should
resuit in a solution that mirrors the problem domain. Guidance should be provided on how to
decompose a problem into smailer, "mind sized,” problems. The notation in which the design is
expressed should reflect this development and be readily comprehensible to readers. Finally, the

methodology should be based on a rigorous theory.

OOD was deveioped to address certain gaps in structured programming. Top down design
scatters related matters, panicularly those invoiving data structures throughout the code. Although the
program may have begun in terms of the problem domain, the final notation tends not to reflect this
orientation in any easily visible manner. Top down design can encourage the development of tightly
coupled procedures that depend for correct operation on the sequence in which they are called. The
resuiting loss of comprehensibilty and lack of composability becomes particularly debilitating on large

projects.

OQD is effectively a continuation of the structured programming revolution to meet the challenges
of "programming in the large,” the design of large systems over an extended period. It provides a
method for decomposing a problem without falling into the traps of structured programming. Like top
down design, OOD allows a solution 1o be specified in terms of the problem domain. The concepts from
the problem domain, however, are objects, not functions, objects (data) being more stable than
functions. Further, since decomposition is based on objects, components can be more easily combined
to solve new problems. By allowing data and procedures in the resulting design to be grouped into
modules or classes, the final notation should clearly reflect the design and the problem domain. Finally,
the use of Abstract Data Types provides the needed formalism to clearly reason about Object Criented

Designs.

'8 This inherent complexity reflects the difficulties in scaling up over many lavels of abstracton, the nonexistence of any
adequats mathemaoscal theory for analyzing a very large number of discrete states, the requirement that software contorm to ar-
bitrary intartaces dictated by the people and insstwoons it supports, the pressures on software to constandy change, and the
difficutty in visualizing software architectures (Brooks 87].

23

4.1 Software Reuse

OOD seems to be the most promising cesign methoa available now. QOD promises to offer
advantages particularly in encouraging software reuse. Reuse can include much more than code; "any
information which a developer may need in the process of creating software [Freeman 87]" (e.g.
specifications, plans, designs, code, and test cases) may be reused. Cataloging and retrieval schemes
for this information can be a key problem in using reuse to develop software. In addition to technical
concerns, reuse issues include economic, legal, and institutionat concerns. Finally, reuse requires a
certain mindset not necessarily common among many programmers. COD, however, only addresses a

limited range of these issues.

OOD promises to dramatically increase the reuse of software, thus reaping these benefits of lower
cost and increased reliability. As a technological solution to some of the problems of the software crisis,
reusability raises productivity. If a given functionality can be delivered by constructing a software system
from existing components, rather than by developing new code, that functionality will be produced at a
lower cost. Reuse has economic benefits since the cost ¢f new development can be amortized over all
future projects that reuse the products of the original development. Finally, reuse can improve the

reliability of software products since often used code should be more reliable than code developed for

one-time use only.

Adopting OOD requires a new mindset on the part of software developers. OOD encourages
programmers to concentrate on the architecture of systems and to consider systems as composed of
objects. Such an attitude should result in programmers being more willing to reuse objects without

feeling any limitations on their creativity.

Several properties suggest that OOD can very successfully promote the reuse of code. Since
objects provide a convenient packaging mechanism, reused ccde often need not be modified. If it does,
programmers can modify objects by inheriting reused functionality from libraries and only modifying what
they need in the new objects. The library itself can remain unchanged. QOD then supports the

deveiopment of libraries of classes.

OQOD researchers have developed techniques that address some of the cataloging and retrieval
difficulties of reusability. Smalltalk environments include a tool, Browser, that is useful for quickly
examining libraries of classes. When deciding whether or not to use a library component, a programmer
needs a mechanism for determining what a component does, other than reading the entire source code.
Well documented Ada package speciications and Modula-2 module definitions provide such a

mechanism.

OOD's promise of software reusability has already been successful in a few cases. A taxonomy

for reusable software components has been proposed [Booch87a). Components with different time and

24

space cnaractenstics (e.g. dynamic allocation of memory versus a fixed size at compile time) have been
developed (stacks, lists, strings, gqueues, rings, sets, and trees) using the Object Oriented Design
methodciogy. Althougn not all vanations permitted by Booch's taxonomy are filled yet, the resuiting

complete set of components is now commercially available.

The NASA Goddard Space Flight Center (NASA/GSFC) has experimented with Ada and OQD in
the Software Engineering Laboratory (SEL) in the last few years. They concluded that Ada needs to te
taught with a design methodology; otherwise, the result is "Adatran" code, Ada code written in a Fortran
style. As a consequence of experiments with OQOD, the SEL produced two OOD systems*® particularty

oriented towards producing reusable components.

Interestingly, both of these successful uses of OOD to produce reusable components produced
Ada packages. Noting that Ada does not fully support OOD, these resuits suggest that the reusability
benefits of OOD at the least, can be achieved with only a partial implementation. The ability to
experiment with an innovation on a limited basis is one characteristic that will lead to an innovation being

rapidly adopted (Rogers 1983].

4.2 Life Cycle Support for OOD

OOD can be used in a project managed with the traditional waterfall life cycle?® model. Basically,
Object Criented Design is a method for performing the design and coding phases of the waterfall model.
In particular, OOD is strongly oriented toward the architectural design performed during preliminary
design. Because of its close connections to certain programming languages, however, COD aiso

supports the detailed design (and coding) phases.

The most obvious restriction that OOD ptaces on tools and methods occurs during the coding
phase. One of greatest benefits COD is likely to provide is lower maintenance costs resuiting from

'? One was coded in Fortran and the other in Ada. Successive projects tried to reuse this code. The Fortran project fol-
lowing did not have a higher percentage of reused code than is typical of NASA/GSFC projects. The Ada project following, how-
ever, was constructed with ninety percent reused code. The SEL conduded that this percentage is higher than can normaily be
expected. Nevertheless, the SEL does believe that OOD, as implemented in Ada, leads to more reusable code (Seidewiz 89].

2 The waterfail model envisions software systems daveloping by maving in order through a sequencs of phases. Although
the exact phases vary from one model to another, a typical model might include requirements, preliminary design, detailed
design, code and unit testing, integration testing, and system testing. DOD-STD-2167A, Defense System Soltware Development,
defines the phases comprising the software deveiopment life cycie:

Software requirements analysis

Preliminary design

Detailed design

Coding and Computer Software Unit (CSU) testing

Computer Soltware Component (CSC) integration and testing

Computer Software Configuration item (CSC!) tastng

25

OQD’s increased flexibilty. Reducing maintenance costs that are 40 to 70 of the total cost for large
systems can be significart ([Soehm 81] and (Pressman 87]). Unless the coding language reflects the

Object Criented nature of the design, much of the potential for reducing this cost will be lost.

OQD can also be used as a rapid prototyping tool during the requirements phase, particularly
using the Smatltalk environment. By making a large library ot predefined classes available, Smalitalk
systems allow one to rapidly construct a system by linking already existing classes. This increased

flexibilty also encourages a style of exploratory programming needed for rapid prototyping.

The use of OOD as a design method, however, imposes restrictions on what methods can be
used during requirements analysis. A method oriented more toward data structures?' and less toward

system functionality?? can be expected to work better with OOD.

OOD promises to give broad support for software reuse, but the watertall model does not fit well
with reuse. No task performed under the waterfall model is explicitly oriented towards either using
existing libraries or producing reusable components. Reuse requires conscious direction by

management.

OOD attempts to build more flexible systems. The rigidity of the waterfall model hinders the
continual adaptation of a design as its role becomes more precisely understood. Obviously, this rigidity
of the waterfail model counters the flexibility sought by means of OCD. Changing a life cycle model can
be very costly, but the modifications suggested for OOD fit into a natural evolution that seems to be

occurring already.

OO0D, then, can fit the conventional waterfall model, but alternative models may take fuller
advantage of the increased reusability and flexibility that OOD promises. Various models have been
suggested to improve the sottware life cycle. A spiral mode! of repeated builds has been proposed
[Boehm 88). In adapting the Constructive Cost Model (COCOMO) for Ada. Boehm has aiso proposed an
Ada process model that tits comfortably with OOD. In this model a smail team of designers begins by
designing class interfaces and Ada package specifications. The team grows so as to implement these
classes. The division between design and coding phases is less rigid in this mode! than in many
waterfall models. In particular, many Critical Design Reviews (CDRs) are conducted, each concentrating

on a particular class or subsystem.

2! The two most weil known data structure-oriented methods are probably Jackson Systam Development (JSD) ([Jackson
75] and {Jackson 83]) and Data Stuctured Systems Development, also known as the Warnier-Orr methodology (Pressman 87].
Grady Booch has found OOD to work well with JSD [Booch 87b).

2 The most well-known requirements method oriented towards system funcionaiity is undoubtably Structured Analysis
(SA) [DeMarco 73]. One might expect SA 1o work less well with OCD; in fact, SA incorporatas its own design methodology
which s known as transform anatysis. Pracutoners, however, have built up a great deal of expenence applying SA to a wide
variety of systems under a wide vanety of conditions. Some have even found it passible to apply SA with OOD [Ward 89].

26

The acoption of a new model basea ¢n rapig oreiciypiNg NEs &iso been suggested. Sy intenwining
speciticaton and implementation. systems users are celter acccmmodated. Smalitalk itself grew up in
an environment in which exploratory programming is encouraged. This history is strong evidence that

OQD shouid fit weil with these new paraaigms= for soitware development.

3 A good overview of these alternatve life cycie models is provided by [Agresn 86).

27

5. SUMMARY

QOD is an exciting design methodology that is currently garnering a lot of attention. By providing a
briet introduction to the technical features of OOD and the core elements of the methodology, this report

has provided a sense of what the excitement is all about.

For some time now analysts have been grappling with the essential difficulties of building large
software systems. An OOD methodology was presented in Section 2 that, while promising no miracle
cure, can guide system developers toward more flexible and robust solutions. As was mentioned in
Section 1, the research that led to this methodology grew out of concerns with issues not addressed by
the structured programming revolution, most notably inadeguate guidance on modular decomposition
and a lack of flexibility in the resulting systems. Now that practitioners have seen these problems cause
real systems to fail, a methodology developed to meet these problems, OCD, is becoming increasingly

popular.

Ultimately, all software systems are expressions in some programming language. For a design
methodology to be successful, the resulting solution needs to be clearly stated in the programming
language. Section 3 evaluated several languages for their support for OCD. Some of these languages
are fairly obscure, but the languages that are being selected by the marketplace these days show a
strong OOD flavor. The results and scale for rating languages presented in Section 3 will help the
reader choose a programming language for his system. They will also help those who have no choice

better use the languages they have to support COD.

Section 4 has shown that considerable benefits can be obtained from OQD, particularly in the area
of reusability. OOD also fits well with the prototyping orientation of new lifecyctes designed to overcome
the rigidity of the traditional waterfall model. To obtain these benefits, Defense contractors tace
potentially increased costs of gearing up for OOD, resistance to the needed paradigm changes, and
complications of applying QOD against mandated development standards. If recent history is any guide,
however, OOD will continue to become ever more widely used and wiil play a large role in the future

development of software engineering.

28

6. REFERENCES

[Abbott 83] Abbott. Russell J., "Program Design by Informar Engiisn Descriptions.” Communicaticns cf
the ACM, Volume 26. Numper 11, Novemper 1283.

(Abbott 86] Abbott, Russell J., An Integrated Approach t2 Software Development, John Wiley & Sons,
13986.

[Agresti 86] Agresti, Viliam W.. New Paraaigms for Scftware Development, |IEEE Computer Society,
1986.

[ANSI83] Reference Manual for the ADA Programming Language, ANSI/MIL-STD-1815A, United States
Deparntment of Defense, January 1983.

(Backus 78] Backus, <ohn, "Can Programming be Liberated from the Von Neumann Style? A
Functional Style and its Algebra of Programs,” Communications of the ACM, Volume 21, Number 8,
August 1978.

[Boehm 81] Boehm, Barry W., Software Engineering Economics, Prentice-Hall, 1981.

[Boehm 88] Boehm. Zarry W., "A Spiral Model of Software Development and Enhancement.”
Computer, May 1988.

[Booch 86] Booch, Grady, "Object-Oriented Deveiopment,” /EEE Transactions on Software
Engineering, Volume 12, Number 12, February 1986.

[Booch 87a] Booch, Grady, Software Compaonents with Ada. BenjamirvCummings Publishing Company,
Inc., 1987.

[Booch 87b] Booch, CGrady, Software Engineering with Ada, BenjamirvCummings Publishing Company,
Inc., first edition 1983, second edition 1987.

[Brooks 75] Brooks, Frederick P., Jr, The Mythical Man-Month, Addison-Wesley, 1975.

[Brooks 87] Brooks, Frederick P., Jr, "No Silver Bullet: Essence and Accidents of Software
Engineering,” Computer. Aprii 1987.

(CAMP 87] "Version Cescription Document for the Missiie Software Parts of the Common Ada Missile
Packages (CAMP) Project.” McDonnell Douglas Astronautics Company, 30 October 1987.

[Cointe 87] Cointe, “ierre, "Metaclasses are First Class: The ObjVlisp Model,”" Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA'87) Conference Proceedings, October
1987.

[Cox 86] Cox, Brad J., Object Oriented Programming: An Evolutionary Approach, Addison-Wesley
Publishing Company, 1286.

[DeMarco 79] DeMarca, Tom, Structured Analysis and System Specification, Yourdon Press, 1979.
[DOD-STD-2167A] Defense System Software Development, DOD-STD-2167A, 29 February 1988.

(Freeman 87] Freeman. Peter, "Reusable Software Engineering: Concepts and Research Directions,”
Tutorial: Software Reusability, The Computer Society of the IEEE, 1987.

[Jackson 75] Jackson. Michael A., Principles of Program Design, Academic Press, 1975.

29

«sackson 83] Jackson. Michael A.. System Deveiopment. Prentce-Hall International, 1283.

(Lieberherr 89] Liebernerr, Kan J. and Hollana. lan M., "Assunng Good Style tor Object-Orientea
Programs,"” |IEEE Software, September 1989.

[Meyer 86] Meyer, Bertrand. "Genericity versus Inheritance.” Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA'86) Conference Prcceedings, September/October 1986.

[Meyer 88] Meyer, Bertrand, Object-Oriented Software Cons:iruction, Prentice Hall International Limited,
1988.

[Minsky 87] Minsky, Naftaly H. and Rozenshtein, David, "A Law-Based Approach to Object-Oriented
Programming,” Object-Oriented Programming Systems, Languages, and Applications (OOPSLA87)
Conference Proceedings, October 1987.

[Parnas 72] Parnas, David L., "On the Criteria to be used in Decomposing Systems into Modules.”
Communications of the ACM, Volume 15, Number 12, Decemper 1972.

[Perez 88] Perez, Eduardo. "Simulating Inheritance with Ada,” Ada Letters, Volume 8, Number 5,
September/October 1988.

[Pressman 87] Pressman, Roger S., Software Engineering: A Practitioner's Approach, Second edition,
McGraw-Hill Book Company, 1987.

[Reynolds 87] Reynolds, Charles W., "On Implementing Generic Data Structures in Modula-2," Journal
of Pascal, Ada, & Moduia-2, Volume 6, Number 5, September/October 1987.

[Rogers 83] Rogers, Everett M., Diffusion of Innovations, Third edition, Free Press, 1983.

(Seidewitz 89] Seidewitz, E. and Stark, M., "Ada in the SEL: Experiences with Operational Ada
Projects,” Second NASA Ada Users’ Symposium, November 1989.

[Stein 87] Stein, Lynn Andrea, "Delegation is Inheritance,” Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA'87) Conference Proceedings, October 1987.

[Stevens 89] Stevens, Al, "From C to C++," Dr. Dobb’s Jomal, Winter 1989.
[Stroustrup 88] Stroustrup, Bjame, "What is Object-Oriented Programming?" /EEE Software, May 1988.

[Ward 89] Ward, Paul T., "How to integrate Object Qrientation with Structured Analysis and Design,"
IEEE Software, March 1989.

[Wiener 85] Wiener, Richard S. and Sincovec, Richard F., "Two Approaches to Implementing Generic
Data Structures in Modula-2,” ACM SIGPLAN Notices, Volume 20, Number 6, June 1985.

[Wiener 83) Wiener, Richard S. and Pinson, Lewis J., "A Practical Example of Multiple Inheritance in
C++,” SIGPLAN Notices, Volume 24, Number 9, September 1989.

[Wolf 83] Wolf, Wayne, "A Practical Comparison of Two Chject-Oriented Languages,” /EEE Software,
September 1989.

30

Appendix A.
GLOSSARY

Abstract Data Type (ADT) - A data type from which imclememnation cetals are zbstracted. 7he

properties of an ADT are defineg fermally, typically by a collection of axioms.

Abstract State Machine - An automaton with weil defined states; a means cf detecting the current

state; and a mechanism for switching from one state to another.

Ada - A programming !anguage mandated by the Department Cf Defense (DoD) to be used for all
mission critical software. Ada's design began in the 1970s.

Ancestor - A class that provides features inherited by another class. Contrast Descendant.
C++ - An Object Oriented extension of the programming language C.

Class - 1. A type and ils associated attributes and operations. Instances of a class are known as

objects. 2. A language construct combining module and type aspects.
Cllent - A class that makes use of the services provided by a given class. Contrast Supplier.

CLU - A programming language developed at the Massachusetts Institute of Technology during the

1970s. CLU has many Cbject Criented features, although it does not supgort inheritance.

Constructor - An operation that either creates an object or changes its state. Contrast Destructor,

Iterator, and Selector.

Data Abstraction - the separation of the specification of a data structure or object from its
implementation. Data abstraction allows an implementation to be changed without its use being
affected.

Descendant - A class that inherits teatures of another class. Contrast Ancestor.

Destructor - An operation that destroys an object. Contrast Constructor, Iterator, and Selector.

31

Dynamic Binding - Also known as Late Binaing. ~ language feature of Cbject Criented languages in
which any ambiguities in the meaning of an identifier are resoived at run time. For example, since the
types of several polymorphic variables used as arguments to a given invocation of a procedure might
change during program executicn, that invocation must be bound to several ditferent tut identically

named procedures during run time. See polymorgiism and contrast static binging.

Eiffel - An Object Oriented language and environment developed in the 1980s.

Flavors - An Object Criented extension of the programming language LISP.

Garbage Collection - the deallocation of space occupied by inaccessible data items or objects.

Generics - Modules in which certain parameters are instantiated at run time. For example, an Ada
generic package might specity a stack such that the same source code can be used to instantiate a

stack of integers and a stack of characters.

Inheritance - A feature of Object Oriented languages in which a class can be defined as an extension
or specialization of another class. This feature is analogous to the ability to define subtypes in

traditional languages.

Intormatlon Hiding - A principle of program design in which implemertation details are not available to

modules using a given module or client classes of a given class.

Iterator - An operation that permits all parts of an object to be read or updated. Contrast Constructor,

Destructor, and Selector.
Loops - An Cbject Criented extension of the programming language LISP.

Message - A request that an operation be performed on an object; terminology used in Smalitalk. See

aiso Method.

Method - An operation; terminology used in Smaittalk. The class of an object must find the appropriate

method to apply when a message is sent to that object.

Modula-2 - A programming language introduced in the early 1980s by Niklaus Wirth, the designer of

Pascal. Although simpler, Modula-2 shares many of the features of Ada.

32

*odute - ~ collecuon of data tvCas. consianis, vanacles. grececures. and functiens. T, picaily mecuies

Can ce separately compiied.

Multiple Inheritance - A language feature cf Cbhject Criented languages in whnich c.asses can inrertt
features from more than one ciass. In other words, a descendant class can have mere than one cirect

ancestor.

Object - An entity that has a state, is characterized by the operations that can be performed on it, is
denoted by a name, is an instance of a class, and can be viewed by its specification as well as its

implementation.

Object Oriented Design - the construction of software systems as structured collections of Abstract

Data Type implementations.

Objective C - An Object Oriented extension of the programming language C.

Operation - A means of accessing the state of an object. Operations are analogous to procedures in

traditional programming languages. They can be constructors, destructors, iterators, or seiectors.

Overioading - A language feature in which an identifier can have severai alternative meanings st a
given point in the program text. For example, several different procedures might share the same name;
the compiler would typically resoclve any ambiguities based on the number and type of arguments.

Compare Polymorphism.

Polymaorphism - A language feature in which a program entity, such as a variable or object, can refer to
instances of different types or classes at run time. Since the operations of these ciasses may share the
same name, the meaning of an identifier at a given point in the program text may change during

program execution. Compare Overloading.
Repeated Inheritance - A special case of muttiple inheritance in which a class has ancestors throughn
more than one route. For example, if class A inherits properties from classes B and C, and classes B

and C each inherit properties from O, the relationship between A and D is one of repeated inheritance.

Selector - An operation that returns information on an object's state. Contrast Constructor, Destructor,

and lterator.

33

Simula - A programming {anguage introduceg N 1967, scmetimes caited Simula-67. Simuia introducea

the class teature of Object Oriented languages.

Smalltalk - An Object Oriented language and environment developed at the Xerox Palo Alto Research

Center in the 1970s.

Static Binding - Also known as Early Binding. A language feature in which any ambiguities in the
meaning of an identifier are resoived at compile time. For example, the compiler might bind a given
invocation of a procedure to one of several identically named procedures based on the number and type

of arguments. See overioading and contrast dynamic binding.

Strong Typing - The enforcement of the type of a variable or the class of an object, which prevents
variables of different types from being intercrianged or, at most, allows them to be interchanged only in
very restricted ways. For example, in a strongly typed language, it might be a syntax error to attempt

integer arithmetic on pointers. Contrast Weak Typing.
Suppitler - A class that provides services which other classes can use. Contrast Client.
Weak Typing - The nonenforcement of the type of a variable or the class of an object, which allows

variables of different types to be interchanged and combined in many ways. For example, in a weakly
typed language, one might be able to add integers to boolean variables or perform integer arithmetic on

pointers. Contrast Strong Typing.

34

168

2305

2341

Appendix B.
ANNOTATED BIBLIOGRAPHY

Brooks. Frederick P., Jr; THE MYTHICAL MAN-MONTH ESSAYS ON SOFTWARE
ENGINEERING. 206 p. Avail. from Addison-Wesley, BenjamirvCummings Publ. Co., Inc..
Jacob Way, Reading, MA 01867. QOrder No. ISBN 0-201-00650-2.

Key words:

An eminent computer expert, Brooks has written a collection of thought- provoking essays on
the management of computer programming projects. These essays draw from his own
experience as project manager for the IBM Systenv360 and for OS/360, its operating system.

In the essays, the author blends facts on software engineering with his own personal opinions
and the opinions of others invoived in building complex computer systems. He not only gives
the reader the benefit of the lessons he has leamed from the OS/360 experience, but he writes
about them in an extremely readable and entertaining way.

Althougn formuiated as separate essays, the book expresses a central argument. Brooks
believes that large programming projects suffer management problems different in king from
small ones due to the division of labor. For this reason he feels that the critical need is for
conceptual integrity of the product itseif, and in essay formn he explores both the difficuities of
achieving this unity and the methods for achieving it.

Parnas, David L.; "ON THE CRITERIA TO BE USED IN DECCMPQOSING SYSTEMS INTO
MODULES," In Tutorial on Software Design Techniques. Apr 1980. pp. 220-225. Avail. from
IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. Order No. EHO 161-0.

Key words:

This paper discusses modularization as a mechanism for improving the flexibilty and
comprehensibility of a system while allowing the shortening of its development time. The
effectiveness of a "modularization” is dependent upon the criteria used in dividing the system
into modules. A system design problem is presented, and both a conventional and
unconventional decomposition are described. It is shown that the unconventional decomposition
have cistinct advantages for the goals outlined. The criteria used in arriving at the
decomposttions are discussed. The unconventional decomposition, if implemented with the
conventicnal assumption that a module consists of one or more subroutines, will be less efficient
in most cases. An alternative approach to imptemertation wnich does not have this effect is
sketched.

U.S. Dept. of Defense; REFEAENCE MANUAL FOR THE ADA PROGRAMMING LANGUAGE.
Report No. ANSI/MIL-STD-1815A. 330 p. Avail. from Naval Publications and Forms Center,
5801 Tabor Avenue, Philadelphia, PA 19120.

Key words:

This standard specifies the form and meaning of program units written in Ada®. Its purpose is to
promote the portability of Ada programs to a variety of data processing systems. This standard
spectties the form of a program unit written in Ada; the effect of transiating and executing such a

~ program unit; the manner in which program units may be combined to form Ada programs; the

predefined program units that a conforming implementation must supply; the permissible
variations within the standard, and the manner in which they must be specified; those violations
of the standard that a conforming implementation is required to detect, and the effect of
attempting to transtate or execute a program unit containing such violations, and those violations
of the standard that a conforming implemertation is not required to detect. (*Ada is a trademark

35

2946

5326

5507

5665

5676

of the U.S. Depantment of Defense).

Soehm, Barry W.; SOFTWARE ENGINEESING ECONOMICS. 787 p. Avail. frcm Prentice-
Hall, Rt. 59 at Brook Hill Drive, West Nyack, NY 108€5. Order No. ISBN 0-13-822122-7.

Key words:

This textbook's objective is to provide a basis for a software engineering economics course.
The book discusses. in detail, economic considerations for the development ang maintenance of
computer software. As background, the author provides two case studies invoiving the
development of two new systems. Then, the goals of software engineering are described. The
basic thrust of the text then is to present techniques, tools, and models for project planning, cost
estimation, decision analysis, risk analysis. and other management perspectives. Some of the
approaches and techniques discussed include the following: the Goal-Oriented Approach to
Life-cycle Software, the Constructive Cost Model, the prototype approach, Rayleigh
Distributions, Bayes' Formula, and the Value-of-Information Approach. The book ends with a
chapter devoted to suggestions for improving productivity on software projects.

Cox, Brad J.; "THE MESSAGE/OBJECT PROGRAMMING MODEL," In Softfair Conference on
Software Development Tools, Tech & Alt Proceedings (1983). Jul 1983. pp. 51-60. Avail. from
IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. Order No. 478.

Key words:

This is a tutorial on the programming style used in Smalltalk 80, and a personai history of the
reasoning that has led the author to pursue this style within conventional languages like C. [t
addresses the questions "What is message/object programming?”, "How is it different from
conventional programming?”, and "What can be gained by adopting it?". (author)

Freeman, Peter; "REUSABLE SOFTWARE ENGINEERING: CONCEPTS AND RESEARCH
DIRECTIONS," In Tutorial on Software Design Techniques. Aug 1983. pp. 63-78. Avail. from
IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. Order No. 514.

Key words:
The objective of reusable software engineering is to enable the broad reuse of all types of
information found in development situations. This paper defines classes of information to be
reused, discusses the processes and conditions surrounding reuse, and suggests research
tasks that will improve our ability to practice reuse. (author)

Sodano, Nancy M.; Szulewski, Paul A.; "DESIGN METRICS AND ADA," In Washington Ada
Symposium (Mar. 1984). Mar 1984. pp. 105-114. Avail. from ACM, Washington Chapter, P. O.
Box 6228, Washington, DC 20015.

Key words:

This paper reports on work done in investigating the use of Ada as a Program Design Language
(PDL), and the evaluation of Ada designs with a design metric. The first section provides
background and describes the context for the work. The second section defines the Halstead
metrics and discusses their application during the design phase. The third section discusses
using Ada as a Program Design Language. The fourth section presents an example which
illustrates the usefulness of the design metrics on the Ada PDL design medium. Finally, the
conclusions of this work are presented. (author)

Jackson, M.A.; PRINCIPLES OF PROGRAM DESIGN. 299 p. Avail. from Academic Press
Inc., 111 Fifth Avenue, New York, NY 10003. Order No. ISBN 0-12-379050-6.

Key words:

This book describes how to design structured programs such that the resulting programs will be
easy to understand, easy to maintain, free from logic errors, and structured like the problem.
The methodology advocated is based on the principle that program structures should be based
on data structures. This methodclogy has three steps. First, cne should consider the data

36

5682

5701

53971

6004

siruciras. wnich wil then te used ! 1crm 3 oregram siruciire. Secong. cne NSis ine
execulable operations reeaed 10 carry cut the task. ~ ~ird, one allocates each cperation to a
component of the program structure. The quality of the work done wnen pertorming these steps
determines the quaiity ot the prcgrams preducea. The methodology is illustrated by numerous
examgte CCBOL programs.

Cox, Brad J.; "MESSAGEZ/OBJECT PROGRAMMING: AN EVOLUTIONARY CHANGE IN
PROGRAMMING TECHNOLQOGY," In IEEE Scftware. :{1): Jan 1S84. pp. 50-61.

Key words:

This article is a tutorial on the object-oriented programming style used in Smalltalk-80. The
author discusses message/object programming, how n differs from conventional programming,
and how it can be achieved through software evoluticn as opposed to revolution. The author
concludes that Smalitalk’s dynamically bouna message/object paradigm solves several key
problems that can prevent programmers from building highly matleable, reusable software.

Sincovec, Richard F.; Wiener, Richard S.; "MODULAR SOFTWARE CONSTRUCTION AND
OBJECT-ORIENTED DESIGN USING ADA," In Journal of Pascal, Ada & Modula 2. 3(2): Mar
1984. pp. 29-34.

Key words:

This paper describes a software development methodology which refers to as modular software
construction and object-oriented design. This powerul and modern approach to software
deveiopment has recently gained tremendous currency with the advent of software engineering
languages such as Ada and Modula-2. !n this paper focus is made on the use of Ada in
conjunction with this methodology. (author)

Sincovec, Richard F.; Wiener, Richard S.; "MODULA SOFTWARE CONSTRUCTION AND
OBJECT-ORIENTED DESIGN USING MODULA-2,"” In Journal of Pascal, Ada & Modula 2.
3(3): May 1984. pp. 41-47.

Key words:

In the March/April 1984 issue of this journal discussed is object-oriented design using Ada (see
"Modula Software Construction and Object-Oriented Design Using Ada"). In this article this
theme is continued but focus shifts to Modula-2. The steps presented in the MarctvApril article
for performing object-oriented design are briefly summarized. This article illustrates the process
of object-oriented design with a case study. The subject of the case study is a tic-tac-toe game,
human vs. computer because its design is complex encugh to warrant object-oriented design.
(author)

"AN OVERVIEW QF SIGNAL REPRESENTATIONS IN SIGNAL PROCESSING LANGUAGES,”
pp. 63-73. Avail. from Defense Technical Information Center, Cameron Station, Alexandria, VA
22304-6145. QOrder No. AD-P002 608.

Key words:

This paper reviews three approaches to the representation of discrete-time signals as objects in
programs. The first two representations, arrays and streams, are widely used in contemporary
signal processing programming. The third representation was introduced in the recently-
proposed Signal Representation Language (SRL). SRL signals are abstract objects whose
properties are explicitly designed to reflect those of the represented signals. Arrays, streams,
and SRL signal objects are discussed in the context of a set of signal representation criteria
which are motivated by elementary observations about the mathematics of discrete-time signals.
The emphasis in the paper is on the semantics of signal representation rather than on issues of
time- or space-efficiency. (author)

Horowitz, Ellis; FUNDAMENTALS OF PROGRAMMING LANGUAGES. 446 p. Avail. from
Computer Science Press, Inc., 11 Taft Court, Cept. C1083, Rockville, MD 20850. Crder No.
ISBN 0-88175-004-2.

37

6035

6043

6362

6393

Key words:

This book takes a iundamentally different pcint of view frem tracitional books on programming
languages. The best possible way 1o study and understand today’'s programming languages is
by focusing on a few essential concepts. These concepts form the outline for this book and
incluge sucn topics as variables, expressions, statements, typing scope, procedures, data types.
exception handling, and concurrency. by understanding what these concepts are and how they
are realized in difterent programming languages, one arrives at a level of comprehension tar
greater than one gets by writing some programs in a few languages. Moreover, knowledge of
these concepts provides a framework for understanding future language designs. Numerous
exampies irom Ada, Pascal, LISP, and other programming languages are included. This book is
a study of the complexities of programming languages. (author)

Kehler, Thomas P.; Kunz, John C.; Williams, Michael D.; "APPLICATIONS DEVELOPMENT
USING A HYBRID Al DEVELOPMENT SYSTEM," In Al Magazine. 5(3). Sep 1984. pp. 41-54.

Key words:

This article describes building applications programs in a hybrid Artificial Intelligence (Al) tool
envionment. Traditional Al systems developments have emphasized a single methodology,
such as frames, rules, or logic programming, as a methodology that is natural, efficient, and
uniform. The applications developed in this experiment suggest that naturainess, efficiency and
flexibility are all increased by trading uniformity for the power that is provided by a small set of
appropriate programming and representation tools. The tools used are based on five major Al
methodologies: frame-based knowiedge representation with inhertance, rule-based reasoning,
LISP, interactive graphics, and active values. Object-oriented computing provides a principie for
unifying these different methodologies within a single system. (author)

Jamsa, Kris A.; "OBJECT ORIENTED DESIGN VS STRUCTURED DESIGN -- A STUDENT'S
PERSPECTIVE," |n Software Engineering Notes (ACM SIGSOFT). 9(1): Jan 1984. pp. 43-49.
Key words:

This paper discusses the advantages that structured design has over object-oriented design.
The author favors structured design and presents a hierarchically organized collection of
processes in order to emphasize the advantages of a graphic approach to design. The steps
involved in object-oriented design, as well as, an illustration of Ada packages are presented.
The author suggests that object oriented design places a burden on the designer at the interface
stage due to its graphic shortcomings.

Futatsugi, Kokichi: HIERARCHICAL SOFTWARE DEVELOPMENT IN HISP. pp. 151-174.
Avail. from North Holland Publishing Company. Order No. ISSN 0167-50036.

Key words:

Software (specification, program, etc.) development is simply modeled as the incrementat
construction of a set of hierarchically structured cluster of operators. This paper presents the
language HISP, which embodies this modeling. In this language, each software module
(description unit) is the result of applying one of five module building operations to the already
existing modules. This basic feature of the language makes it possible to write inherently
hierarchical software. Using this property, many mechanisms for top-down software
development are easily realized. Parameterized types, in particular, are available in the
language by using these specific operations for module building. In this paper, the HISP
language is introduced informally and the hierarchical software development in HISP is
explained by use of simple examples. The present status of the HISP implementation is also
sketched. (author)

Weber, Herbert; "THE DISTRIBUTED DEVELOPMENT SYSTEM - A MONOLITHIC
SOFTWARE DEVELOPMENT ENVIRONMENT,” In Software Engineering Notes (ACM
SIGSOFT). 9(5): Oct 1984. pp. 43-72.

Key words:

38

6471

6622

6677

This paper contains a very ccarse cescriction ¢t a new type ci scitware cavelooment
environment. It suppons uniform scecitications ana renagers nseif on the tasis of this unitorm
specification technique irto a monoiithic environment. The environment is composea of a
number of support units. Some of them are meant 1o support users with the aid of expen
knowiedge maintained in those suggorn units. All support units are interconnected in a tailorea
communication network that supporns standard communication services. The paper presents
work in progress. The described features cf the Distributed Development System are, therefore,

subject to changes. (author)

Porubcansky, C.A.;. PRQOCEEDINGS OF THE 2ND AFSC AVIONICS STANDARDIZATICON
CONFERENCE. VOLUME 8. TUTORIAL: MIL-STD-1815 ADA HIGH OADER LANGUAGE.
Report No. ASD(ENA)-TR-82-5031. 170 p. Nov 1982. Avail. from Defense Technical
Iinformation Center, Cameron Station, Alexandria, VA 22304-6145. Order No. AD-A142 783.

Key words:

This is volume 8 from a collection of nine volumes of unclassified papers to be distributed to the
attendees of the Second Air Force Systems Command (AFSC) Avionics Standardization
Conference at the Convention Center, Dayton, Ohio. The scope of the Conference includes the
complete range of DOD approved embedded computer hardware/software and related interface
standards as well as standard subsystems used within the Tri-service community and NATO.
The theme of the conference is "Rational Standardization*. Lessons learned as weill as the pros
and cons of standardization are highlighted. This voiume is a tutorial that discusses the
deveiopment history, design, and implementation of MIL-STD-1815 (the Ada programming
language). The syntax and semantics of the language will be covered in overview fashion with
emphasis on data typing and the use of Ada as an object-oriented design language. These
view graphs are usable as the curriculum for an introductory class an the Ada language.
(author)

Novak, Gordon S., Jr.; "KNOWLEDGE-BASED PROGRAMMING USING ABSTRACT DATA
TYPES," In Proceedings of the National Conference on Artificial Intelligence. Aug 1983. pp.
288-291. Sponsored by National Science Foundation, Washington, DC 20550. Grant/Contract
No. SED-7912803. Sponsored by Defense Advanced Research Projects Agency, 1400 Wilson
Bivd., Arlington VA 22209. Grant/Contract No. MDA-903-80-C-007.

Key words:

Features of the GLISP programming system that support knowledge-based programming are
described. These include compile-time expansion of object-centered programs, interpretation of
messages and operations relative to data type, inheritance of properties and behavior from
multiple superclasses, !ype inference and propagation, conditional compiiation, symbolic
optimization of compiled cocde, instantiation of genenc programs for paricular data types.
combination of partial algorithms from separate sources, knowledge-based inspection and
editing of data, menu-driven interactive programming, and transportability between Lisp dialects
and machines. GLISP is fully implemented for the major dialects of Lisp and is available over
the ARPANET. (author)

Boehm-Davis, D.A.; Ross, L.S.; APPROACHES TO STRUCTURING THE SOFTWARE
DEVELOPMENT PROCESS. Report No. GEC/DIS/TR-84-81V-1. 33 p. Sponsored by Office
of Navai Research, 800 North Quincy St., Arington, VA 22217. GranvContract No. N00Q14-83-
C-0574. Avail. from Defense Technical Information Center, Cameron Station, Alexandria, VA
22304-6145. Order No. AD-A147 694.

Key words:

This research examined program design methodclkagies, which claim to improve the design
process by providing strategies to programmers for structuring solutions to computer problems.
In this experiment, professional programmers were provided with the specitications for each of
three non-trivial problems and asked to produce pseudo-cade for each specification according to
the principles of a particular design methodology. The measures collected were the time to
design and code, percent complete, and complexity, as measured bty several metrics. These

33

6726

6876

7041

7100

data were used to develop protiles of tn2 solutions procuced ty different methodologies and to
develop comparisons between the rethoaciogies. The results suggest that there are
ditferences among the vanous metnocc<gies. These aifferences are discussed in light of their
impact on the comprehensibilty, refiaoiity, and maintainability of the programs produced.
(author)

Komfeld, William A.; "EQUALITY FOR PROLOG.” In International Joint Conference on Al Inc.,
1983 - Karlsruke, W. Germ. Aug 1983. cp. 514-519.

Key words:

The language Prolog has been extended by allowing the inclusion of assertions about equality.
When a unification of two terms that do not unify syntactically is attempted, an equality theorem
may be used to prove the two terms equal. !f it is possible to prove that the two terms are
equal the unification succeeds with the variable bindings introduced by the equality proof. It is
shown that this mechanism significartiy improves the power of Prolog. Sophisticated data
abstraction with all the advantages of object-orniented programming is available. Techniques for
passing partially instantiated data are described that extends the "multiuse” capabilities of the
language, improve the efficiency of some programs, and allow the implementation of arithmetic
relations that are both general and efficient. The modifications to standard Prolog are simple
and straightforward and in addition the computational overhead for the extra linguistic power is
not significant. Equality theorems wiil probably pilay an important role in future logic
programming systems. (author)

Borger, Mark W.; "ADA SOFTWARE CEZSIGN ISSUES," In Journal of Pascal, Ada & Moaula
2. 4(2): Mar 1985. pp. 7-14. Sponsored by Naval Ocean Systems Center, San Diego, CA
92152-5000. Grant/Contract No. N66001-82-C-0440.

Key words:

This article presents a discussion of specific experiences using Ada throughout the design of an
Ada Programming Suppont Environment (APSE) software utility, namely the APSE Interactive
Monitor (AIM). The AIM was designed using an object-oriented methodology with Ada as the
Program Design Language (PDL). The intent of this article is to raise and discuss panticular
issues related to the use of the Ada language for both software design and development. It is
not the intent to provide the reader with a tutorial on object-oriented design or the AlM program,
nor to provide an introduction to the Ada language. (author)

Sincovec, Richard F; Wiener, Richard S.; "TWO APPROACHES TO IMPLEMENTING
GENERIC DATA STRUCTURES IN MODULA-2," In ACM SIGPLAN Notices. 20(6): Jun 1985.
pp. 56-64.

Key words:

In this paper the authors present two approaches to implementing generic data structures in
Modula-2. Both methods are illustrated with a generic search tree. The actual code as well as
advantages and disadvantages are presented for both approaches.

Maclennan, Bruce J.; A SIMPLE SOFTWARE ENVIRONMENT BASED ON OBJECTS AND
RELATIONS. Report No. NPS52-85-005. 32 p. Apr 1985. Sponsored by Office of Naval
Research, 800 North Quincy St., Arington, VA 22217. Grant/Contract No. N00014-84-WR-
24087. Sponsored by Office of Naval Research, 800 North Quincy St., Arington, VA 22217.
GranvContract No. N00014-85-WR-24057. Avail. from Defense Technical Information Center,
Cameron Station, Alexandria, VA 22304-6145. Order No. AD-A155 704.

Key words:

This paper presents a simple programming system based on a clear separation of value-
oriented programming and object-oriented programming. The value-oriented component is a
conventional functional programming language. The object-oriented component is based on a
model of objects and values connected by reiations, and on production system-like rules that
determine the aiteration of these relations through time. It is shown that these few basic ideas

40

7136

7138

7251

7335

cermn simcie prototyping i @ sontware ceveliocment environment. (cuthor)

Clthott, Walter: "AN QVERVIEW OF MOUPASCAL." In ACM SIGPLAN Notices. 22(10): Cat
1985. £p. 60-71. Sponsored by Federat Ministry of Researcn ana Technology, Federai
Repuoclic of Germany. GranuContract No. IT 83022&E3.

Key words:

In this paper the object criented programming language ModPascal and its programming
environment are introduced. ModPascal extends Standard Pascal by constructs that have
shown usefulness in abstract data type theory such as moduie types, enrichments, instantiations
and instantiated types. Aiso introduced is ModPascal editing, ccmpiling, and execution using
the ModPascal Programming System, which includes a multi-user data base of ModPascal

objects.

Rosenthal, Don; "ADDING META RULES TO OPSS5:. A PROPOSED EXTENSION,” In ACM
SIGPLAN Notices. 20(10): Oct 1985. pp. 79-86.

Key words:

In this paper, potential problems caused by the lack of explicit control constructs and the
segregation of three memory areas in OPSS were presented. Two solutions which aillow such
control constructs were presented. Both soiutions implemem meta-rules, the first by adding two
constructs to the language, the second by atlowing user-written centlict resoiution strategies.

Agusa. Kiyoshi; Ohno, Yutaka; Tarumi, Hiroyuki; "ACQUAINTANCE/INSTANCE VARIABLE
MODEL FOR OBJECT-ORIENTED PROGRAMMING,” In COMPSAC 1985, Proceedings. Cct
1985. pp. 69-73. Avail. from IEEE Computer Society, 10662 Los Vaqueros Circle, Los
Alamitos, CA 90720. Crder No. 0730-3157/85/0000/0068.

Key words:

This paper proposes a new model of object, called acquaintancefinstance variable model. It
reduces the complexity of object oriented representation of systems. This model gives a clear
definition of an object's state, and definitions of effect and dependence between objects. The
authors also give the basic concept of class-base. Class-base is a kind of database, which
collects character descriptions of all classes programmers can use. A character description is
based on the acquaintancesinstance variable model. It describes internal and externat features
of a class. Internal features are related to the state of an object, whereas external features are
related to other co-operative objects. With a Class-base, one can easily find classes and
messages. (author)

Agha, Bul Abdulnabi: ACTORS: A MODEL OF CCNCURRENT COMPUTATION IN
DISTRIBUTED SYSTEMS. Report No. 844. 198 p. Jun 1985. Sponsored by Defense
Advanced Research Projects Agency, 1400 Wilson Blvd., Arlington VA 22209. Grant/Contract
No. N00014-80-C-0505. Avail. from Defense Technical Information Center, Cameron Station,
Alexandria, VA 22304-6145. Order No. AD-A157 317.

Key words:

A foundationai model of concurrency is developed in this thesis. It examines issues in the
design of parailel systems and shows why the actor model is suitable for exploring large-scale
paralielism. Concurrency in actors is constrained only by the availability of hardware resources
and by the logical dependence inherent in the computation. Uniike dataflow and functional
programming, however, actors are dynamically recontigurable and can mode! shared resources
with changing local state. Concurrency is spawned in actors using asynchronous message-
passing pipelining, and the dynamic creation of actors. The author defines an abstract actor
machine and provides a minimal programming language for it. A more expressive language,
which includes higher level constructs such as delayed and eager evaluation, can be defined in
terms of the primitives. Examples are given to illustrate the ease with which concurrent data
and contro! structures can be programmed. This thesis deals with some central issues in
distributed computing. Specitically, problems of divergence and deadlock are addressed.

41

7465

7554

7558

7593

(author)

Abbott, Russell J.. AN INTEGRATED APPROACH TO SOFTWARE DEVELOPMENT. 224 p.
Avail. from John Wiley & Scns, inc.. 1 Wiley Drive, Attn: Order Dept., Summerset. NJ 08873.
Order No. ISBN 0-471-82646~4.

Key words:

This book is intended as a text in software engineenng courses and as a day-to-day working
reference for practicing software engineers. It przzents an ‘~tegrated framework for software
development that captures technical information rizzded to su-zessfully develop and maintain a
software system. This framework is presented in terms of a rationale for and outline of cenain
documents produced over the course of the life cycle. These documents include requirements
documents, specitication documents, and design documents. |n addition, an appendix presents
an easy-to-understand specification methodology that combines ideas from the predicate
calculus and relational database design.

Pitt, D. H.; Schuman, S. A.; FORMAL TECHNIQUES FOR SPECIFICATION AND
VALIDATION OF TACTICAL SYSTEMS. Report No. CADD-8606-0203. 221 p. Jun 1987.
Sponsored by Army Communication and Electronics Command (CECOM), Ft. Monmouth, NJ
07703. Grant/Contract No. DAAK80-81-C-0072. Avail. from Defense Technical Information
Center, Cameron Station, Alexandria, VA 22304-6145. Order No. AD-A171 671.

Key words:

This document contains three appendices. The first appendix, "Object-Oriented Subsystem
Specification,” introduces a rigorous, mathematically based notation for supporting the earliest
phases of the software design process. The second appendix, “"An Experiment with an
Approach to Formal Specifications,” describes an experiment involving a new approach to
system specifications. The process of developing a formal specification from an informally
specified distributed information system concept forms the basis of the experiment. The last
appendix, "Papers on Z,” presents a concise summary of the mathematical sublanguage of the
specification notation Z. (author)

Agha, Gul; Hewitt, Carl; CONCURRENT PROGRAMMING USING ACTORS: EXPLOITING
LARGE-SCALE PARALLELISM. Report No. Al 865. 21 p. Oct 1985. Sponsored by Defense
Advanced Research Projects Agency, 1400 Wilson Blvd., Arlington VA 22209. Grant/Contract
No. N0014-80-C-0505. Avail. from Defense Technical Information Center, Cameron Station,
Alexandria, VA 22304-6145. Order No. AD-A162 422,

Key words:

The authors argue that the ability to model shared cbjects with changing local states, cynamic
reconfigurability, and inherent parallelism are desirable properties of any model of concurrency.
The actor model addresses these issues in a uniform framework. This paper briefly describes
the concurrent programming language Act3 and the principles that have guided its development.
Act3 advances the state of the art in programming languages by combining the advantages of
object-oriented programming with those of functional programming. The authors also discuss
considerations relevant to the large-scaie paralielism in the context of open systems, and define
an abstract model which establishes the equivalence of systems defined by actor programs.
(author)

Meyer, Bertrand; "EIFFEL: PROGRAMMING FOR REUSABILITY AND EXTENDABILITY," In
ACM SIGPLAN Notices. 22(2): Feb 1987. pp. 85-94.

Key words:

Eiffel is a language and environment intended for the design and implementation of quality
software in production environments. The language is based on the principles ot obje_ct-onemed
design, augmented by f{eatures enhancing correctness, extendibility and effnczer_\cy: @ne
environment includes a basic class library and tools for such tasks as automatic configuration
management, documentation and debugging. Beyond the language and environment aspect,

42

7625

7631

7642

Eiffel prcmotes a methog of scrtware ccnsiucuon Cy ccmoination of reusaple and flexible
modules. The present ncte 1s & general inwrcauctcn to Eiifel. More detailed information 1s

available. (author)

Staft Author; JCINT PROGARAM ON RAPID FROTOTYPING. RAPIER (RAPID
PROTOTYPING TO INVESTIGATE END-USER REQUIREMENTS). 2397 p. Mar 1986.
Sponsored by Office ot Naval Research, 800 North Quincy St., Arlington, VA 22217,
GranvContract No. N00014-85-C-0666. Avail. from Defense Technical Information Center,
Cameron Station, Alexandria, VA 22304-6145. Order No. AD-A166 353.

Key words:

This report presents the resufts of work performed between July 1, 1985 and January 31, 1986
with the Office of Naval Research and Honeywell Computer Sciences Center. These results,
and resuits obtained in the next several years, will be applied by the RAPIER (Rapid Prototyping
to Investigate End-user Requirements) project in developing a software engineering environment
to support prototyping for investigating end-user requirements. The environment supports a
prototyping methodology, by which is meant a collection of techniques, a prescribed order for
applying the techniques, reasons for the techniques, and their order ot application. The RAPIER
methodology will eventually contain techniques for each phase in the prototyping life cycle and
for the transitions between phases. The RAPIER environment will contain software tools that
support, encourage, and/or enforce these procedures and techniques. The RAPIER team
develops new technology only when there is none available in either the commercial or the
research marketplace. RAPIER is supported in part by the Depanment of Defense STARS
Initiative's Application Area whose main thrust is software reusability. (author)

Osterweil, Leon J.; SOFTWARE PROCESS INTERPRETATION AND SOFTWARE
ENVIRONMENTS. Report No. DOE/ER/13283-5. 58 p. Apr 1986. Sponsored by National
Science Foundation, Washington, DC 20550. GranvContract No. DCR-8403341. Sponsored by
Department of Energy. Grant/Contract No. DE-FG02-84ER13283. Avail. from National
Technical Information Service 5285 Port Royal Rd, Springtield, VA 22161. Order No.
DEB6010881.

Key words:

This paper suggests that a reasonable focus of software engineering is the notion of a
"process-object”--namely an object which has been created by a development process, and
which is itself a process. It then follows that the essence of software engineering is the study of
effective ways of developing process-objects and of maintaining their effectiveness in the face of
the need to make a wide variety of changes. These changes might entail alteration of the
products produced by the process-object or alteration of the process-object itself. The main
features of the insights and suggestions presented here revolve around the notion that process-
objects must be defined in a precise, powerful, and rigorous formalism, and that once this has
been done, the key activities of development, evaluation, and maintenance of both process-
objects themseives, and their constituent parts alike, can and should be specified and
implemented algorithmically. The suggested focus on process-objects draws a much-needed
sharp line between software product development, evaluation and maintenance and software
process development, evaluation and maintenance. This serves to improve one's understanding
of both and to help to better understand the connections between such issues as maintenance,
evaluation, reuse, and modularity. (author)

Meyer, Bertrand; "REUSABILITY: THE CASE FOR OBJECT-ORIENTED DESIGN,” In IEEE
Software. 4(2): Mar 1987. pp. 50-64.
Key words:

Why isn't software more like hardware? Why must every new development start from scratch?
This article addresses a fundamental goal ot software engineering, reusability, and a companion
requirement, extendibility (the ease with which software can be modified to reflect changes in
specifications). The author's main thesis is that object-oriented design is the most promising

43

7643

7720

7728

7738

7740

technique now known for attaining the geals ¢t extenaitiiity and reusability.

2rooks, Frederick P., Jr. "NO SILVER BULLET: ESSENCE AND ACCIDENTS OF
SOFTWARE ENGINEERING,” In Computer. 20(4): Apr 1287. gp. 10-19.

Key words:

In this article, the author analyzes the nature of software engineering angd assesses the technical
developments that promise improvements in productivity, reliability, and simplicity. The author
examines the inherent properties of modern software systems (complexity, conformity,
changeability, and invisiblity) and the promises and limtations of current software engineering
research developments (Ada, object-oriented programming, artificial intelligence, expert systems,
and graphical programming).

Bradshaw, Susan M.; Byrne, William E.; Cronin, Neil A.; McDevitt, David E.;
STRUCTURED HIERARCHICAL ADA PRESENTATION USING PICTOGRAPHS (SHARP)
DEFINITION, APPLICATION AND AUTOMATION. Report No. ESD-TR-86-283. 348 p. Sep
1986. Sponsored by Air Force Electronic Systems Division (AFSC), Hanscom AFB, MA 01731.
Grant/Contract No. F19628-84-D-0011. Avail. from Defense Technical Information Center,
Cameron Station, Alexandria, VA 22304-6145. Order No. AD-A176 990.

Key words:

This paper presents a methodology for representing a large and complex computer program
using graphics and Ada-based annotated pseudo code. It describes the application of the
graphical representation, referred to as Structured Hierarchical Ada Representation using
Pictographs (SHARP), in the design and test of computer programs, and presents a concept of
operation for generating the graphics in a computer aided manner. The resulting tool is
considered important, since design and test costs account for over 60 percent of software
development costs. The tool also applies to software maintenance, which typically exceeds the
original development cost by more than 50 percent. (author)

Baker, Louis; "ADA AND Al JOIN FORCES," In Al Expert. 2(4): Apr 1987. pp. 38-43.

Key words:

While LISP is thought to be the language of choice for the development of artificial intelligence
(Al) systems, there are reasons for contemplating the use of a general-purpose procedural
programming language such as Ada for the production version of an Al system. For example,
algorithms can be expressed in Ada and readily transiated to other popular languages. The
article first covers the requisite data structures and their implementation. A unification aigorithm
taken from a backward-chaining expert system is used to illustrate appropriate coding
techniques. The article also briefly reviews how forward-chaining systems, augmented transition
networks, frames, and object-oriented programming fit into implementation by general-purpose
languages and by Ada. (author)

Beloff, Bruno; Harland, David M.; "A PERSISTENT OBJECT STORE WITH AN
INTEGRATED GARBAGE COLLECTOR," In ACM SIGPLAN Notices. 22(4): Apr 1987. pp.
70-79.

Key words:

This paper describes OBJEKT, a single-level persistent storage system designe'd for the
REKURSIV architecture. It will be shown that OBJEKT can be microcoded tq lmplgmem
"objects” efficiently, and that data integrity can be guaranteed by provision of an object oriented
instruction set. Particular attention will be paid to its tacilities for type and range pheckmg, to its
object paging strategy and to ways to enancing parallelism during garbage collection. (author)

Methtessel, Rand; "IMPLEMENTING AN ACCESS AND OBJECT ORIENTED PARADIGM IN
A LANGUAGE THAT SUPPORTS NEITHER,” In ACM SIGPLAN Notices. 22(4): Apr 1987. pp.
83-93.

Key words:

7763

7809

7864

This article outlines some experiences in :mSlemenung an ociect ornented and sccess crienteg
paradigm in "C". These experiences Crigc:naled in a grapnics WwOrKstation gevelooment project
which required graphics elements. wnicnh cculd appear in mufltiple windows, to respeona
immediately to changes in values in a user cefined database. The number and type of graphics
requiring updates. based on a change to a given database vaiue, varied dynamically depenaing
on which particular displays an operator nad acuve at any given time. An object oriented
paradigm has the values of vanables chancea as a side effect of an object processing a message
sent to it. The access criented paragigm nas a message sent as a side effect of an object
variable changing. (author)

Lovejoy, Alan; "EXTENSIONS TO MODULA-2,” In Journal of Pascal, Ada & Moduia 2. 6(2):
Apr 1987. pp. 20-44.

Key words:

This article first briefly states some principles of language design. It then proposes some
extensions to Modula-2. Each extension is illustrated by means of an example. These
extensions are meant to correct some cefects and limitations in current implementations,
support functional and object-oriented programming styles, and give the language user greater
control and power.

Carey, Michaei J.; Dewitt, David J.; Frank. Daniel: Graefe. Goetz; Muralikrishna, M.;
Richardson, Joel E.. Shekita, Eugene J.; THE ARCHITECTURE OF THE EXODUS
EXTENSIBLE DBMS: A PRELIMINARY REFPORT. Repont No. CONF-8609148-1. 36 p. May
1986. Sponsored by National Science Foundation, Washington, DC 20550. GrantContract No.
MCS82-01870. Sponsored by National Science Foundation, Washington, DC 20550.
Grant/Contract No. DCR-8402818. Sponscred by Defense Advanced Research Projects
Agency, 1400 Wilson Bivd., Ardington VA 22209. Grant/Contract No. N0O0014-85-K-0788.
Sponsored by Departmert of Energy. GranvContract No. DE-AC02-81ER10920. Avail. from
National Technical Information Service 5285 Port Royal Rd, Springfield, VA 22161. Order No.
DEB6015438.

Key words:

With non-traditional application areas such as engineering design, image/voice data
management, scientific/statistical applications, and artificial intelligence systems all clamoring for
ways to store and efficiently process larger and larger volumes of data, it is clear that traditional
database technology has been pushed to its limits. It also seems clear that no single database
system wiill be capable of simultaneously meeting the functionality and performance
requirements of such a diverse set of apptications. This paper describes the preliminary desian
of an Extensible Object-oriented Database System (EXODUS), an extensible database system
that will facilitate the fast development of high-performance, application-specific database
systems. EXODUS provides certain kernel facilities, including a versatile storage manager and
a type manager. In addition, it provides an architectural framework for building application-
specific database systems, tools to partially automate the generation of such systems, and
libraries of software components (e.g., access methods) that are likely to be useful for many
application domains. (author)

Boudreaux, J. C.; OED: OBJECT-ORIENTED EDITOR. Report No. NBSIR 87-3530. 17 p.
Mar 1987. Avail. from National Technical Information Service 5285 Port Royal Rd. Springtield.
VA 22161. Crder No. PB87-173910.

Key words:

In this paper, the author describes an object-oriented editor, called OED, which is defined using
the FranzLISP programming language. Though editors are usually associated with sets of
functions to manipulate text-files, the author uses the term to characterize a family of LISP

45

7882

7885

8166

8167

functions wnicn create anag moaify fcrmal representations of objects :n AMPLE/Core. (author)

Braaten, Alan J.;. A GAAPHICS ENVIRONMENT SUPPORTING THE RAPID PROTOTYPING
OF PICTORIAL COCKPIT DISPLAYS. Report No. AFIT/GCS/MA/86D-1. 168 p. Dec 1986.
Avail. from Defense Technicat Information Center, Cameron Station, Alexandria, VA 22304-
6145. Order No. AD-A178 636.

Key words:

Altention was focused on the interactive construction of pictorial type cockpit displays from
libraries of cockpit displays and symbology. Impiementation was based on an object-oriented
programming paradigm. This approach provided a natural and consistent means of mapping
abstract design specifications into functional software. Implementation was suppornted by an
object-oriented extension to the 'C' programming language. Although this investigation
addressed a specific application, the resulting graphic environment is applicable to other areas
requiring the rapid prototyping of pictorial displays. (author)

"PROCEEDINGS OF THE 5STH ANNUAL NATIONAL CONFERENCE ON ADA TECHNOLOGY
HELD IN ARLINGTON, VIRGINIA ON MARCH 16-19, 1987," 510 p. Avail. from Defense
Technical Information Center, Cameron Station, Alexandria, VA 22304-6145. Order No. AD-
A178 690.

Key words:

The contents of this Ada Technology Proceedings include papers on the following topics:
Reusability; Ada programming support environments: Applications; Language issues; Guidelines
and standards: Commercial Ada users working group; Interoperability; Compilers; Hardware
architectures:; Project management; Methodologies; NASA application; Ada education and
training; Metrics; DoD applications; Technology research; Portability; Performance issues:
Distributed issues. (author)

D'Ippolito, Richard; Lee, Kenneth; Plinta, Charles; Rissman, Michael; Van Scoy, Roger;
PROTOTYPE REAL-TIME MONITOR: DESIGN. Report No. CMU/SEI-87-TR-38. 53 p. Nov
1987. Sponsored by SEI-Joint Program Office, Hanscom Air Force Base, Hanscom, MA 01731.
Gran/Contract No. F1962885C0003. Avail. from Defense Technical Information Center,
Cameron Station, Alexandria, VA 22304-6145. Order No. AD-A188 931.

Key words:

This report describes the software design used to implement the prototype real-time monitor
(RTM) requirements. The prototype RTM described in this report was built to address two
specific technical questions raised by the Ada Simulator Validation Program (AVSP) contractors:
1. How can user tools tind, access and display data hidden in the bodies of Ada applications?
2. How can user tools be layered on top of Ada applications? The design is presented at three
levels: systemn level, object level, and package architecture level. The report concludes with a
discussion of the key implementation obstacles that had to be overcome to develop a working
prototype: determining system addresses, communicating with an executing application,
accessing application memory, converting data into human readable form, and distributed CPU
architectures. (author)

Van Scoy, Roger; PROTOTYPE REAL-TIME MONITOR: ADA CODE. Report No. CMU/SEI-
87-TR-39. 180 p. Nov 1987. Sponsored by SEI-Joint Program Office, Hanscom Air Force
Base, Hanscom, MA 01731. GranvContract No. F1962885C0003. Avail. from Defense
Technical Information Center, Cameron Station, Alexandria, VA 22304-6145. Order No. AD-
A191 095.

Key words:

This report presents the code that implements the prototype real-time monitor (RTM). In
addition, the documentation in the package specifications and bodies forms the implementation
description of the RTM. The prototype RTM described in this report was built to address two
specific technical questions raised by the Ada Simulator Validation Program (AVSP) contractors:

46

81869

8220

8223

8225

1. How can user tools tind. access ana display cata hiccen n the bocies ¢f Ada agpucaucns?
2. How can user tools be layerea on top of Ada acpucations? 'zuthor)

O'lppoito, Richard: Lee, Kenneth: Plinta, Charles: =issman. Michaei S.; VVan Scoy, Roger:
AN OOD PARADIGM FOR FLIGHT SIMULATORS. Reporn No. CMU/SE!I-87-TR-43. 101 p.
Dec 1287. Sponsored by SEl~Joint Program Otfice, Hanscom Air Force Base, Hanscom, MA
01731. GranvContract No. F1962885CCC003. Avail. from Defense Technical Information Center.
Cameron Station, Alexanaria, VA 22304-6145.

Key words:

This report presents a paradigm for object-oriented impiememations of flight simulators. 1t is a
resuit ot work on the Ada Simulator Validation Program (ASVP) carried out by members of the
technicat staff at the Software Engineering Institute (SE!). (author)

Pressman, Roger S.; SOFTWARE ENGINEERING: A PRACTITIONER'S APPROACH
(SECOND EDITION). 586 p. Avail. from McGraw-Hill Book Company, Princeton Road,
Highstown, NJ 08520. Crder No. ISBN 0-07-050783-X.

Key words:

This book's coverage of the software engineering process includes: planning and estimation
techniques; analysis of the computer based system and the software element; design; ceding;
testing and quality assurance; and maintenance. Rather than maintaining a strict life cycle view,
this second edition presents generic activities that are performed regardless of the software
engineering paradigm that has been chosen. It offers a compietely revised chapter on software
testing and scheduling technigues: providing guidelines for costschedule estimation. This
revision also features a new chapter on object-oriented design, real-time design, software test
case design techniques, and software quality assurance. This coverage reflects new software
engineering methods that are rapidly gaining acceptance in the industry. A well-designed
learning tool: this edition contains many new problems, examples, and case studies ariented
toward engineering/scientific systems and real-time applications. (author)

Demarco, Tom; STRUCTURED ANALYSIS AND SYSTEM SPECIFICATION. 365 p. Avail.
from Yourdon Press, 1133 Avenue of the Americas, New York, NY 10036-6748. Order No.
ISBN 0-13-854380-1.

Key words:

This book is about Structured Analysis, and Structured Analysis is primarily concerned with a
new kind of Functional Specification, the Structured Specttication. Slructured Analysis and
System Specification describes an orderly approach to structured analysis and system design.
The topics covered range from the basic concepts of system analysis, to the problems with
system modeling. Functional decomposition, data flow diagrams., data dictionaries, process
specifications, logical and physical models of a system are described in great detail, in a very
readable manner. Explicit examples are given to walk the reader through the various stages
necessary to perform structured analysis and specifications of a system in a logical manner.
(author)

Booch, Grady; SOFTWARE ENGINEERING WITH ADA (SECOND EDITION). 603 p. Avail.
from Addison-Wesley, BenjamirvCummings Publ. Co., Inc., Jacob Way, Reading, MA 01867.
Order No. ISBN 0-8053-0604-8.

Key words:

This book has been written to satisty the following three specific goais: to provide an intensive
study of Ada's features; to motivate and give examples of good Ada design and programming
style; to introduce an abject oriented development method that exploits the power of Ada and, in
addition, helps manage the complexity of large software systems. The book not only descrites
the details of Ada programming, but also suggests ways in which to best apply the features of
the language in the creation of software systems. Software Engineering with Ada serves as a
complete Ada reference that is appropriate for both the programmer who wishes to create Ada

47

8233

8335

8403

8436

8437

systems and the manager wno neecs {0 unaerstand how 10 apply this powenu! tool. The Dook
presumes an understanging of the basic principles ¢t programming. Topics covered are:
increased emphasis on Ada's syntax and semantics, detatled discussions on tne opject oriented
development method, and upaated histoncal informaton. (author)

Blaha, Michael R.; Premerani, William J.; Rumbaugh, James E.; "RELATIONAL DATABASE
DESIGN USING AN CBJECT-CRIENTED METHODOLQGY," In Communications of the ACM.
31(4): Apr 1988. pp. 414-427.

Key words:

This article describes the eftectiveness of the Object Modeling Technique (OMT) for
approaching the design of relational databases. A comprehensive explanation of OMT is
included, along with two applications showing the semantic improvement of OMT over other
approaches for designing relational data base management systems. The design technique and
methodology employed have been used for several years at General Electric, and the
methodology is intuitive, expressive, and extensible. (author)

Klahr, Philip; McAnhur, David; Narain, Sanjai; "SWIRL: AN OBJECT-ORIENTED AR
BATTLE SIMULATOR," In Proceedings of the National Conference on Artificial Intelligence,

Aug. 18-20, 1982. Aug 1982. pp. 331-334.

Key words:

The authors describe a program called SWIRL designed for simulating military air battles
between offensive and defensive forces. SWIRL is written in an object-oriented language
(ROSS) where the knowledge base consists of a set of objects and their associated behaviors.
The authors discuss some of the problems they encountered in designing SWIRL and present
their approaches to solving them. (author)

Stroustrup, Bjarne; "WHAT IS OBJECT-ORIENTED PROGRAMMING?," In /IEEE Software.
5(3): May 1988. pp. 10-20.

Key words:

This article presents the author's view of what object-oriented means in the context of a
general-purpose programming language. Examples in C++ are presented, partly to introduce
C++ and partly because C++ is one of the few languages that supports data abstraction, object-
oriented programming, and traditional programming techniques. Issues of concurrency and
hardware support for specific, higher level language constructs are not included. (author)

"OOPSLA '87 CONFERENCE PROCEEDINGS,"” 636 p. Avail. from ACM QOrder Department, P.
O. Box 64145, Baltimore, MD. 21264. Order No. ISBN 0-89791-247-0.

Key words:

This is an addendum to the proceeding of the OOPSLA '87 conference on object-oriented
programming held in Orlando, Florida, October, 1987. It contains reports on five workshops and
six panel discussions, in addition to the text of the keynote address and the banquet speech.
These reports were written after the conference by organizers and attendees of these sessions
in an attempt to capture the content, and some of the spirit, of these less formal technical
exchanges. The reports have been organized into three areas of concern - roughly
comresponding to design, implementation, and product development - and briefly summarized.

(author)

Diederich, Jim; Milton, Jack: "AN OBJECT-ORIENTED DESIGN SYSTEM SHELL,” In
OOPSLA 1987 Proceedings. Cct 1987. pp. 61-77.
Key words:

The authors present a design system shell which can be used to experiment with principles of
design and be used as a design tool where complex layers of information need to be spgcnf!ed
about objects, such as in database design. The shell can be tailored to a variety of apptication

48

8482

8515

8577

8616

areas. I is object-oriented in its implememation ana structure. Cbjects ana messages are useg
as the specification language. The basic mngreaients of a rule-based proguction system are
provided. with rules treated as objects ana cetined indepenaertly of the classes to wnich they
are applied. (author)

Zoehm. Barry W.: "A SPIRAL MODEL CF SOFTWARE DEVELOPMENT AND
ENHANCEMENT.," in Computer. 21(5): 'ay 1988. In Tutonal: Software Engineering Project
Management. Jan 1988. pp. 61-72.

Key words:

This article opens with a short descrigtion ot software process models and the issues they
address. Subsequent sections outline the process steps involved in the spiral model; illustrate
the application of the spiral model to a software project, using the TRW Software Productivity
Project as an example; summarize the primary advantages and implications involved in using
the spiral model and the primary difticulties in using it at its current incompiete level of
elaboration; and present resulting conclusions. (author)

Agusa, Kiyoshi; Ohno, Yutaka; Tarumi, Hiroyuki; "A PROGRAMMING ENVIRONMENT
SUPPORTING REUSE OF OBJECT-ORIENTED SOFTWARE,” In 10th International
Conterence on Software Engineering: April 11-15, 1988. Apr 1988. pp. 265-273.

Key woras:

The authors have developed a programming environment for object-orented programming. This
environment supports reuse of classes, especially retrieval of them with an expert system. The
user can find classes and methods by describing the features of objects and operations
according to an object model proposed by the authors. The target programming language is
MOMO, which is developed by the authors to implement the object model. This paper mainly
focuses on the retrieval part of the environment. (author)

Meyer, Bertrand: "EIFFEL. A LANGUAGE AND ENVIRONMENT FOR SOFTWARE
ENGINEERING," In Joumal of Systems and Software. 8(3): Jun 1988. pp. 199-246.

Key words:

The Eiffel language and environment address the problem of building quality software in
practical development environments. Two software quality factors were deemed essential in the
design of the language: reusability and reliability. They led to the following choices: language
features that support the underlying bottom-up software design methodology; modular structures
based on the object-oriented approach, with support for both generic parameters and multiple
inheritance (including a new extension, repeated inheritance); automatic storage management;
highty dynamic execution model; support for polymorphism and dynamic binding; fully static
typing; intormation hiding facilities; assertions and invariants that may be monitored at run-time.
The Eiffel programming environment, using C as an intermediate language, supports separate
compilation of classes and achieves a good run-time performance in both space and time. The
environment takes care of automatically recompiling classes as needed after a change, ensuring
that only up-to-date versions of classes are used, but avoiding unnecessary recompilations. A
set of tools is provided to support the development of sizable software systems. An important
part of the environment is the library of reusable classes. Significant extracts of this library are
given in the appendix to this article, providing a set of model reusable software components,
caretully designed for robustness and extendibility. (author)

Agresti, William W.; TUTORIAL: NEW PARADIGMS FOR SOFTWARE DEVELOPMENT. 304
p. Jan 1986. Avail. from IEEE Computer Society, PO Box 80452, Worldwide Post Center, Los
Angeles, CA 90080. Order No. ISBN 0-8186-0707-6.

Key words:

Designed for computer professionals who are interested in the process of software development,
this tutorial shows the assumptions and fimitations of the life-cycte (waterfall) mode! and explains
when the model is appropriate and when it-is not. Explains the new paradigms (prototyping,

49

8652

8662

8726

8773

operational specitication, transtormational impiemertzion) and shows now they interrelate to
suppon orocess improvement. Discusses the transiton trom the life-cycle modef to a more
flexible aevelopment process that accommoaates these newer paragigms. (author)

Danforth, Scott: Tomiinsan, Chris; "TYPE THECRIZS AND OBJECT-CRIENTED
PROGRAMMING,” In ACM Computing Surveys. 20(1): Mar 1988. pp. 29-72.

Key words:

Object-oriented programming is becoming a pcpular ecproach to the construction of complex
software systems. Benefits of object orientation inciude support for modular design, code
sharing, and extensibility. In order to make the most of these advantages, a type theory for
objects and their interactions should be developed to aid checking and controlled derivation of
programs and to support earty binding of code bodies for efficiency. As a step in this direction,
this paper surveys a number of existing type theories and examines the manner and extent to
which these theories are able to represent the ideas found in object-oriented programming. Of
primary interest are the models provided by type theories for abstract data types and
inheritance, and the major portion of this paper is cevoted to these topics. Code fragments
illustrative of the various approaches are provided ara discussed. The introduction provides an
overview of object-oriented programming and types in programming languages; the summary
provides a comparative evaliuation of the reviewed typing systems, along with suggestions for
future work. (author)

Ramamoorthy, C. V.; Sheu, Phillip C.; "OBJECT-CRIENTED SYSTEMS," In IEEE Expen.
3(3): Sep 1988. pp. 9-15.

Key words:

Object-based systems provide such desirable features as data abstraction, program modularity,
and inherent concurrency. The authors investigate the impact of object-based computation on
databases and expert systems, and demonstrate cbject-based programming with a simple
automatic factory example based on concepts of cbject, message, and class. The authors
review the essence of object-oriented systems from a user's point of view, discussing problems
that need to be resolved. [n particular, the authors emphasize the need for object management
systems, software engineering tools, and better architectural support. (author)

"OOPSLA '88 CONFERENCE PROCEEDINGS,” In ACM SIGPLAN Notices. 23(11): Nov 1988.
Report No. 548881. 400 p. Avail. from ACM Order Cepartment, P. O. Box 64145, Baltimore,
MD. 21264. Order No. ISBN 0-89791-284-5.

Key words:

These proceedings contain papers presented at the Cbject-Oriented Programming Systems,
Languages and Applications conterence held on September 25-30, 1988. Such topics as
implementation, user interfaces, extending Smalitalk, databases, tools and environments,
applications, theory, concurrency and parallelism, ana design were treated.

Cesar, Edison M., Jr.; Ellis, John W., Jr.; Giarla. William; Klahr, Philip; Narain, Sanjai;
Turner, Scott R.; TWIRL: TACTICAL WARFARE IN THE ROSS LANGUAGE. Report No.
RAND/R-3158-AF. 59 p. Oct 1984. Sponsored by Air Force Research, Development and
Acquisition, Hq Air Force, Washington, DC, 20330. GranvContract No. F49620-82-C-0018.
Avail. from Defense Technical Information Center, Cameron Station, Alexandria, VA 22304-
6145. Order No. AD-A150 569.

Key words:

This report describes TWIRL, a simulation ot a primarily ground combat engagement between
two opposing military forces. It was developed to further experiment with the ROSS language,
an object-oriented simulation language that was successfully used to develop the SWIRL air
battle simulation, and to develop a prototype simulation that could be used to explore issues in
electronic combat. The authors descrice the ocjects that comprise TWIRL and provide
extensive examples of object behaviors to explain and illustrate the process of building a

S0

3787

8796

8914

8915

8916

simuiation in Ross. (cuthor)

O'lppolito. Richard; Lee, Kenneth J.: Plinta, Charles: Rissman. Michael S.; Van Scay,
Roger: AN OOD PARADIGM FOR FLIGHT SIMULATORS. ZND EDITION. Repon No.
CMU/SEiI-88-TR-30. 127 p. Sep 1988. Sponsored bty SEl-Joint Program Office, Hanscom Air
Force Base, Hanscom, MA 01731. GranvContract MNo. F12962885C0003. Avail. from Carnegie
Mellon University, Pittsburgn, PA 15213-3890.

Key words:

This report presents a paradigm for object-oriented implememtations of flight simulators. It is a
result of work on the Ada Simulator Validation Program (ASVP) carned out by memtcers ¢! the
technical staft at the Software Engineering Institute (SEI). (author)

Buchanan, Bruce G.; Schoen, Eric; Smith, Reid G.; "DESIGN OF KNOWLEDGE-BASED
SYSTEMS WITH A KNOWLEDGE-BASED ASSISTANT," In IEEE Transactions on Software
Engineering. 14(12): Dec 1988. Report No. |EEE Log Number 8824633. pp. 1771-1791.

Key words:

Intelligent assistants facilitate design and construction of complex software. In this article, the
authors propose a model for an intelligent assistant to aid in building one kind of software,
knowledge-based systems (KBS), and discuss a preliminary impiementation. The assistant
participates in KBS construction, including acquisition of an initial model of a problem domain,
acquisition of control, and task-specific inference knowledge. The authors present a
hypothetical scenario in which the assistant and a KBS designer cooperate to create an initial
domain model, and discuss five categories of knowledge the assistant requires to offer such
help. The authors then discuss two software technologies upon which the assistant is based:
an object-oriented programming language and a user-interface framework. (author)

Gardner, Michael R.; "SUCCESSES AND LIMITATIONS OF OBJECT-ORIENTED DESIGN,"
In Journal of Pascal, Ada & Modula 2. 7(6): Nov 1988. pp. 30-41.

Key words:

This article has two main purposes: (1) to show how to use object-oriented design cn a
software system sufficiently large that the method must be used recursively through several
levels of recursion, and (2) to evaluate the suitabilty of object-oriented design as a general
methodology for decomposing a system into modules. The article’s principle example of object-
oriented design concerns a hierarchical database management system (DBMS). Accordingly, a
secondary purpose of this article will be to discuss some techniques for using Ada to impiement
a DBMS. (author)

Amir, Shawn; "BUILDING INTEGRATED EXPERT SYSTEMS," In A/ Expert. 4(1): Jan 1989.
pp. 26-37.

Key words:

This anticle discusses the fundamentals of object-oriented programming in artificial intelligence
(Al), especially expert systems. The architecture of Property-list OBjects (POB) and the
Common LISP implementation of POB will also be reviewed. Technical material will be
presented in sufficient detail to allow implementation and experimentation with POB and Object-
Oriented Inference Engine (OBIE) variations. (author)

Jacobs, Jeff: Morgan, Tom; Rettig, Marc; Wimberly, Doug; "OBJECT-ORIENTED
PROGRAMMING IN Al - NEW CHOICES," In Al Expert. 4(1): Jan 1989. pp. 5§3-69.

Key words:

This paper describes various software products dealing with object-oriented programming. The
authors divided this field into language families: Smaiitalks, C derivatives, object-oriented LISPs,
and a few languages that do not quite fit into any family, such as Whitewater's Actor. Some
guidelines for choosing the best object-oriented language for your particular needs are also

S1

8936

8949

8962

9058

discussed. (authon

Muller, Robert J.; Pircher, Peter A.: ‘Yasserman, Anthony I.; "AN QOBJECT-ORIENTED
STRUCTURED DESIGN METHOD FCR CODE GENERATION," In Software Engineering Notes
(ACM SIGSOFT,. 14(1): Jan 1989. pp. 32-55.

Key words:

The overall architecture of a software system has long been recognized as an important
contributor to its quality (or lack thereof). Several methods are described that otfer valuable
concepts to address an arcniectural design method. But no method makes an adequate
distinction between the definiticn and use of objects, which is essential if one is to develop a
library of reusable objects. In addition, the object-oriented methods have largely abandoned
Structured Design, which is well established and inciudes most of the necessary concepts and
notation. As a result, the authors decided to synthesize ideas from these methods, along with
their own ideas, to define a new method, catled Object-Oriented Structured Design (OOSD), for
architectural design of systems. (author)

Corradi, Antonio; Leonardi, Letizia; "PO: AN OBJECT MODEL TO EXPRESS
PARALLELISM," In Proceedings of the ACM SIGPLAN Workshop on Object-Based Concurrent
Programming. Sep 1988. pp. 152-155.

Key words:

Concurrency is actually one of the neglected issues of object systems. The majority of issues
simply address processes as instances of a system class. This dichotomy, passive
objects/active processes, contrasts with object uniformity. Parallel Objects (PO) proposal is an
example of insertion of parallelism in an object framework that foillows the principle of uniformity.
The PO model is presented in this article as an object model to express parallelism. (author)

Seidewitz, Ed: "GENERAL OBJECT-ORIENTED SOFTWARE DEVELOPMENT: _
BACKGROUND AND EXPERIENCE," In Journal of Systems and Software. 9(2): Feb 1989.
pp. 95-108.

Key words:

The effective use of Ada requires the adoption of modem software-engineering techniques such
as object-oriented methodologies. A Goddard Space Flight Center Software Engineering
Laboratory Ada pilot project has provided an opportunity for studying object-oriented design in
Ada. The project invoives the development of a simulation system in Ada in parallel with a
similar Fortran development. As part of the project, the Ada development team trained and
evaluated object-oriented and process-oriented design methodologies for Ada. Finding these
methodologies limited in various ways, the team created a general object-oriented development
methodology that they applied to the project. This paper discusses some background on the
development of the methodclogy, describes the main principles of the approach, and presents
some experiences using the methodology, including a general comparison of the Ada and
Fortran simulator designs. (author)

Bamy, Brian M.; OBJECT-ORIENTED SIMULATION OF EW SYSTEMS. Report No. Technical
Note 87-31. 65 p. Dec 1987. Avail. from Defense Technical Information Center, Cameron
Station, Alexandria, VA 22304-6145. Order No. AD-A193 782.

Key words:

Simulations of complex EW systems are difficutt to build and virtually impossible to thoroughly
validate. As a consequence, most EW systems engineers tend to regard results derived from
simulations as suspect, preferring to reply instead on laboratory testing and field triais for
performance evaluations. The author suggests that the real problem may be that traditional
simulations do not provide the kind of modeling and analysis tools which the systems engineer
really needs. In this paper, a prototype for a new kind of EW simulation environment which
supports an object-oriented approach to modeling and simulation is described. The author will
provide some background information on object-oriented programming, describe the software

S2

2132

9173

9267

10020

10042

arcnitecture of the simutation environment ana CiSCuss several exame!es wnich ilusirate 11s use.

Zailin, Sidney C.. "AN OBJECT-ORIENTED RECUIREMENTS SPECIFICATION METHCD." In
Communications of the ACM. 32(5): May 1989. cp. 608-623.

Key words:

This article descrices a method of analyzing requirements for object-oriented software. The
method is intended to flow smoothly into design by object diagrams, and from there into
programming with Ada or another high-level language. The method is intended o serve as an
alternative to structured analysis wnen the use of object-oriented design is foreseen. The
authors assume that the analyst who is using this method had a textual statement of
requirements for a system available.

Whiting, Mark A.; "CONCEPTUAL CBJECT-ORIENTED DESIGN," In 8th Annual Pacific
Northwest Software Quality Conference. Oct 1990. pp 62-72. Sponsored by Deparnment ot
Energy. Grant/Contract No. DE-AC06-76RL.0-1830. Avaii. from PNSQC, P.O. Box 970,
Beavertown, OR 87075.

Key words:

Conceptual object-oriented design (COQOD) is a methodology that is being used at he Pacific
Northwest Laboratory (PNL) to study, plan, specity and document high-level solutions to large-
scale information processing problems. COOD embodies aspects of object-oriented program
design philosopny (which is being applied to the implememnation design of software) to provide
enhanced toois and techniques for conceptual design. COQOD is targeted at eh phase of
software development following requirements analysis and prior to implementation or detailed
design. This step is necessary, particularly for large-scale information processing systems to
achieve the following: 1. allow designers to conceptually work out solutions to information
processing problems where innovative thinking is required; 2. allow a structured environment in
which to capture design products, and ; 3. provide a global view of the conceptual solution in an
understandable form to the implementors of the solution. This will facilitate their detailed design
efforts. The product of COOD is a "Conceptual design specification.” This specification is
delivered to an implementation team to assist the detailed design process, yet is not a software
specification in and of itseif. (authors)

Buser, Jon F.; Ward, Paul T.; "REPRESENTING CBJECT QRIENTED SPECIFICATIONS
AND DESIGNS WITH EXTENDED DATA FLOW NOTATIONS," In Proceedirigs of the 13th
Annual Software Engineering Workshop. Nov 1988.

Foy, Ralph A.; Loftus, William P.; Qei, Charles L.. Thalhamer, John A.; "ADA ABSTRACT
DATA TYPES--THE FOUNDATICN OF AN INTERACTIVE ADA COMMAND ENVIRONMENT."
In Proceedings of the 7th Annual National Conference on Ada Technology, March 13-16, 15889.
Mar 1989. pp. 326-331.

Key words:

The Ada Command Environment (ACE) is an interactive, object-oriented software development
environment. The ACE uses Ada as both the command language and the programming
language; and supports an abstract data type (ADT) view of the underlying operating system
and applications tools. The benetits of the ACE approach is the combination of ADTs and the
Ada programming language. The Ada language provides a strong foundation for the
construction and use of ADTs and ADTs provide the mechanism for environment manipulation.
(author)

Barlev, S.; Davanzo, P.; Hetzron, J.; Levitz, M.; Tupper. K.; "ADA DESIGN TOOL," In
Proceedings of the 7th Annual National Conference on Ada Technology, March 13-16, 19889.
Mar 1989. pp. 557-566.

Key words:

53

10046

10057

10103

10104

The Ada Design Tool (ADT) is being designed and integrated into a software ergineenng
environment to suppon in the conceptualization, preparation ara generation of Ada crograms.
The grapnical and textual editors of the ADT allow the soiftware engineer to represent a top-ievel
ang detailed-level design in an Object-Oriented Design approacn or a Functionai Decomposition
Design approach. The ADT has a validation function to ensure that the design is complete and
consistent, a source code generator which is a facility tor generating Ada source ccce. and a
documentation function which produces MIL-STD specifications as well as analytical reoons.

Brown, Russell;: Dobbs, Verlynda: "A METHOD OF TRANSLATING FUNCTIONAL
REQUIREMENTS FOR OBJECT-ORIENTED DESIGN,” In Prcceedings of the 7th Annual
National Conference on Ada Technology, March 13-16, 1989. Mar 1989. pp. 589-539.

Key words:

A challenge in the use of Object-Oriented Design methods for software design is the difficulty of
maintaining traceability between functional requirements and the object requirements. A
framework for transiating functionai specifications into a set of object requirements, called
Functional Requirements Translation (FRT), is presented in this paper. FRT is intended for use
of OOD methods for DoD systems developed in Ada. This forms-based methodology provides
bi-directional traceability of the transiation and "can be used to identity unsatisfied requirements
and produce good detailed object designs”. (author)

Perez, Eduardo Perez; "SIMULATING INHERITANCE WITH ADA," In ACM Ada Letrters. 8(5):
Sep 1988. pp. 37-46.

Key words:

Since the evolution of object-oriented programming languages and systems, interest in
inheritance has increased. Inheritance is a mechanism to help a software designer in the
specification of software components. The designer need only indicate that a component
inherits the specification of another and specify any differential features between the two. This
introduces a new method of software development called differential development of software, or
more precisely, incremental development of software. The inheritance mechanism of Smailtalk
80 is reviewed and the different steps taken in the inheritance process. The Ada concept of
derived types is analyzed because it facilitates the simulation of an inheritance mechanism
similar to the Smalitalk 80 model.

Forestier, J. P.: Fornarino, C.; Franchi-Zannettacci, P.; "ADA++: A CLASS AND
INHERITANCE EXTENSION FOR ADA," Jun 1989. pp. 3-15.

Key words:

ADA++ is a superset of Ada supporting the use of object-oriented design and constructs above
standard Ada. A full model for class definition and multiple inheritance on abstract objects fully
compatible with standard Ada syntax, semantics and methodology is provided. Currently,
Ada++ is implemented as a pre-processor and embedded in a graphical interactive programming
environment called, ADALOCK.

Donaidson, C. M.; "DYNAMIC BINDING AND INHERITANCE IN AN OBJECT-ORIENTED
ADA DESIGN,"” Jun 1989. pp. 16-25.

Key words:

Classic-Ada is an object-oriented design language and toolset developed under a research and
development effort at Software Productivity Solutions, Inc. The language inporporates the
standard Ada syntax, semantics and methodology and includes a set of extensions to _support
dynamic binding and inheritance. A User Intertace Management System (UIMS), whxch is a
collection of reusable components for building applications user interfaces, has been designed

10106

10108

10110

10205

10317

using Classic-Ada.

Atkinson. Colin; Bayan. Fami: Cardigno, C.nzia; Cestomtes, Cathenne; Di Maio, Andrea:
"DRAGCCN: AN ADA-BASED CBJECT ORIENTED LANGUAGE FOR CCNCURRENT, REAL-
TIME, DISTRIBUTED SYSTEMS,” cun 1989, pp. 39-48.

Key words:

DRAGOQOCN (Distributed Reusacie Ada Generated {rom an Cbject Criented Notation) is a fully
object oriented design ang programming language which can be automatically mapped into Ada
for execution. DRAGTON provides inheritance and polymorphism and thus ennches Ada with
the typical features of an coject-oriented paradigm. It is described in this paper how DRAGOCN
can be used to design concurrem, distributable and dynamically reconfigurable applications.
(author)

Davis, Neil W.; Irving, Malcolm: Lee, John E.; "PRACTICAL EXPERIENCES OF ADA AND
OBJECT CRIENTED DESIGN IN REAL TIME DISTRIBUTED SYSTEMS," Jun 13989. pp. §9-
79.

Key words:

Logica Space and Defence Systems Limited is currently working to produce an object oriented
approach to software system cevelopment. Practical experiences in the use of Ada and-object
oriented design in the recuirements analysis and design of real time distributed systems are
presented in this paper. ~eporned are lessons learned and an overview of future work needed
in this area.

Auxiette, G.; Cabadi, J. F.; Rehbinder, P.; "PROMETHEE: DESIGNING A PROCESS
CONTROL SYSTEM,” Jun 1989. pp. 90-104.

Key words:

The "state of the art” of several activities related to Ada, such as, design for Ada, integration in
Unix, compatibility with software libraries or networks, are examined in this paper. The authors
present soiutions to some of these activities, and others are left unsolved. The study is a
process control system, called Promethee, and an overview of it is presented. Issues of the
design process, especially those related to soft real-time systems are also discussed.

Liu, Chang-Shyan; Yau, Stephen S.; "A STRUCTURED BIPARTITE INHERITANCE
NETWORK REPRESENTATICN FOR OBJECT CRIENTED SOFTWARE DESIGN," Sep 1289.
pp. 351-357. Order No. 0730-3157/89/0000/0351301.00.

Key words:

In this paper, a representation for any object-oriented software design is presented. The
representation is based on a Slructured Bipartite Inheritance Network, which is a network with
two kinds of basic nodes: cata entity nodes and action nodes, and an encapsufation mechanism:
substructure. Data entity nodes and action nodes are independent of each other and structured
into inhertance hierarchy. The advantage of this representation is that all object-oriented
software design can be represented in a uniform way and thus makes the software system more
understandable and more maintainable. (author)

Kuhl, Frederick S.; "OBJECT-ORIENTED PROGRAMMING APPLIED TO A PROTOTYPE
WORKSTATION," In Software - Practice and Experience. 20(9): Sep 1990. Report No. 0038-
0644/90/090887-1230. pp. 887-898.

Key words:

Object-oriented programming has been applied to the development of a prototype workstation to
be used in airport traffic control towers. Objective-C was used because it suppors objects,
classes and inheritance, and it allows easy access to system services. A number of design
practices emerged as helpful in the course of development, scme of which have been reported
elsewhere. The notion of a framework of co-operating classes as a paradigm of design was

S5

10400

10414

10624

10636

especially heiptul. Ccmpanscns with the size and rate ¢! coge proguction ot an eartier. s:mular
workstation programmed in C ircicate an agvantage !¢ ooject-oriented programming. (author)

Grubbs, Jeffrey W.; Roggio, Robernt F.; "REUSE 3Y DESIGN: DATA ABSTRACTION VS.
THE 'TOP-DOWN' MINDSET IN AN OBJECT-CRIENTED ENVIRONMENT.," In 5th Annual
Knowledge-Based Scftware Assisiant Conference. Sep 1980. pp.418-431.

Key words:

Utilization of an object-oriented environment for application development is no guarantee that
software produced therein will be designed for reusability. Designerprogrammer methodological
bias coupled with a misunderstanding of the object-oriented approach produces marginally
effective abstractions with ill-defined or inadequate behaviors. These inappropriate abstractions
tie software components to a specific application context and severely restrict the opportunities
for reuse. This paper examines a limited Smailtalk application whose development demonstrates
such effects. The qualitative and quantitative advantages realized through redesigning it for
reusability are also discussed. (author)

Hoffman, Daniel; "ON CRITERIA FOR MODULE INTERFACES," In IEEE Transactions on
Software Engineering. 16(5): May 1990. pp 537 - 542. GranvContract No. A8067. Sponsored
by Natural Sciences and Engineering Research Council of Canada. COrder No. 0098-
5589/90/0500-0537%01.00.

Key words:

While the benefits of modular software development are widely acknowiedged, there is little
agreement as to what constitutes a good module interface. Computational complexity
techniques allow us to evaluate algorithm time and space costs but offer no guidance in the
design of the interface to an implementation. Yet, interface design decisions often have a
critical effect on the development and maintenance costs of large software systems. In this
paper the author presents criteria that have led to simple, elegant interfaces. These criteria
have been developed and refined through repeated practical application. The author presents
and illustrates the criteria in detail.

Meyer, Bertrand; "LESSONS FROM THE DESIGN OF THE EIFFEL LIBRARIES," In
Communications of the ACM. 33(9): Sep 1990. pp 63-88. Order No. ACM 001-0782/90/0300-

0069$1.50.
Key words:

The use of reusable software components is now technically possible and shouid advance the
level of software development. This article presents the efforts which have been made to
advance the cause of component based software development in the Eiffel environment througn
the construction of the Basic Eiffel Libraries. Following a brief overview of the libraries, this
article reviews the major language techniques that have made them possible (with more
background about Eiffel). 1t then discusses design issues for libraries of reusable components,
the use of inheritance hierarchies, the indexing problem, and planned developments. (author)

Wirfs-Brock, Rebecca J.; Johnson, Ralph E.; "SURVEYING CURRENT RESEARCH IN
OBJECT-ORIENTED DESIGN," In Communications of the ACM. 33(9): Sep 1990. pp 104-124.
Order No. ACM 001-0782/90/0200-0104%$1.50.

Key words:

The state of object-oriented design is evolving rapidly. This survey describes what are currently
thought to be the key ideas, necessarily incompiete, of both academic and industrial efforts in
both the United States and Europe. It ignores well known ideas like those of Coad and Meyer
in favor of less widely known projects. Presented are separate works by Alan Snyder and
Dennis de Champeaux of Hewlett-Packard, Rebecca Wirfs-Brock from Tektronix, Ralph Johnson
at the University of lllinois, and results from the research group in object oriented scftware
engineering led by Kart Lieberherr at Northeastern University. It is found that standardization of
terminology is needed. however the fact that different groups are forced to invent terminology

S6

10668

10799

10817

10818

for the same ccncepts are IMoonant. The various methocs cresented tenaed to compiement
each cther rather than ccmpete. with their simuanities hicden in aifferences in vocaoulary.

Cony, Christophe: "=XCEPTION HANDLING AND OBJECT-ORIENTED PROGRAMMING:
TOWARDS A SYNTHESIS.” in ECCCPICCPSLA 1990 Przceeaings. 25(10): Cct 1980. pp
322-330. Sponsorea by Rank-Xerox & LITP. Crder No. ACMO089791-411-2/90/0010-032231.50.

Key words:

The paper presents a discussion and a specification of an exception handling system dedicated
to object-oriented programming. The authers show how a full object-oriented representation of
exceptions and of protocols to handle them. using meta-classes, makes the system powerful as
well as extendible and solves many classical exception hangaling issues. The authors expiain the
interest for object-oriented programming cf handlers attached to classes and to expressions.
They propose an original algorithm for propagating exceptions along the invocation chain which
takes into account, at each stack level, both kind of handlers. Any class can control which
exceptions wiil be propagated cut of its methods; any method can provide context-dependent
answers to exceptional events. The whole specification and some keys of the author's Smalitalk
implemenrtation are presented in the paper. (authors)

Moreau, Dennis R.; Dominick, Wayne D.; "A PROGRAMMING ENVIRONMENT
EVALUATION METHODOLOGY FOR OBJECT-ORIENTED SYSTEMS: PART I- THE
METHODOLOGY," |n Journal of Object-Oriented Programming. 3(1): May 1990. Report No.
ISSN #0896-8438. pp. 38-54.

Key words:

The research presented in this article addresses the design, development, and evaluation of a
systematic, extensible, and environment-independent methodology for the comparative
evaluation of object-oriented programming environments. This methodology is the intended to
serve as a foundation elememt for supporting research into the impact of object-oriented
software development environments and design strategies on the software development process
and resultant software products.(author)

Cox, Brad J.; OBJECT ORIENTED PROGRAMMING: AN EVOLUTIONARY APPROACH.
Report No. ISBN 0-201-103393-1. 285 p. Avail. from Addison-Wesley Publishing Company.
Order No. ISBN 0-201-10393-1.

Key words:

This book describes Object-Criented Programming (OOP). The focus is on COP not so much
as a coding technique, but as a code packaging technique, a way for code suppliers to
encapsulate functionaiity for delivery to consumers. I[nheritance and encapsuiation are the major
existing modules. The initial chapters cescribe the system-building problem. The middle
chapters describe a solution as implemented in Objective-C. Although encapsulation and
inheritance provide the technical underpinnings for large-scale reusability, they are useless
without an information network and libraries for reusability. The closing chapter describes some
techniques for extending the basic object-oriented definitions to handle even more ambitious
problems, including automated garbage collection, heap compaction, virtual object memories,
and distributed systems.

Jackson, Michael; SYSTEM DEVELOPMENT. Report No. ISBN 0-13-880328-5. 435 p. Avail.
from Prentice-Hall, Rt. 59 at Brook Hill Drive, West Nyack, NY 10995. Order No. ISBN 0-13-
880328-5.

Key words:

This book is about Jackson System Development (JSD), a system development method
especially oriented towards systems in which time is important. Part | is an overview of JSD.
Part Il gives a detailed description of each major step in JSD in a separate chapter. These

steps are illustrated with three example problems. JSD consists of six steps, the first four
concerned with specification and the last two with implementation. What is often called design

57

10819

10820

10821

10822

has largely been absorped into the implemematicn sieds. SO begins by censtrucung a model
of the real world concentrating on the entities with wnich the system wiil be concerned. their
actions. and their ordenngs in time. A JSD user worries about function only after this moael has
been cetined. Part lIl considers various topics. namely the input system and errors, system
maintenance, and a retrospective look at JSD.

Booch, Grady; SOFTWARE COMPONENTS WITH ADA: STRUCTURES, TCOLS. AND
SUBSYSTEMS. Report No. ISBN 0-8053-0610-2. 665 p. Avail. from Benjamin Cummings.
Order No. iISBN 0-8053-0610-2.

Key words:

A carefully engineered collection of reusable components can reduce the cost of software
deveiopment, improve the quality of software products, and accelerate software production. This
book is designed to train the reader in the creation and application of such components. it
provides a catalog of reusable software components, illustrates how each component was
developed, and demonstrates how they collectively can be applied to the construction of
complex systems. The components are implemented in Ada and illustrate the use of object-
oriented techniques. A scheme for classifying components is presented.

Meyer, Bertrand; OBJECT-ORIENTED SOFTWARE CONSTRUCTION. Report No. ISBN 0-
13-629049-3. 552 p. Avail. from Prentice-Hall, Rt. 53 at Brook Hill Drive, West Nyack, NY
10995. QOrder No. ISBN 0-13-629049-3.

Key words:

This book describes Object Oriented Design. Part 1 presents the problems OCD is meant to
solve and gives a high-level argument of why one should structure systems around data instead
of functions. OOD’s support for certain principles of modularity is discussed. QOD is defined as
the construction of software systems as structured collections of abstract data type
implementations. Part 2 consists of a detailed expianation of OOD. The programming language
Eiffel is used as a notation for conveying Object-Oriented principles. Part 3 discusses how to
implement OCD in other languages. Classical languages, namely C, Fortran, and Pascal; Ada;
and other Object-Oriented languages, namely Simufa, Smalitalk, C++, Objective C, and Lisp
variants are all treated. The book concludes with a brief indication of issues for further research.
Appendices summarize technical details about Eiffel such as the library, the grammar, reserved
words, Input/Output, and syntax diagrams.

Wiener, Richard S.; Pinson, Lewis J.; "A PRACTICAL EXAMPLE OF MULTIPLE
INHERITANCE IN C++," In ACM SIGFPLAN Notices. 24(9): Sep 1989. pp. 112-115.

Key words:

Version 2.0 of C++ supports multiple inheritance, which offers an object oriented designer an
additional degree of freedom. If used in a disciplined way, it can simplify an inheritance
hierarchy. If abused, it can add tremendous complexity to a software design, perhaps in the
extreme making it unmanageable. This article presents as an example an appropriate use of
multiple inheritance, an array of integers. Integers, arrays, and integer arrays are all classes in
the example.

Meyer, Bertrand; "GENERICITY VERSUS INHERITANCE," In ACM SIGFPLAN Notices.
21(11): Nov 1986. In OOPSLA 1986 Conference Proceedings. Sep 1986. pp. 391-40S.

Key words:

Genericity, as in Ada or ML, and inheritance, as in object-oriented languages, are two altemative
techniqgues for ensuring better extendibility, reusabilty, and compatibility of software
components. This article is a comparative analysis of these two methods. It studies their
similarities and differences and assesses to what extent each may be simulated in a language
offering only the other. It shows what features are needed to successfully combine the two
approaches in a statically typed language and presents the main features of the programming
language Eiffel, whose design, resulting in part from this study, includes multiple inheritance and

58

10823

10824

10825

10826

10827

a limitea form of genericity unager tuil siaiic (yTing. (~Jincn

Stevens, Al; "FROM C TO C++," In Or. Ccbb's Jcurnal. Cec 1989, fp. 8-17.

Key words:

This anticle consists of two interviews, one with Denrus Ritchie, the designer of C, and the other
with Bjarne Stroustrup, the creator of C++. C+= is an otject criented superset of the
programming language C. Both interviews present their subjects views on the history, current
activities, and future prospects of their respective languages. Ritchie is asked for his opinion on
the American National Standards Institute’'s standarg for C. Strousirup is asked about recent and
future Personal Computer implementations of C+~, as well as the development ot his recent
version 2.0.

Seidewitz, Ed; Stark, Michael; "ADA IN THE SEL: EXPERIENCES WITH OPERATIONAL
ADA PRQOJECTS," In Proceedings of the Second NASA Ada User's Symposium. Nov 1989. 11

p.
Key words:

This set of slides surveys Ada projects conducted in the flight dynamics division at NASA's
Goddard Space Flight Center (GSFC). Eight projects have been performed, and data has been
collected by the Software Engineering Laboratory for all of them. As programmers have gained
more experience with Ada, they tend to design a greater proportion of generic packages, more
types. and less tasks. Packages tend to become smatler. Ada projects tended to reuse more
code than Fortran projects,.the traditional language at NASA/GSFC. Several Ada projects had to
be performed before design errors decreased to the same order as with Fortran projects. Similar
results hold for errors due to previous changes. Cn the other hand, interface errors for Ada
projects were always less than for Fortran projects, and continually declined. This talk presents
data supporting these and additional conclusions.

Stein, Lynn Andrea; "DELEGATION IS INHERITANCE,"” In OOPSLA 1987 Proceedings. Oct |
1987. In ACM SIGPLAN Notices. 22(12): Dec 1987. pp. 138-146.

Key words:

Inheritance and delgation are alternate methods for incremental definition and sharing. It has
commonly been believed that delegation provides a more powerful model. This paper
demonstrates that there is a natural model of inheritance which captures all of the properties of
delegation. Independently, certain constraints on the ability of delegation to capture inheritance
are demonstrated. Finally, a new framewark which fully captures both delegation and inheritance
is outlined, and some of the ramitications cf this hybrid moagel are explored. (Author)

Cointe, Pierre; "METACLASSES ARE FIRST CLASS: THE OBJVISP MODEL," In OOPSLA
1987 Proceedings. Oct 1987. In ACM SIGPLAN Notices. 22(12): Dec 1987. pp. 156-167.

Key words:

This paper shows how an attempt at an uniform and reflective definition resulted in an open-
ended system supporting ObjViisp, which is used to simulate object-oriented language
extensions. The author proposes to unify Smalitalk classes and their terminal instances. This
unification allows one to treat a class as a "first class citizen,” to give a circular definition of the
first metaclass, to access to the metaciass level, and finally, to control the instantiation link.
Because each object is an instance of another one and because a metaclass is a real class
inheriting from another one, the metactass links can be created indefinitely. This uniformity
allows one to define the class variables at the metalevel thus suppressing the Smalitalk-80
ambiguity between class vanables and instance vanables: in this papers model the instance
variables of a class are the class variables ot its instance. (Author)

Minsky, Naftaly H.; Rozenshtein, David; "A LAW-BASED APPRQOACH TO OBJECT-
ORIENTED PROGRAMMING," In OOPSLA 1987 Prcceedings. Cct 1987. In ACM SIGPLAN
Notices. 22(12): Dec 1987. pp. 482-493.

59

10828

10828

10830

Key words:

The central idea behind this paper is that the agiscicine governing the excrange of messages
between objects should be specifiable by the programmer in the form of an expiicit law of the
system. The authors show how, starting from a very primitive foundaticn. wnich presumes
neither encapsulation nor inheritance, ocne can estatiish various forms of beth, a5 well as other
useful disciplines, simply by means of appropnate laws. (Author)

Abbott, Russell J.; "PROGRAM DESIGN BY INFORMAL ENGLISH DESCRIPTICNS.," In
Communications of the ACM. 26(11): Nov 1983. pp. 882-894.

Key words:

A technique is presented for developing programs from informal but precise English descriptions.
The technique shows how to derive data types from common nouns, variables from direct
referencs, operators from verbs and attributes, and control structures from their English
equivalents. The primary contribution is the proposed relationships between common nouns and
data types; the others follow directly. Ada is used as the target programming language because
it has useful program design constructs.

Backus, John; "CAN PROGRAMMING BE LIBERATED FROM THE VON NEUMANN STYLE?
A FUNCTIONAL STYLE AND ITS ALGEBRA OF PROGRAMS," In Communications of the
ACM. 21(8): Aug 1978. pp. 613-641.

Key words:

Conventional programming languages are growing ever more enormous, but not stonger.
Inherent defects at the most basic level cause them to be both fat and weak: their primitive
word-at-a-time style of programming inherited from their common ancestor - the von Neumann
computer, their close coupling of semantics to state transitions, their division of programming
into a world of expressions and a world of statements, their inability to effectively use powerful
combining forms for building new programs from existing ones, and their lack of useful
mathematical properties for reasoning about programs. An alternative functional style of
programming is founded on the use of combining forms for creating programs. Functional
programs deal with structured data, are often nonrepetitive and nonrecursive, are hierarchically
constructed, do not name their arguments, and do not require the complex machinery of
procedure declarations to become generally applicable. Combining forms can use high level
programs to build still higher level ones in a style not possible in conventional languages.
Associated with the functional style of programming is an algebra of programs whose variables
range over programs and whose operations are combining forms. This algebra can be used to
transform programs and to soive equations whose "unknowns" are programs in much the same
way one transforms equations in high school algebra. These transtormations are given by
algebraic laws and are camied out in the same language in which programs are written.
Combining forms are chosen not only for their programming power but aiso for the power of
their associated algebraic laws. General theorems of the aigebra give the detailed behavior and
termination conditions for large classes of programs. A new class of comguting systems uses
the functionai programming style both in its programming language and in its state transition
rules. Unlike von Neumann languages, these systems have semantics loosely coupled to states
- only one state transition occurs per major computation.

Booch, Grady; "OBJECT-ORIENTED DEVELOPMENT," In IEEE Transactions on Software
Engineering. 12(2): Feb 1986. pp. 211-221.

Key words:

Obiject-oriented development is a partial lifecycle sottware development method in which the
decomposition of a system is based upon the concept of an object. This method is
fundamentally different from traditional function approaches to design and serves to help
manage the compiexity of massive software-intensive systems. This paper examines the
process of object-oriented development as well as the influences upon this approach from
advances in abstraction mechanisms, programming fanguages, and hardware. The concept of
an object is central 1o object-oriented development, and so the properties of an object are

60

10831

10832

ciscussed in cetail. Trhe pacer conciuces with an examunaticn cf the mapping ¢ coiect-criented
‘echnicues 10 Ada using @ gesign case stuay. (Author)

Seynoids. Charles W.; "ON IMPLEMENTING GENERIC CTATA STRUCTURES IN MODULA-
2.,” In Journar of Pascal. Ada & Mocuia 2. 6(S5): Sep 1287. :-p. 26-38.

Key woras:

A generic data structure is a data type for which the set ¢! cperations is specified, tut not the
set of values. Generics should ideally exhibit strong type crecking, information hiding, separate
compilation of intertaces and imptementations, and efficiencies of both time and space. The
programming language Modula-2 provides strong support {cr data abstraction, but no obvious
capahility for defining generics. This article briefly reviews past proposals for simulating generics
in Modula-2 and proposes a new solution. The new solution uses a new statement, the "include”
statement, which can be added with a preprocessor.

DOD-STD-2167A MILITARY STANDARD DEFENSE SYSTcM SOFTWARE DEVELOPMENT.
Report No. DoD-STD-2167A. 61 p. Feb 1988. Avail. from Data & Analysis Center for
Software, P.O. Box 120, Utica, NY 13503. Order No. DoD-STD-2167A.

Key words:

This Cepartment of Defense standard, along with the accompanying Data ltem Descriptions
(OIDs), establishes unitorm requirements for the acquisition. cevelopment, or support of software
systems. These requirements apply to the development cf Computer Scftware Configuration
items (CSCls), including the software element of firmware. The requirements of this standard lie
in the areas of software developent management, software engineering, formal quaiification
testing, software product evaluation, software configuration managment, and {ransitioning to
software support.

Title Key-Word-in-Context List

6622
10020

9643

10400

7740

7643
7251

7335
7558

10103
5665
5692

10007
10057
10103
10020

ABSTRACT DATA TYPES *** KNOWLEDGE-BASED PROGRAMMING USING
ABSTRACT DATA TYPES--THE FOUNDATION OF AN INTERACTIVE ADA COMMAND
ENVIRONMENT °*** ADA

ABSTRACTION *** THE IMPACT OF OBJECT-ORIENTED DECOMPOSITION ON
PROCEDURAL

ABSTRACTION VS. THE 'TOP-DOWN' MINDSET IN AN CBJECT-ORIENTED ENVIRONMENT
*** REUSE BY DESIGN: DATA

ACCESS AND OBJECT ORIENTED PARADIGM IN A LANGUAGE THAT SUPPORTS
NEITHER *** IMPLEMENTING AN

ACCIDENTS OF SOFTWARE ENGINEERING *** NO SILVER BULLET: ESSENCE AND
ACQUAINTANCE/INSTANCE VARIABLE MODEL FOR OBJECT-ORIENTED PROGRAMMING

eee

ACTORS: A MODEL OF CONCURRENT COMPUTATION IN DISTRIBUTED SYSTEMS ***
ACTORS: EXPLOITING LARGE-SCALE PARALLELISM *** CONCURRENT PROGRAMMING
USING

ADA *** ADA++: A CLASS AND INHERITANCE EXTENSICN FOR
ADA *** DESIGN METRICS AND

ADA *** MODULAR SOFTWARE CONSTRUCTION AND CBJECT-ORIENTED DESIGN
USING

ADA *** PROBLEMS ENCOUNTERED IN LEARNING OBJECT ORIENTED DESIGN USING
ADA *** SIMULATING INHERITANCE WITH

ADA++: A CLASS AND INHERITANCE EXTENSION FOR ADA ***

ADA ABSTRACT DATA TYPES--THE FOUNDATION OF AN INTERACTIVE ADA COMMAND
ENVIRONMENT ***

61

7728
10108

8167
10020

10104
10042
9984
6471

10824
7720

2341
10824
6876
10819
7885

10106

6471

8916
6035
7728

8335
10829

9931

8223
10019

9361
7720

6035
10317
7809
7885

8796

9726
7720

A0A AND Al JOIN FCRCES ™

ADA AND CZ2JECT CRIENTED DESIGN IN REAL Ti'ME DISTRIBUTED SYSTEMS **°
PRACTICAL EXPERIENCES OF

ADA CODE *** PROTOTYPE REAL-TIME MCNITCR:

ADA COMMAND ENVIRONMENT °** ADA ABSTRACT DATA TYPES--THE FOUNDATION CF

AN INTERACTIVE
ADA DESIGN °** DYNAMIC BINDING AND INHERITANCE IN AN OBJECT-ORIENTED

ADA DESIGN TCQL **°

ADA DESIGNED DISTRIBUTED OPERATING SYSTEM °*** AN

ADA HIGH ORDER LANGUAGE *** PROCEEDINGS OF THE 2ND AFSC AVIONICS
STANDARDIZATION CONFERENCE. VOLUME 8. TUTORIAL: MIL-STD-1815

ADA IN THE SEL: EXPERIENCES WITH OPERATIONAL ADA PROJECTS ***

ADA PRESENTATION USING PICTCGRAPHS (SHARP) DEFINITION, APPLICATION AND
AUTOMATION *** STRUCTURED HIERARCHICAL

ADA PROGRAMMING LANGUAGE *** REFERENCE MANUAL FOR THE

ADA PROJECTS *** ADA IN THE SEL: EXPERIENCES WITH OPERATIONAL

ADA (SECOND EDITION) *** SOFTWARE ENGINEERING WITH

ADA SOFTWARE DESIGN ISSUES ***

ADA: STRUCTURES, TOOLS, AND SUBSYSTEMS °** SOFTWARE COMPONENTS WITH

ADA TECHNOLOGY HELD IN ARLINGTON, VIRGINIA ON MARCH 16-19, 1987 ***
PROCEEDINGS OF THE 5TH ANNUAL NATIONAL CONFERENCE ON

ADA-BASED OBJECT ORIENTED LANGUAGE FOR CONCURRENT, REAL-TIME,
DISTRIBUTED SYSTEMS *** DRAGOON: AN

AFSC AVIONICS STANDARDIZATION CONFERENCE. VOLUME 8. TUTORIAL: MIL-STD-
1815 ADA HIGH ORDER LANGUAGE *** PROCEEDINGS OF THE 2ND

Al - NEW CHOICES *** OBJECT-ORIENTED PROGRAMMING IN
Al DEVELOPMENT SYSTEM *** APPLICATIONS DEVELOPMENT USING A HYBRID

Al JOIN FORCES °*** ADA AND
AIR BATTLE SIMULATOR *** SWIRL: AN OBJECT-ORIENTED

ALGEBRA OF PROGRAMS *** CAN PROGRAMMING BE LIBERATED FROM THE VON
NEUMANN STYLE? A FUNCTIONAL STYLE AND ITS

ANALYSIS AND DESIGN *** HOW TO INTEGRATE OBJECT ORIENTATION WITH

STRUCTURED
ANALYSIS AND SYSTEM SPECIFICATION *** STRUCTURED
ANALYSIS (SERA) *** EVALUATION OF TEACHING SOFTWARE ENGINEERING

REQUIREMENTS
ANIMATION *** OBJECT-ORIENTED COMPUTER

APPLICATION AND AUTOMATION °** STRUCTURED HIERARCHICAL ADA
PRESENTATION USING PICTOGRAPHS (SHARP) DEFINITION,

APPLICATIONS DEVELOPMENT USING A HYBRID Al DEVELOPMENT SYSTEM ***
APPLIED TO A PROTOTYPE WORKSTATION *** OBJECT-ORIENTED PROGRAMMING
ARCHITECTURE OF THE EXODUS EXTENSIBLE DBMS: A PRELIMINARY REPORT *** THE

ARLINGTCN, VIRGINIA ON MARCH 16-19, 1987 *** PROCEEDINGS OF THE 5TH ANNUAL
NATIONAL CONFERENCE ON ADA TECHNOLOGY HELD IN

ASSISTANT *** DESIGN OF KNOWLEDGE-BASED SYSTEMS WITH A KNOWLEDGE-
BASED

ASSURING GOOQOD STYLE FOR OBJECT-ORIENTED PROGRAMS ***

AUTOMATION *** STRUCTURED HIERARCHICAL ADA PRESENTATION USING
PICTOGRAPHS (SHARP) DEFINITION, APPLICATION AND

62

471

8962

8335
10104
10205

8915
7643

7642
3392

5682

8916
10103
10826
7882

8167
8936

10020

9727
10819
7335
3361
5307
9173

7335
7558

10106

7885

8436
8726

6471

10820
5692

AVIONICS STANDARDIZATICHN CCNFERENCE. WCLUME &. TUTORIAL: !L-STT-1815 ACA
HIGH CRDER LANGUAGE *** “ROCEEZINGS CF THE 2ND AFSC

SBACKGRCOUND AND EXPERIENCE *** GzNERAL C2JECT-CRIENTED SOFTWARE
DEVELCPMENT:

BATTLE SIMULATCR *** SWIRL: AN OEBJECT-ORIENTED AIR

BINDING AND INHERITANCE iN AN CBJECT-ORIENTED ADA DESIGN *** DYNAMIC

BIPARTITE INHERITANCE NETWORK REPRESENTATION FOR OBJECT ORIENTED
SOFTWARE DESIGN *** A STRUCTURED

BUILDING INTEGRATED EXPERT SYSTEMS ***
BULLET: ESSENCE AND ACCIDENTS OF SOFTWARE ENGINEERING *** NO SILVER

CASE FOR OBJECT-ORIENTED DESIGN *** REUSABILITY: THE
CASE TOOL FOR DISTRIBUTED SYSTEMS *** PROTOB: A HIERARCHICAL OBJECT-

ORIENTED

CHANGE IN PROGRAMMING TECHNOLOGY *** MESSAGz/OBJECT PROGRAMMING: AN
EVOLUTIONARY

CHOICES *** OBJECT-ORIENTED PROGRAMMING IN Al - NEW
CLASS AND INHERITANCE EXTENSION FOR ADA *** ADA++: A
CLASS: THE OBJVISP MODEL *** METACLASSES ARE FiRST

COCKPIT DISPLAYS *** A GRAPHICS ENVIRONMENT SUPPORTING THE RAPID
PROTOTYPING OF PICTORIAL

CODE *** PROTOTYPE REAL-TIME MONITOR: ADA
CODE GENERATION *** AN OBJECT-ORIENTED STRUCTURED DESIGN METHOD FOR

COLLECTOR *** A PERSISTENT OBJECT STORE WITH AN INTEGRATED GARBAGE

COMMAND ENVIRONMENT *** ADA ABSTRACT DATA TYPES--THE FOUNDATION OF AN
INTERACTIVE ADA

COMPARISON OF TWOQO OBJECT-ORIENTED LANGUAGES *** A PRACTICAL
COMPONENTS WITH ADA: STRUCTURES, TOOLS, AND SUBSYSTEMS *** SOFTWARE
COMPUTATION IN DISTRIBUTED SYSTEMS °*** ACTORS: A MODEL OF CONCURRENT
COMPUTER ANIMATION *** OBJECT-ORIENTED

CONCEPTS AND RESEARCH DIRECTIONS *** REUSABLE SOFTWARE ENGINEERING:
CONCEPTUAL OBJECT-ORIENTED DESIGN °**

CONCURRENT COMPUTATION IN DISTRIBUTED SYSTEMS °** ACTORS: A MODEL OF
CONCURRENT PROGRAMMING USING ACTORS: EXPLOITING LARGE-SCALE
PARALLELISM ***

CONCURRENT, REAL-TIME, DISTRIBUTED SYSTEMS *** DRAGOON: AN ADA-BASED
OBJECT ORIENTED LANGUAGE FOR

CONFERENCE ON ADA TECHNOLOGY HELD IN ARLINGTON, VIRGINIA ON MARCH 16-18,
1987 *** PROCEEDINGS OF THE 5TH ANNUAL NATIONAL

CONFERENCE PROCEEDINGS *** OOPSLA '87

CONFERENCE PROCEEDINGS *** QOPSLA '88

CONFERENCE. VOLUME 8. TUTORIAL: MIL-STD-1815 ADA HIGH ORDER LANGUAGE ***
PROCEEDINGS OF THE 2ND AFSC AVIONICS STANDARDIZATION

CONSTRUCTION *** OBJECT-ORIENTED SOFTWARE
CONSTRUCTION AND OBJECT-ORIENTED DESIGN USING ADA *** MODULAR
SOFTWARE

63

10110

10414
2305

10638
10400

9267

10831
7041
6622
10020

8233
7809
2305
9643

10832

7720

10825
10828
10046

10205

9173
10104
2831

5676
8166
7642
8914
10636
6043

10828
10400

10108

6876
8936
5665
8796

CONSTRUCTICN AND CE2JECT-CRIENTED DESIGN USING MODULA-2 *** ODULA
SOFTWARE

CONTROL SYSTEM *** PROMETHEE: DESIGNING A PROCESS

CRITERIA FOR MODULE INTERFACES *** ON
CRITERIA TO BE USED IN DECOMPOSING SYSTEMS INTO MODULES *** ON THE

CURRENT RESEARCH IN CBJECT-ORIENTED DESIGN *** SURVEYING

DATA ABSTRACTION VS. THE TOP-DOWN' MINDSET IN AN OBJECT-ORIENTED

ENVIRONMENT *** REUSE BY DESIGN:
DATA FLOW NQOTATIONS *** REPRESENTING OBJECT ORIENTED SPECIFICATIONS AND

DESIGNS WITH EXTENDED

DATA STRUCTURES IN MODULA-2 *** ON IMPLEMENTING GENERIC

DATA STRUCTURES IN MODULA-2 *** TWQ APPROACHES TO IMPLEMENTING GENERIC
DATA TYPES *** KNOWLEDGE-BASED PROGRAMMING USING ABSTRACT

DATA TYPES--THE FOUNDATION OF AN INTERACTIVE ADA COCMMAND ENVIRONMENT

°** ADA ABSTRACT
DATABASE DESIGN USING AN OBJECT-ORIENTED METHODOLOGY *** RELATIONAL

DBMS: A PRELIMINARY REPORT *** THE ARCHITECTURE OF THE EXODUS EXTENSIBLE
DECOMPQOSING SYSTEMS INTO MODULES *** ON THE CRITERIA TO BE USED IN

DECOMPQSITION ON PROCEDURAL ABSTRACTION *** THE IMPACT OF OBJECT-
ORIENTED

DEFENSE SYSTEM SOFTWARE DEVELOPMENT *** DOD-STD-2167A MILITARY
STANDARD

DEFINITION, APPLICATION AND AUTOMATION *** STRUCTURED HIERARCHICAL ADA
PRESENTATION USING PICTOGRAPHS (SHARP)

DELEGATION IS INHERITANCE °**
DESCRIPTIONS *** PROGRAM DESIGN BY INFORMAL ENGLISH

DESIGN °*** A METHOD OF TRANSLATING FUNCTIONAL REQUIREMENTS FOR OBJECT-
ORIENTED

DESIGN *** A STRUCTURED BIPARTITE INHERITANCE NETWORK REPRESENTATION
FOR OBJECT ORIENTED SOFTWARE

DESIGN *** CONCEPTUAL OBJECT-ORIENTED

DESIGN *** DYNAMIC BINDING AND INHERITANCE IN AN OBJECT-ORIENTED ADA
DESIGN *** HOW TO INTEGRATE OBJECT ORIENTATION WITH STRUCTURED ANALYSIS
AND

DESIGN *** PRINCIPLES OF PROGRAM

DESIGN *** PROTOTYPE REAL-TIME MONITOR:

DESIGN *** REUSABILITY: THE CASE FOR OBJECT-ORIENTED

DESIGN *** SUCCESSES AND LIMITATIONS OF OBJECT-ORIENTED

DESIGN *** SURVEYING CURRENT RESEARCH IN OBJECT-ORIENTED

DESIGN —~ A STUDENT'S PERSPECTIVE *** OBJECT ORIENTED DESIGN VS
STRUCTURED

DESIGN BY INFORMAL ENGLISH DESCRIPTIONS *** PROGRAM

DESIGN: DATA ABSTRACTION VS. THE 'TOP-DOWN' MINDSET IN AN OBJECT-ORIENTED
ENVIRONMENT *** REUSE BY

DESIGN IN REAL TIME DISTRIBUTED SYSTEMS *** PRACTICAL EXPERIENCES OF ADA

AND CBJECT ORIENTED
DESIGN ISSUES *** ADA SOFTWARE
DESIGN METHQOD FOR CODE GENERATION *** AN OBJECT-ORIENTED STRUCTURED

DESIGN METRICS AND ADA ***
DESIGN OF KNOWLEDGE-BASED SYSTEMS WITH A KNOWLEDGE-BASED ASSISTANT ***

64

~~ e~

©0624 OESIGN OF THE EIFFEL L.ZRARIES *77 _LESSCHS F=IUN THe

3437 OESIGN SYSTEM SHELL *°° AN CZ.z=lT-CRIENTES

10042 DESIGN TCCL " ADA

5632 DESIGN USING ADA *** '1ODULAR SCFTWARE CCHSTRUCTION AND CBJECT-
ORIENTED

10007 DESIGN USING ADA *** PROBLEMS ENCCUNTESED IN LEARNING OBJECT CRIENTED

8233 DESIGN USING AN CEJECT-CRIENTED METHODOLCGY *** RELATIONAL DATABASE

5701 DESIGN USING MODULA-2 *** YWODULA SCFTWARE CCNSTRUCTION AND OBJECT-
ORIENTED

6043 DESIGN VS STRUCTURED DESIGN -- A STUDENT'S PERSPECTIVE *** OBJECT
ORIENTED

9984 DESIGNED DISTRIBUTED OPERATING SYSTEM °** AN ADA

10110 DESIGNING A PROCESS CONTROL SYSTEM *** PROMETHEE:
9561 DESIGNING WITH OBJECTS ***

9267 DESIGNS WITH EXTENDED DATA FLOW NOTATIONS *** REPRESENTING OBJECT
ORIENTED SPECIFICATIONS AND

7465 DEVELOPMENT °** AN INTEGRATED APPROACH TO SOFTWARE

10832 DEVELOPMENT *** DOD-STD-2167A MILITARY STANDARD DEFENSE SYSTEM
SOFTWARE

10830 DEVELOPMENT *** OBJECT-ORIENTED

10818 DEVELOPMENT *** SYSTEM

8616 DEVELOPMENT *** TUTORIAL: NEW PARADIGMS FCR SOFTWARE

8482 DEVELOPMENT AND ENHANCEMENT *** A SPIRAL MODEL OF SOFTWARE

8962 DOEVELOPMENT: BACKGROUND AND EXPERIENCE *** GENERAL OBJECT-ORIENTED
SOFTWARE

6393 DEVELOPMENT ENVIRONMENT *** THE DISTRIBUTED DEVELOPMENT SYSTEM - A
MONOLITHIC SOFTWARE

6362 DEVELOPMENT IN HISP *** HIERARCHICAL SOFTWARE

9566 DEVELOPMENT MODEL *** AN OBJECT-BASED

6677 DEVELOPMENT PROCESS *** APPROACHES TO STRUCTURING THE SOFTWARE

6035 DEVELOPMENT SYSTEM *** APPLICATIONS DEVELOPMENT USING A HYBRID Al

6393 DEVELOPMENT SYSTEM - A MONOLITHIC SOFTWARE DEVELOPMENT ENVIRONMENT
*** THE DISTRIBUTED

6035 DEVELOPMENT USING A HYBRID Al DEVELOPMENT SYSTEM *** APPLICATIONS

5507 DIRECTIONS *** REUSABLE SOFTWARE ENGINEERING: CONCEPTS AND RESEARCH

7882 DISPLAYS *** A GRAPHICS ENVIRONMENT SUPPQORTING THE RAPID PROTOTYPING OF
PICTORIAL COCKPIT

6393 DISTRIBUTED DEVELOPMENT SYSTEM - A MONOLITHIC SOFTWARE DEVELOPMENT
ENVIRONMENT *** THE

9984 DISTRIBUTED OPERATING SYSTEM *** AN ADA DESIGNED

7335 DISTRIBUTED SYSTEMS *** ACTORS: A MODEL OF CCNCURRENT COMPUTATION IN

10106 DISTRIBUTED SYSTEMS *** DRAGOON: AN ADA-BASED OBJECT ORIENTED LANGUAGE
FOR CONCURRENT, REAL-TIME,

10108 DISTRIBUTED SYSTEMS *** PRACTICAL EXPERIENCES OF ADA AND OBJECT
ORIENTED DESIGN IN REAL TIME

9392 DISTRIBUTED SYSTEMS *** PROTCB: A HIERARCHICAL OBJECT-ORIENTED CASE TOOL
FOR

10832 DOD-STD-2167A MILITARY STANDARD DEFENSE SYSTEM SOFTWARE DEVELOPMENT

9922 DOMAIN-SPECIFIC REUSE: AN OBJECT-ORIENTED AND KNOWLEDGE-BASED
APPROACH °°*

10106 DRAGOON: AN ADA-BASED OBJECT ORIENTED LANGUAGE FOR CONCURRENT, REAL-
TIME, DISTRIBUTED SYSTEMS ***

65

10104 DYNAMIC BINDING AND INHERITANCE M AN CBJECT-CRIENTED ADA DESIGN ***
2346 ECONOMICS *** SOFTWARE ENGINEZRING

7864 EDITOR *** OED: OCBJECT-ORIENTED

8577 EIFFEL: A LANGUAGE AND ENVIRONMENT FOR SCFTWARE ENGINEERING ***

10624 EIFFEL LIBRARIES *** LESSONS FRC! THE DESIGN OF THE

7583 EIFFEL: PROGRAMMING FOR REUSABILITY AND EXTENDABILITY ***

10007 ENCQUNTERED IN LEARNING OBJECT ORIENTED DESIGN USING ADA *** PROBLEMS

7625 END-USER REQUIREMENTS) *** JOINT PROGRAM ON RAPID PROTOTYPING. RAPIER
(RAPID PROTOTYPING TO INVESTIGATE

8577 ENGINEERING *** EIFFEL: A LANGUAGE AND ENVIRONMENT FOR SOFTWARE
7643 ENGINEERING *** NO SILVER BULLET: ESSENCE AND ACCIDENTS OF SOFTWARE
168 ENGINEERING *** THE MYTHICAL MAN-MONTH ESSAYS ON SOFTWARE

8220 ENGINEERING: A PRACTITIONER'S APPROACH (SECOND EDITION) *** SOFTWARE
5507 ENGINEERING: CONCEPTS AND RESEARCH DIRECTIONS *** REUSABLE SOFTWARE

2946 ENGINEERING ECONOMICS *** SOFTWARE
10019 ENGINEERING REQUIREMENTS ANALYSIS (SERA) *** EVALUATION OF TEACHING

SOFTWARE .
8225 ENGINEERING WITH ADA (SECOND EDITION) *** SOFTWARE

10828 ENGLISH DESCRIPTIONS *** PROGRAM DESIGN BY INFORMAL
8482 ENHANCEMENT *** A SPIRAL MODEL OF SOFTWARE DEVELOPMENT AND

10020 ENVIRONMENT *** ADA ABSTRACT DATA TYPES--THE FOUNDATION OF AN

INTERACTIVE ADA COMMAND
10400 ENVIRONMENT °** REUSE BY DESIGN: DATA ABSTRACTION VS. THE TOP-DOWN’

MINDSET IN AN OBJECT-ORIENTED
6393 ENVIRONMENT °*** THE DISTRIBUTED DEVELOPMENT SYSTEM - A MONOLITHIC

SOFTWARE DEVELOPMENT

7100 ENVIRONMENT BASED ON OBJECTS AND RELATIONS *** A SIMPLE SOFTWARE

10799 ENVIRONMENT EVALUATION METHODOLOGY FOR OBJECT-ORIENTED SYSTEMS: PART
I- THE METHODOLOQOGY *** A PROGRAMMING

8577 ENVIRONMENT FOR SOFTWARE ENGINEERING *** EIFFEL: A LANGUAGE AND

8515 ENVIRONMENT SUPPORTING REUSE OF OBJECT-ORIENTED SOFTWARE *** A

PROGRAMMING
7882 ENVIRONMENT SUPPORTING THE RAPID PROTOTYPING OF PICTORIAL COCKPIT

DISPLAYS *** A GRAPHICS
7631 ENVIRONMENTS *** SOFTWARE PRCCESS INTERPRETATION AND SOFTWARE

6726 EQUALITY FOR PROLOG ***
168 ESSAYS ON SOFTWARE ENGINEERING °** THE MYTHICAL MAN-MONTH
7643 ESSENCE AND ACCIDENTS OF SOFTWARE ENGINEERING *** NO SILVER BULLET:

10799 EVALUATION METHODOLOGY FOR OBJECT-ORIENTED SYSTEMS: PART |- THE

METHODOLOGY *** A PROGRAMMING ENVIRONMENT
9930 EVALUATION METRICS *** OBJECT-ORIENTED GRAPHICAL INFORMATION SYSTEMS :

RESEARCH PLAN AND
10019 EVALUATION OF TEACHING SOFTWARE ENGINEERING REQUIREMENTS ANALYSIS

(SERA) ***

10817 EVOLUTIONARY APPROACH *** OBJECT ORIENTED PROGRAMMING: AN
5682 EVOLUTIONARY CHANGE IN PROGRAMMING TECHNOLOGY *** MESSAGE/OBJECT

PROGRAMMING: AN
9058 EW SYSTEMS *** OBJECT-ORIENTED SIMULATICN OF

66

10821
10668

7809
83962

10108

10824
8915
7558

83949
7583
9267

7809

7138
10103

7763
10826

8169
8787

9267

7728
7554

10020

10046

10829

6004
7739
8936

10831
7041

10822
9930

7882

EXCEPTICN HANDLING AND CBJECT-CRIENTEZD PECCRAMMING. TCWARECS A
SYNTHESIS **°
=X0DUS EXTENSIBLE Z8MS: A PRELIMINARY REFCRT °°° THE ARCHITECTURE OF THE

=XPERIENCE °** GENERAL CBJECT-CRIENTED SCFTWARE DEVELOPMENT:
BACKGROUND AND

EXPERIENCES OF ADA AND OBJECT ORIENTED DCESIGN IN REAL TIME DISTRIBUTED
SYSTEMS *** PRACTICAL
EXPERIENCES WITH OPERATIONAL ADA PROJECTS *°* ADA IN THE SEL:

EXPERT SYSTEMS *** BUILDING INTEGRATED

EXPLOITING LARGE-SCALE PARALLELISM *** CONCURRENT PROGRAMMING USING
ACTORS:

EXPRESS PARALLELISM *** PO: AN OBJECT MODEL TO
EXTENDABILITY *** EIFFEL: PROGRAMMING FOR REUSABILITY AND

EXTENDED DATA FLOW NOTATIONS *** REPRESENTING CBJECT ORIENTED
SPECIFICATIONS AND DESIGNS WITH

EXTENSIBLE DBMS: A PRELIMINARY REPORT *** THE ARCHITECTURE OF THE EXODUS

EXTENSION *** ADDING META RULES TO OPS5: A PROPOSED
EXTENSION FOR ADA °*** ADA++: A CLASS AND INHERITANCE

EXTENSIONS TO MODULA-2 ***
FIRST CLASS: THE OBJVISP MODEL °*** METACLASSES ARE

FLIGHT SIMULATORS *** AN OOD PARADIGM FOR
FLIGHT SIMULATORS, 2ND EDITION *** AN COD PARADIGM FOR

FLOW NOTATIONS *** REPRESENTING OBJECT ORIENTED SPECIFICATIONS AND
DESIGNS WITH EXTENDED DATA

FORCES °** ADA AND Al JOIN
FORMAL TECHNIQUES FOR SPECIFICATION AND VALIDATION OF TACTICAL SYSTEMS

FOUNDATICN OF AN INTERACTIVE ADA COMMAND ENVIRONMENT *** ADA ABSTRACT
DATA TYPES--THE

FUNCTIONAL REQUIREMENTS FOR OBJECT-CRIENTED DESIGN *** A METHOD OF
TRANSLATING

FUNCTIONAL STYLE AND ITS ALGEBRA OF PROGRAMS *** CAN PROGRAMMING BE
LIBERATED FROM THE VON NEUMANN STYLE? A

FUNDAMENTALS OF PROGRAMMING LANGUAGES ***
GARBAGE COLLECTOR *** A PERSISTENT OBJECT STORE WITH AN INTEGRATED
GENERATION *** AN OBJECT-ORIENTED STRUCTURED DESIGN METHOD FOR CQODE

GENERIC DATA STRUCTURES IN MODULA-2 *** ON IMPLEMENTING
GENERIC DATA STRUCTURES IN MODULA-2 *** TWO APPROACHES TO IMPLEMENTING

GENERICITY VERSUS INHERITANCE ***

GRAPHICAL INFORMATION SYSTEMS : RESEARCH PLAN AND EVALUATICN METRICS ***
OBJECT-CRIENTED

GRAPHICS ENVIRONMENT SUPPORTING THE RAPID PROTOTYPING OF PICTORIAL
COCKPIT DISPLAYS *** A

67

10668

7720
9392

6362
6471

6362
6035
10798

9643

7740
10831
7041
10828
9930

10825
10822
10103
10104
10821
10205
10057

7251

9931

7465
8915
7739

10020

9467
10414
7631
7625

6876
7728
7625

HANDLING AND OBJECT-CRIENTED PROGRAMMING: TOWARDS A SYNTHESIS ***
EXCEPTION

HIERARCHICAL ADA PRESENTATICN USING PICTCGRAPHS (SHARP) DEFINITION,
APPLICATION AND AUTOMATION *** STRUCTURED

HIERARCHICAL OBJECT-ORIENTED CASE TCOL FOR DISTRIBUTED SYSTEMS ***
PROTCB: A

HIERARCHICAL SOFTWARE DEVELOPMENT IN HISP ***

HIGH ORDER LANGUAGE *** PROCEEDINGS OF THE 2ND AFSC AVIONICS
STANDARDIZATION CONFERENCE. VOLUME 8. TUTORIAL: MIL-STD-1815 ADA

HISP *** HIERARCHICAL SOFTWARE DEVELOPMENT IN
HYBRID Al DEVELOPMENT SYSTEM *** APPLICATIONS DEVELOPMENT USING A

|- THE METHODOLOGY *** A PROGRAMMING ENVIRONMENT EVALUATION
METHODOCLOGY FOR OBJECT-ORIENTED SYSTEMS: PART

IMPACT OF OBJECT-ORIENTED DECOMPOSITION ON PROCEDURAL ABSTRACTION ***
THE

IMPLEMENTING AN ACCESS AND OBJECT ORIENTED PARADIGM IN A LANGUAGE THAT
SUPPORTS NEITHER ***

IMPLEMENTING GENERIC DATA STRUCTURES IN MODULA-2 *** ON

IMPLEMENTING GENERIC DATA STRUCTURES IN MODULA-2 *** TWO APPROACHES TO

INFORMAL ENGLISH DESCRIPTIONS *** PROGRAM DESIGN BY

INFORMATION SYSTEMS : RESEARCH PLAN AND EVALUATION METRICS *** OBJECT-
ORIENTED GRAPHICAL

INHERITANCE °*** DELEGATION IS

INHERITANCE *** GENERICITY VERSUS

INHERITANCE EXTENSION FOR ADA *** ADA++: A CLASS AND

INHERITANCE IN AN OBJECT-ORIENTED ADA DESIGN *** DYNAMIC BINDING AND
INHERITANCE IN C++ *** A PRACTICAL EXAMPLE OF MULTIPLE

INHERITANCE NETWORK REPRESENTATION FOR OBJECT ORIENTED SOFTWARE
DESIGN *** A STRUCTURED BIPARTITE

INHERITANCE WITH ADA *** SIMULATING

INSTANCE VARIABLE MODEL FOR OBJECT-ORIENTED PROGRAMMING °**
ACQUAINTANCE/

INTEGRATE OBJECT ORIENTATION WITH STRUCTURED ANALYSIS AND DESIGN ***
HOW TO

INTEGRATED APPROACH TO SOFTWARE DEVELOPMENT *** AN
INTEGRATED EXPERT SYSTEMS *** BUILDING
INTEGRATED GARBAGE COLLECTOR *** A PERSISTENT OBJECT STORE WITH AN

INTERACTIVE ADA COMMAND ENVIRONMENT *** ADA ABSTRACT DATA TYPES-THE
FOUNDATION OF AN

INTERFACE MANAGEMENT SYSTEMS *** PROTOTYPES FROM STANDARD USER
INTERFACES *** ON CRITERIA FOR MODULE
INTERPRETATION AND SOFTWARE ENVIRONMENTS *** SOFTWARE PROCESS

INVESTIGATE END-USER REQUIREMENTS) *** JOINT PROGRAM ON RAPID
PROTOTYPING. RAPIER (RAPID PROTOTYPING TO

ISSUES *°** ADA SOFTWARE DESIGN
JOIN FORCES *** ADA AND Al

JOINT PROGRAM ON RAPID PROTOTYPING. RAPIER (RAPID PROTOTYPING TO
INVESTIGATE END-USER REQUIREMENTS) ***

68 -

87396

6622
8796

6471

2341
8773
8577
10106

7740

9727
5971
6004
7558

10827
10007
10624
10829

10624
8914
9467
168
2341
5682

5328
7138
10826

9132
8936
10046

10799

8233
10798

93930
5665

KNOWLEDGE-BASED APPRQOACH *** ZTTMAIN-SFECIF.C REUSE. AN CBJECT-CRIENTEZD
AND

KNOWLEDGE-BASED ASSISTANT *** JOESIGN OF KNC'WW/LEDGE-BASED SYSTEMS WITH
A

KNOWLEDGE-BASED PROGRAMMING USING ABSTRACT CATA TYPES ***
KNOWLEDGE-BASED SYSTEMS WITH A KNOWLEDGE-SASED ASSISTANT °** DESIGN
OF

LANGUAGE *** PROCEEDINGS OF THE 2ND AFSC AVIONICS STANDARDIZATION
CONFERENCE. VOLUME 8. TUTORIAL: MIL-STD-1815 ADA HIGH ORDER

LANGUAGE °*** REFERENCE MANUAL FOR THE ADA PROGRAMMING

LANGUAGE *** TWIRL: TACTICAL WARFARE IN THE ROSS

LANGUAGE AND ENVIRONMENT FOR SOFTWARE ENGINEERING *** EIFFEL: A
LANGUAGE FOR CONCURRENT, REAL-TIME, DISTRIBUTED SYSTEMS *** DRAGOON: AN

ADA-BASED OBJECT ORIENTED
LANGUAGE THAT SUPPORTS NEITHER *** IMPLEMENTING AN ACCESS AND CBJECT

ORIENTED PARADIGM IN A

LANGUAGES *** A PRACTICAL COMPARISON OF TWO OBJECT-ORIENTED
LANGUAGES *** AN OVERVIEW OF SIGNAL REPRESENTATIONS IN SIGNAL
PROCESSING

LANGUAGES *** FUNDAMENTALS OF PROGRAMMING

LARGE-SCALE PARALLELISM *** CONCURRENT PROGRAMMING USING ACTORS:
EXPLOITING

LAW-BASED APPROACH TO OBJECT-ORIENTED PROGRAMMING *** A
LEARNING OBJECT ORIENTED DESIGN USING ADA *** PROBLEMS ENCOUNTERED IN
LESSONS FROM THE DESIGN OF THE EIFFEL LIBRARIES ***

LIBERATED FROM THE VON NEUMANN STYLE? A FUNCTIONAL STYLE AND ITS
ALGEBRA OF PROGRAMS *** CAN PROGRAMMING BE

LIBRARIES *** LESSONS FROM THE DESIGN OF THE EIFFEL

LIMITATIONS OF OBJECT-ORIENTED DESIGN *** SUCCESSES AND
MANAGEMENT SYSTEMS *** PROTOTYPES FROM STANDARD USER INTERFACE
MAN-MONTH ESSAYS ON SOFTWARE ENGINEERING °** THE MYTHICAL
MANUAL FOR THE ADA PROGRAMMING LANGUAGE *** REFERENCE

MESSAGE/OBJECT PROGRAMMING: AN EVOLUTIONARY CHANGE IN PROGRAMMING
TECHNOLOGY °**
MESSAGE/OBJECT PROGRAMMING MODEL *** THE

META RULES TO OPSS: A PROPOSED EXTENSION *** ADDING
METACLASSES ARE FIRST CLASS: THE OBJVISP MODEL ***

METHOD *** AN OBJECT-ORIENTED REQUIREMENTS SPECIFICATION

METHOD FOR CODE GENERATION *** AN OBJECT-ORIENTED STRUCTURED DESIGN
METHOD OF TRANSLATING FUNCTIONAL REQUIREMENTS FOR OBJECT-ORIENTED
DESIGN *** A

METHODOLOGY *** A PROGRAMMING ENVIRONMENT EVALUATION METHODOLOGY
FOR OBJECT-ORIENTED SYSTEMS: PART I- THE

METHODOLOGY *** RELATIONAL DATABASE DESIGN USING AN OBJECT-ORIENTED
METHODOLOGY FOR OBJECT-ORIENTED SYSTEMS: PART |- THE METHODOLOGY *** A
PROGRAMMING ENVIRONMENT EVALUATION

METRICS *** OBJECT-ORIENTED GRAPHICAL INFORMATION SYSTEMS : RESEARCH
PLAN AND EVALUATION
METRICS AND ADA *** DESIGN

69

10832

6471

10400

9566
10826
5326
7251

7335
8482
8949

7136
5701

7763
5701

10831
7041
5692
10414
2305

8167
8166

6393

10821
168
7885

6471

8787
7740

10205

10829

9267

8949
9931

10108

MILITARY STANDARD DEFENSE SYSTEM SOFTWARE DEVELOPMENT *** DOD-STO-
2167A

MIL-STD-1815 ADA HIGH ORDER LANGUAGE *** PROCEEDINGS OF THE 2ND AFSC
AVIONICS STANDARDIZATION CONFERENCE. VOLUME 8. TUTORIAL:

MINDSET IN AN OBJECT-ORIENTED ENVIRONMENT *°* REUSE BY DESIGN: DATA
ABSTRACTION VS. THE 'TOP-DOWN’

MODEL *** AN OBJECT-BASED DEVELOPMENT

MODEL *** METACLASSES ARE FIRST CLASS: THE OBJVISP

MODEL *** THE MESSAGE/OBJECT PROGRAMMING

MODEL FOR OBJECT-ORIENTED PROGRAMMING *** ACQUAINTANCE/INSTANCE
VARIABLE

MODEL OF CONCURRENT COMPUTATION IN DISTRIBUTED SYSTEMS *** ACTORS: A
MODEL OF SOFTWARE DEVELOPMENT AND ENHANCEMENT *** A SPIRAL

MODEL TO EXPRESS PARALLELISM *** PO: AN OBJECT

MODPASCAL *** AN OVERVIEW OF

MODULA SOFTWARE CONSTRUCTION AND OBJECT-ORIENTED DESIGN USING
MODULA-2 ***

MODULA-2 *** EXTENSIONS TO
MODULA-2 *** MODULA SOFTWARE CONSTRUCTION AND OBJECT-ORIENTED DESIGN

USING
MODULA-2 *** ON IMPLEMENTING GENERIC DATA STRUCTURES IN
MODULA-2 *** TWO APPROACHES TO IMPLEMENTING GENERIC DATA STRUCTURES IN

MODULAR SOFTWARE CONSTRUCTION AND OBJECT-ORIENTED DESIGN USING ADA ***
MODULE INTERFACES *** ON CRITERIA FOR
MODULES *** ON THE CRITERIA TO BE USED IN DECOMPOSING SYSTEMS INTO

MONITOR: ADA CODE *** PROTOTYPE REAL-TIME
MONITOR: DESIGN *** PROTOTYPE REAL-TIME

MONOLITHIC SOFTWARE DEVELOPMENT ENVIRONMENT *** THE DISTRIBUTED
DEVELOPMENT SYSTEM - A

MULTIPLE INHERITANCE IN C++ *** A PRACTICAL EXAMPLE OF
MYTHICAL MAN-MONTH ESSAYS ON SOFTWARE ENGINEERING *** THE

NATIONAL CONFERENCE ON ADA TECHNOLOGY HELD IN ARLINGTON, VIRGINIA ON
MARCH 16-19, 1987 *** PROCEEDINGS OF THE 5TH ANNUAL

ND AFSC AVIONICS STANDARDIZATION CONFERENCE. VOLUME 8. TUTORIAL: MIL-
STD-1815 ADA HIGH ORDER LANGUAGE *** PROCEEDINGS OF THE 2
ND EDITION *** AN OOD PARADIGM FOR FLIGHT SIMULATORS, 2

NEITHER *** IMPLEMENTING AN ACCESS AND OBJECT CRIENTED PARADIGM IN A
LANGUAGE THAT SUPPORTS

NETWORK REPRESENTATION FOR OBJECT ORIENTED SOFTWARE DESIGN *** A
STRUCTURED BIPARTITE INHERITANCE

NEUMANN STYLE? A FUNCTIONAL STYLE AND ITS ALGEBRA OF PROGRAMS *** CAN
PROGRAMMING BE LIBERATED FROM THE VON

NOTATIONS *** REPRESENTING OBJECT ORIENTED SPECIFICATIONS AND DESIGNS
WITH EXTENDED DATA FLOW

OBJECT MODEL TO EXPRESS PARALLELISM *** PO: AN
OBJECT ORIENTATION WITH STRUCTURED ANALYSIS AND DESIGN *** HOW TO

INTEGRATE
OBJECT ORIENTED DESIGN IN REAL TIME DISTRIBUTED SYSTEMS *** PRACTICAL
EXPERIENCES OF ADA AND

70

10007
3043

10106
740

10817
10205

9267
5682

5326
7739

9566

10104
8338
9922

9382

9361
9643

10046

9173
7642
8914
10636
8437
5692

5701

10830
7864
10400

9330

9727
8233
10827
7251

8652
8403
10317
83916
10668

9726
9132

CBJECT CRIENTED DESIGN USING ADA *** PROBLEMS ENCCUNTERED IN LEARNING
OBJECT ORIENTED DESIGN VS STRUCTURED DESIGN -- A STUCENT'S PERSPECTIVE
OBJECT ORIENTED LANGUAGE FOR CCNCURRENT, REAL-TIME. DISTRIBUTED
SYSTEMS *** DRAGOOCN: AN ADA-BASED

OBJECT ORIENTED PARADIGM IN A LANGUAGE THAT SUPPORTS NEITHER ***
IMPLEMENTING AN ACCESS AND

OBJECT CRIENTED PROGRAMMING: AN EVOLUTIONARY APPROACH ***

OBJECT ORIENTED SOFTWARE DESIGN *** A STRUCTURED BIPARTITE INHERITANCE
NETWORK REPRESENTATION FOR

OBJECT ORIENTED SPECIFICATIONS AND DESIGNS WITH EXTENDED DATA FLOW
NOTATIONS *** REPRESENTING

OBJECT PROGRAMMING: AN EVOLUTIONARY CHANGE IN PROGRAMMING
TECHNOLOGY *** MESSAGE/

OBJECT PROGRAMMING MODEL *** THE MESSAGE/

OBJECT STORE WITH AN INTEGRATED GARBAGE COLLECTOR *** A PERSISTENT

OBJECT-BASED DEVELOPMENT MODEL *** AN

OBJECT-ORIENTED ADA DESIGN *** DYNAMIC BINDING AND INMERITANCE IN AN
OBJECT-ORIENTED AIR BATTLE SIMULATOR *** SWIRL: AN

OBJECT-ORIENTED AND KNOWLEDGE-BASED APPROACH *** DOMAIN-SPECIFIC
REUSE: AN

OBJECT-ORIENTED CASE TOOL FOR DISTRIBUTED SYSTEMS *** PROTOB: A
HIERARCHICAL

OBJECT-ORIENTED COMPUTER ANIMATION ***

OBJECT-ORIENTED DECOMPOSITION ON PROCEDURAL ABSTRACTION *** THE IMPACT
OF

OBJECT-ORIENTED DESIGN *** A METHOD OF TRANSLATING FUNCTIONAL
REQUIREMENTS FOR

OBJECT-ORIENTED DESIGN *** CONCEPTUAL

OBJECT-ORIENTED DESIGN *** REUSABILITY: THE CASE FOR

OBJECT-ORIENTED DESIGN *** SUCCESSES AND LIMITATIONS OF
OBJECT-ORIENTED DESIGN *** SURVEYING CURRENT RESEARCH IN
OBJECT-ORIENTED DESIGN SYSTEM SHELL *** AN

OBJECT-ORIENTED DESIGN USING ADA *** MODULAR SOFTWARE CONSTRUCTION
AND

OBJECT-ORIENTED DESIGN USING MODULA-2 *** MODULA SOFTWARE
CONSTRUCTION AND

OBJECT-ORIENTED DEVELOPMENT *°*

OBJECT-ORIENTED EDITOR *** QED:

OBJECT-ORIENTED ENVIRONMENT *** REUSE BY DESIGN: DATA ABSTRACTION VS.
THE 'TOP-DOWN' MINDSET IN AN

OBJECT-ORIENTED GRAPHICAL INFORMATION SYSTEMS : RESEARCH PLAN AND
EVALUATION METRICS ***

OBJECT-ORIENTED LANGUAGES *** A PRACTICAL COMPARISON OF TWO
OBJECT-ORIENTED METHODOLOGY °*** RELATIONAL DATABASE DESIGN USING AN
OBJECT-ORIENTED PROGRAMMING *** A LAW-BASED APPROACH TO
OBJECT-ORIENTED PROGRAMMING *** ACQUAINTANCE/INSTANCE VARIABLE MODEL
FOR

OBJECT-ORIENTED PROGRAMMING *** TYPE THEORIES AND

OBJECT-ORIENTED PROGRAMMING? *** WHAT IS

OBJECT-ORIENTED PROGRAMMING APPLIED TO A PROTOTYPE WORKSTATION ***
OBJECT-ORIENTED PROGRAMMING IN Al - NEW CHOICES ***

OBJECT-ORIENTED PROGRAMMING: TOWARDS A SYNTHESIS **~ EXCEPTION
HANDLING AND

OBJECT-ORIENTED PROGRAMS *** ASSURING GOOD STYLE FOR
OBJECT-ORIENTED REQUIREMENTS SPECIFICATION METHQD *** AN

71

9058 OBJECT-ORIENTED SIMULATION OF EW SYSTEMS ***

8515 OBJECT-ORIENTED SOFTWARE *** A PROGRAMMING ENVIRONMENT SUPPORTING
REUSE OF

10820 OBJECT-ORIENTED SOFTWARE CONSTRUCTION ***

8962 OBJECT-ORIENTED SOFTWARE DEVELOPMENT: BACKGROUND AND EXPERIENCE ***
GENERAL

8936 OBJECT-ORIENTED STRUCTURED DESIGN METHOD FOR CODE GENERATION *** AN

8662 OBJECT-ORIENTED SYSTEMS ***
10799 OBJECT-ORIENTED SYSTEMS: PART I- THE METHODOLOGY *** A PROGRAMMING

ENVIRONMENT EVALUATICN METHODOLOQOGY FOR

9561 OBJECTS *** DESIGNING WITH
7100 OBJECTS AND RELATIONS *** A SIMPLE SOFTWARE ENVIRONMENT BASED ON

10826 OBJVISP MODEL *** METACLASSES ARE FiRST CLASS: THE
7864 OED: OBJECT-ORIENTED EDITOR ***

8163 OOD PARADIGM FOR FLIGHT SIMULATORS *** AN
8787 OOD PARADIGM FOR FLIGHT SIMULATORS, 2ND EDITION *** AN

8436 OOPSLA ‘87 CONFERENCE PROCEEDINGS ***
8726 OOPSLA '88 CONFERENCE PROCEEDINGS ***

9984 OPERATING SYSTEM *** AN ADA DESIGNED DISTRIBUTED
10824 OPERATIONAL ADA PROJECTS *** ADA IN THE SEL: EXPERIENCES WITH
7138 OPSS5: A PROPOSED EXTENSION *** ADDING META RULES TO

6471 ORDER LANGUAGE *** PROCEEDINGS OF THE 2ND AFSC AVIONICS
STANDARDIZATION CONFERENCE. VOLUME 8. TUTORIAL: MIL-STD-1815 ADA HIGH

9931 ORIENTATION WITH STRUCTURED ANALYSIS AND DESIGN *** HOW TO INTEGRATE
OBJECT

10108 ORIENTED DESIGN IN REAL TIME DISTRIBUTED SYSTEMS *** PRACTICAL
EXPERIENCES OF ADA AND OBJECT

10007 ORIENTED DESIGN USING ADA *** PROBLEMS ENCOUNTERED IN LEARNING OBJECT

6043 ORIENTED DESIGN VS STRUCTURED DESIGN -- A STUDENT'S PERSPECTIVE ***
OBJECT

10106 ORIENTED LANGUAGE FOR CONCURRENT, REAL-TIME, DISTRIBUTED SYSTEMS ***
DRAGOON: AN ADA-BASED OBJECT

7740 ORIENTED PARADIGM IN A LANGUAGE THAT SUPPORTS NEITHER *** IMPLEMENTING
AN ACCESS AND OBJECT

10817 ORIENTED PROGRAMMING: AN EVOLUTIONARY APPROACH *** OBJECT

10205 ORIENTED SOFTWARE DESIGN *** A STRUCTURED BIPARTITE INHERITANCE
NETWORK REPRESENTATION FOR OBJECT

9267 ORIENTED SPECIFICATIONS AND DESIGNS WITH EXTENDED DATA FLOW NOTATIONS
*** REPRESENTING OBJECT

7136 OVERVIEW OF MODPASCAL *** AN
5971 OVERVIEW OF SIGNAL REPRESENTATIONS IN SIGNAL PROCESSING LANGUAGES ***

AN

8169 PARADIGM FOR FLIGHT SIMULATORS *** AN OOD

8787 PARADIGM FOR FLIGHT SIMULATORS, 2ND EDITION *** AN OCD

7740 PARADIGM IN A LANGUAGE THAT SUPPORTS NEITHER *** IMPLEMENTING AN ACCESS
AND CBJECT ORIENTED

8616 PARADIGMS FOR SOFTWARE DEVELOPMENT *** TUTORIAL: NEW

7558 PARALLELISM *** CONCURRENT PROGRAMMING USING ACTORS: EXPLOITING LARGE-

SCALE
8949 PARALLELISM *** PO: AN OBJECT MODEL TO EXPRESS

72

7739
5043

7720

7882

9930

8949

9727
10821
10108

8220
7809
7720

5676
10007
9643

8436
8726
6471

7885

6677
10110
7631

5971

5676
10828
7625

10827
7251
8652
8403

10817
5682

10317
10829

PERSISTENT CBJECT STORE WITH AN INTEGRATED GARBAGE CCLLECTOR *** A

PERSPECTIVE *** CBJECT CRIENTED DESIGN VS STRUCTURED DESIGN -- A
STUDENT'S

PICTOGRAPHS (SHARF) DEFINITICN, APPLICATION AND AUTOMATION ***
STRUCTURED HIERARCHICAL ADA PRESENTATION USING

PICTCORIAL COCKPIT DISPLAYS *** A GRAPHICS ENVIRONMENT SUPPORTING THE
RAPID PROTOTYPING OF

PLAN AND EVALUATION METRICS *** OBJECT-ORIENTED GRAPHICAL INFORMATICN
SYSTEMS : RESEARCH

PO: AN OBJECT MODEL TO EXPRESS PARALLELISM ***

PRACTICAL COMPARISON OF TWO OBJECT-ORIENTED LANGUAGES *** A
PRACTICAL EXAMPLE OF MULTIPLE INHERITANCE IN C++ *** A

PRACTICAL EXPERIENCES OF ADA AND OBJECT ORIENTED DESIGN IN REAL TIME
DISTRIBUTED SYSTEMS °***

PRACTITIONER'S APPROACH (SECOND EDITION) *** SOFTWARE ENGINEERING: A
PRELIMINARY REPORT *** THE ARCHITECTURE OF THE EXODUS EXTENSIBLE DBMS: A

PRESENTATION USING PICTOGRAPHS (SHARP) DEFINITION, APPLICATION AND
AUTOMATION *** STRUCTURED HIERARCHICAL ADA

PRINCIPLES OF PROGRAM DESIGN ***
PROBLEMS ENCOUNTERED IN LEARNING OBJECT ORIENTED DESIGN USING ADA ***

PROCEDURAL ABSTRACTION *** THE IMPACT OF OBJECT-ORIENTED DECOMPQSITION
ON

PROCEEDINGS *** OOPSLA '87 CONFERENCE

PROCEEDINGS *** QOPSLA '88 CONFERENCE

PROCEEDINGS OF THE 2ND AFSC AVIONICS STANDARDIZATION CONFERENCE.
VOLUME 8. TUTORIAL: MIL-STD-1815 ADA HIGH ORDER LANGUAGE ***

PROCEEDINGS OF THE 5TH ANNUAL NATIONAL CONFERENCE ON ADA TECHNOLOGY
HELD IN ARLINGTON, VIRGINIA ON MARCH 16-19, 1987 ***

PROCESS *** APPROACHES TO STRUCTURING THE SOFTWARE DEVELOPMENT
PROCESS CCNTROL SYSTEM *** PROMETHEE: DESIGNING A
PROCESS INTERPRETATION AND SOFTWARE ENVIRONMENTS *** SOFTWARE

PROCESSING LANGUAGES *** AN OVERVIEW OF SIGNAL REPRESENTATIONS IN
SIGNAL

PROGRAM DESIGN *** PRINCIPLES OF

PROGRAM DESIGN BY INFORMAL ENGLISH DESCRIPTIONS °**

PROGRAM ON RAPID PROTOTYPING. RAPIER (RAPID PROTOTYPING TO INVESTIGATE
END-USER REQUIREMENTS) *** JOINT

PROGRAMMING *** A LAW-BASED APPROACH TO OBJECT-ORIENTED
PROGRAMMING *** ACQUAINTANCE/INSTANCE VARIABLE MODEL FOR OBJECT-
ORIENTED

PROGRAMMING *** TYPE THEQORIES AND OBJECT-ORIENTED

PROGRAMMING? *** WHAT IS OBJECT-ORIENTED

PROGRAMMING: AN EVOLUTIONARY APPROACH *** OBJECT ORIENTED
PROGRAMMING: AN EVOLUTIONARY CHANGE IN PROGRAMMING TECHNOLOGY ***
MESSAGE/CBJECT

PROGRAMMING APPLIED TO A PROTOTYPE WORKSTATION *** OBJECT-ORIENTED
PROGRAMMING BE LIBERATED FROM THE VON NEUMANN STYLE? A FUNCTIONAL
STYLE AND ITS ALGEBRA OF PROGRAMS *** CAN

73

1078¢
8515
7593
8916
2341
6004

5326
5682

10668

6622
7558

9726
10829

10824
6726
10110
7138
9392

8167
8166
10317

9467
7882

7625

7625

7882
7625

7625

7625

10108

10106

8167
8166

PRCGRAMMING ENVIRONMENT EVALUATICHN METHODOLOGY FOR OBJECT-ORIENTED
SYSTEMS: PART |- THE METHODOLOQOGY *** A

PROGRAMMING ENVIRONMENT SUPPCRTING REUSE OF OBJECT-ORIENTED
SOFTWARE *** A

PROGRAMMING FOR REUSABILITY AND EXTENDABILITY *** EIFFEL:
PROGRAMMING IN Al - NEW CHOICES *** OBJECT-ORIENTED
PROGRAMMING LANGUAGE *** REFERENCE MANUAL FOR THE ADA
PROGRAMMING LANGUAGES *** FUNDAMENTALS OF

PROGRAMMING MODEL *** THE MESSAGE/CBJECT

PROGRAMMING TECHNOLOGY *** MESSAGE/CBJECT PROGRAMMING: AN
EVOLUTIONARY CHANGE IN

PROGRAMMING: TOWARDS A SYNTHESIS *** EXCEPTION HANDLING AND OBJECT-
ORIENTED

PROGRAMMING USING ABSTRACT DATA TYPES *** KNOWLEDGE-BASED
PROGRAMMING USING ACTORS: EXPLOITING LARGE-SCALE PARALLELISM ***
CONCURRENT

PROGRAMS *** ASSURING GOOD STYLE FOR OBJECT-ORIENTED
PROGRAMS °** CAN PROGRAMMING BE LIBERATED FROM THE VON NEUMANN
STYLE? A FUNCTIONAL STYLE AND ITS ALGEBRA OF

PROJECTS *** ADA IN THE SEL: EXPERIENCES WITH OPERATIONAL ADA
PROLOG *** EQUALITY FOR

PROMETHEE: DESIGNING A PROCESS CONTROL SYSTEM ***

PROPOSED EXTENSION *** ADDING META RULES TO OPSS: A

PROTOB: A HIERARCHICAL OBJECT-ORIENTED CASE TOOL FOR DISTRIBUTED
SYSTEMS *** ‘

PROTOTYPE REAL-TIME MONITOR: ADA CODE ***
PROTOTYPE REAL-TIME MONITOR: DESIGN ***
PROTOTYPE WORKSTATION *** OBJECT-ORIENTED PROGRAMMING APPLIED TO A

PROTOTYPES FROM STANDARD USER INTERFACE MANAGEMENT SYSTEMS ***

PROTOTYPING OF PICTORIAL COCKPIT DISPLAYS *** A GRAPHICS ENVIRONMENT
SUPPORTING THE RAPID

PROTOTYPING. RAPIER (RAPID PROTOTYPING TO INVESTIGATE END-USER
REQUIREMENTS) *** JOINT PROGRAM ON RAPID

PROTOTYPING TO INVESTIGATE END-USER REQUIREMENTS) *** JOINT PROGRAM ON
RAPID PROTOTYPING. RAPIER (RAPID

RAPID PROTOTYPING OF PICTORIAL COCKPIT DISPLAYS *** A GRAPHICS

ENVIRONMENT-SUPPORTING THE
RAPID PROTOTYPING. RAPIER (RAPID PROTOTYPING TO INVESTIGATE END-USER

REQUIREMENTS) *** JOINT PROGRAM ON
RAPID PROTOTYPING TO INVESTIGATE END-USER REQUIREMENTS) *** JOINT
PROGRAM ON RAPID PROTOTYPING. RAPIER (

RAPIER (RAPID PROTOTYPING TO INVESTIGATE END-USER REQUIREMENTS) *** JOINT
PROGRAM ON RAPID PROTOTYPING.

REAL TIME DISTRIBUTED SYSTEMS *** PRACTICAL EXPERIENCES OF ADA AND
OBJECT ORIENTED DESIGN IN

REAL-TIME, DISTRIBUTED SYSTEMS *** DRAGOON: AN ADA-BASED OBJECT ORIENTED
LANGUAGE FOR CONCURRENT,

REAL-TIME MONITCR: ADA CQODE *** PROTOTYPE
REAL-TIME MONITOR: DESIGN *** PROTOTYPE

74

3233
7100
10205

S9N

9267

7625

10019
10046

29132

5507
10636
9930

7593
7642
5507
9922

10400

8515

8773
7138

8220
8225

10824
10019

7720

8437
5971

5871
7643

7100
10057

SEFERENCE MANUAL FCR THE ADA PROCGARAMMING LANGUAGE **°
RELATIONAL CATABASE DESIGN USING AN OBJECT-CRIENTED METHODOLQGY *°*
RELATIONS *** A SIMPLE SOFTWARE ENVIRONMENT BASED CN OBJECTS AND

REPRESENTATICN FOR CBJECT ORIENTED SOFTWARE DESIGN *** A STRUCTURED
BIPARTITE INHERITANCE NETWORK

REPRESENTATIONS IN SIGNAL PROCESSING LANGUAGES *** AN OVERVIEW OF
SIGNAL

REPRESENTING OBJECT CRIENTED SPECIFICATIONS AND DESIGNS WITH EXTENDED
DATA FLOW NOTATIONS ***

REQUIREMENTS) *** JOINT PROGRAM ON RAPID PROTOTYPING. RAPIER (RAPID
PROTOTYPING TO INVESTIGATE END-USER

REQUIREMENTS ANALYSIS (SERA) *** EVALUATICN OF TEACHING SOFTWARE

ENGINEERING
REQUIREMENTS FOR OBJECT-ORIENTED DESIGN *** A METHOD OF TRANSLATING

FUNCTIONAL
REQUIREMENTS SPECIFICATION METHOD *** AN OBJECT-ORIENTED

RESEARCH DIRECTIONS *** REUSABLE SOFTWARE ENGINEERING: CONCEPTS AND
RESEARCH IN OBJECT-ORIENTED DESIGN *** SURVEYING CURRENT

RESEARCH PLAN AND EVALUATION METRICS *** OBJECT-ORIENTED GRAPHICAL
INFORMATION SYSTEMS :

REUSABILITY AND EXTENDABILITY *** EIFFEL: PROGRAMMING FOR
REUSABILITY: THE CASE FOR OBJECT-ORIENTED DESIGN ***
REUSABLE SOFTWARE ENGINEERING: CONCEPTS AND RESEARCH DIRECTIONS ***

REUSE: AN OBJECT-ORIENTED AND KNOWLEDGE-BASED APPROACH *** DOMAIN-
SPECIFIC

REUSE BY DESIGN: DATA ABSTRACTION VS. THE TOP-DOWN' MINDSET IN AN
OBJECT-ORIENTED ENVIRONMENT ***

REUSE OF OBJECT-ORIENTED SOFTWARE *** A PROGRAMMING ENVIRONMENT
SUPPORTING

ROSS LANGUAGE *** TWIRL: TACTICAL WARFARE IN THE
RULES TO OPSS5: A PROPOSED EXTENSION *** ADDING META

SECOND EDITION) “** SOFTWARE ENGINEERING: A PRACTITIONER'S APPROACH (
SECOND EDITION) *** SOFTWARE ENGINEERING WITH ADA (

SEL:. EXPERIENCES WITH OPERATIONAL ADA PROJECTS *** ADA IN THE

SERA) *** EVALUATION OF TEACHING SOFTWARE ENGINEERING REQUIREMENTS
ANALYSIS (

SHARP) DEFINITION, APPLICATION AND AUTOMATION *** STRUCTURED
HIERARCHICAL ADA PRESENTATION USING PICTOGRAPHS (

SHELL *** AN OBJECT-ORIENTED DESIGN SYSTEM

SIGNAL PROCESSING LANGUAGES *** AN OVERVIEW OF SIGNAL REPRESENTATIONS
IN
SIGNAL REPRESENTATIONS IN SIGNAL PROCESSING LANGUAGES *** AN OVERVIEW
OF

SILVER BULLET: ESSENCE AND ACCIDENTS OF SOFTWARE ENGINEERING *** NO
SIMPLE SOFTWARE ENVIRONMENT BASED ON OBJECTS AND RELATIONS *** A
SIMULATING INHERITANCE WITH ADA ***

75

2058
8335
8169
8787
8223
7554
9132
9267

8482
10832
9467
6471
7739
9931

8223
10205

6043

8936
7720

10831
7041

10819
6677
6043

10829

10829

9726
10819
8914
8515

7882

7740

10636

SIMULATION OF EW SYSTEMS *** CTBJECT-CRIENTED
SIMULATOR *** SWIRL: AN OBJECT-CRIENTED AIR BATTLE
SIMULATORS *** AN OOD PARADIGM FOR FLIGHT
SIMULATORS. 2ND EDITION *** AN OOD PARADIGM FOR FLIGHT

SPECIFICATION *** STRUCTURED ANALYSIS AND SYSTEM
SPECIFICATION AND VALIDATION OF TACTICAL SYSTEMS *** FORMAL TECHNIQUES

FOR
SPECIFICATION METHOD *** AN OBJECT-ORIENTED REQUIREMENTS

SPECIFICATIONS AND DESIGNS WITH EXTENDED DATA FLOW NOTATIONS ***
REPRESENTING OBJECT ORIENTED

SPIRAL MODEL OF SOFTWARE DEVELOPMENT AND ENHANCEMENT *** A

STANDARD DEFENSE SYSTEM SOFTWARE DEVELOPMENT °** DOD-STD-2167A

MILITARY
STANDARD USER INTERFACE MANAGEMENT SYSTEMS *** PROTOTYPES FROM

STANDARDIZATION CONFERENCE. VOLUME 8. TUTORIAL: MIL-STD-1815 ADA HIGH
ORDER LANGUAGE *** PROCEEDINGS OF THE 2ND AFSC AVIONICS

STORE WITH AN INTEGRATED GARBAGE CCLLECTOR *** A PERSISTENT OBJECT

STRUCTURED ANALYSIS AND DESIGN *** HOW TO INTEGRATE OBJECT ORIENTATION

WITH
STRUCTURED ANALYSIS AND SYSTEM SPECIFICATION ***
STRUCTURED BIPARTITE INHERITANCE NETWORK REPRESENTATION FOR OBJECT

ORIENTED SOFTWARE DESIGN *** A
STRUCTURED DESIGN -- A STUDENT'S PERSPECTIVE *** OBJECT ORIENTED DESIGN

' .
STRUCTURED DESIGN METHOD FOR CODE GENERATION *** AN OBJECT-ORIENTED
STRUCTURED HIERARCHICAL ADA PRESENTATION USING PICTOGRAPHS (SHARP)
DEFINITION, APPLICATION AND AUTOMATION ***

STRUCTURES IN MODULA-2 *** ON IMPLEMENTING GENERIC DATA
STRUCTURES IN MODULA-2 *** TWO APPROACHES TO IMPLEMENTING GENERIC DATA

STRUCTURES, TOOLS, AND SUBSYSTEMS °*** SOFTWARE COMPONENTS WITH ADA:
STRUCTURING THE SOFTWARE DEVELOPMENT PROCESS *** APPROACHES TO

STUDENT'S PERSPECTIVE *** OBJECT ORIENTED DESIGN VS STRUCTURED DESIGN --
A

STYLE? A FUNCTIONAL STYLE AND ITS ALGEBRA OF PROGRAMS *** CAN
PROGRAMMING BE LIBERATED FROM THE VON NEUMANN

STYLE AND ITS ALGEBRA OF PROGRAMS °** CAN PROGRAMMING BE LIBERATED
FROM THE VON NEUMANN STYLE? A FUNCTIONAL
STYLE FOR OBJECT-ORIENTED PROGRAMS *** ASSURING GOOD

SUBSYSTEMS *** SOFTWARE COMPONENTS WITH ADA: STRUCTURES, TOOLS, AND
SUCCESSES AND LIMITATIONS OF OBJECT-ORIENTED DESIGN ***

SUPPORTING REUSE OF OBJECT-ORIENTED SOFTWARE *** A PROGRAMMING

ENVIRONMENT
SUPPORTING THE RAPID PROTOTYPING OF PICTORIAL CCCKPIT DISPLAYS *** A

GRAPHICS ENVIRONMENT

SUPPORTS NEITHER *** IMPLEMENTING AN ACCESS AND OBJECT ORIENTED
PARADIGM IN A LANGUAGE THAT

SURVEYING CURRENT RESEARCH IN OBJECT-ORIENTED DESIGN ***

76

2338
10668

S84
6035
10110
8393
10818
8437
10832

8223
7335
8915
10106
7554
8662
3058
10108
9392

9467
9930

2305
10799

8796

7554

8773
10019

7554

5682

7885

7885

8652
10108

10042
9392

SWIRL: AN OEJECT-CRIENTED AIR BATTLE SIMULATCR ***

SYNTHESIS *°* EXCEPTION HANDLING AND OBJECT-CRIENTED PROGRAMMING.
TOWARDS A

SYSTEM *** AN ADA DESIGNED DISTRIBUTED OPERATING

SYSTEM *** APPLICATIONS DEVELOPMENT USING A HYBRID Al DEVELOPMENT
SYSTEM *** PROMETHEE: DESIGNING A PROCESS CONTROL

SYSTEM - A MONOLITHIC SOFTWARE DEVELOPMENT ENVIRONMENT *** THE
DISTRIBUTED DEVELOPMENT

SYSTEM DEVELOPMENT ***

SYSTEM SHELL *** AN OBJECT-ORIENTED DESIGN

SYSTEM SOFTWARE DEVELOPMENT *** DOD-STD-2167A MILITARY STANDARD
DEFENSE

SYSTEM SPECIFICATION *** STRUCTURED ANALYSIS AND

SYSTEMS *** ACTORS: A MODEL OF CONCURRENT COMPUTATION IN DISTRIBUTED
SYSTEMS *** BUILDING INTEGRATED EXPERT

SYSTEMS “** DRAGOON: AN ADA-BASED OBJECT ORIENTED LANGUAGE FOR
CONCURRENT, REAL-TIME, DISTRIBUTED

SYSTEMS °** FORMAL TECHNIQUES FOR SPECIFICATION AND VALIDATION OF
TACTICAL

SYSTEMS *** OBJECT-ORIENTED

SYSTEMS *** OBJECT-ORIENTED SIMULATION OF EW

SYSTEMS *** PRACTICAL EXPERIENCES OF ADA AND OBJECT ORIENTED DESIGN IN
REAL TIME DISTRIBUTED

SYSTEMS *** PROTOB: A HIERARCHICAL OBJECT-ORIENTED CASE TOOL FOR
DISTRIBUTED

SYSTEMS *** PROTOTYPES FROM STANDARD USER INTERFACE MANAGEMENT
SYSTEMS : RESEARCH PLAN AND EVALUATION METRICS *** OBJECT-ORIENTED
GRAPHICAL INFORMATION

SYSTEMS INTO MODULES *** ON THE CRITERIA TO BE USED IN DECOMPQOSING

SYSTEMS: PART |- THE METHODOLOGY *** A PROGRAMMING ENVIRONMENT
EVALUATION METHODOLOGY FOR OBJECT-ORIENTED

SYSTEMS WITH A KNOWLEDGE-BASED ASSISTANT *** DESIGN OF KNOWLEDGE-
BASED

TACTICAL SYSTEMS *** FORMAL TECHNIQUES FOR SPECIFICATION AND VALIDATION
OF
TACTICAL WARFARE IN THE ROSS LANGUAGE °** TWIRL:

TEACHING SOFTWARE ENGINEERING REQUIREMENTS ANALYSIS (SERA) ***
EVALUATION OF

TECHNIQUES FOR SPECIFICATION AND VALIDATION OF TACTICAL SYSTEMS ***
FORMAL

TECHNOLOGY *** MESSAGE/OBJECT PROGRAMMING: AN EVOLUTIONARY CHANGE IN
PROGRAMMING

TECHNOLOGY HELD IN ARLINGTON, VIRGINIA ON MARCH 16-19, 1987 ***
PROCEEDINGS OF THE 5TH ANNUAL NATIONAL CONFERENCE ON ADA

TH ANNUAL NATIONAL CONFERENCE ON ADA TECHNOLOGY HELD IN ARLINGTON,
VIRGINIA ON MARCH 16-19, 1987 *** PROCEEDINGS OF THE 5

THEORIES AND OBJECT-ORIENTED PROGRAMMING *** TYPE

TIME DISTRIBUTED SYSTEMS *** PRACTICAL EXPERIENCES OF ADA AND OBJECT
ORIENTED DESIGN IN REAL

TOOL *** ADA DESIGN
TOOL FOR DISTRIBUTED SYSTEMS *** PRQOTOB: A HIERARCHICAL CBJECT-ORIENTED
CASE

10819
10400

10668

10046

6471

8616
8773
8652
6622
10020

2305
9467
6035
6622
7558
5692
10007
8233
5701

7720

7554

7251

10822
7885

10829

6043

10400

8773
10317

TOOQOLS, AND SUZSYSTEMS *** SOFTWARE COMPONENTS WITH ADA: STRUCTURES.

TOP-DOWN' MINDSET IN AN OBJECT-CRIENTED ENVIRONMENT *°** REUSE BY DESIGN:
DATA ABSTRACTION VS. THE '

TOWARDS A SYNTHESIS *** EXCEPTION HANDLING AND OBJECT-ORIENTED
PROGRAMMING:

TRANSLATING FUNCTIONAL REQUIREMENTS FOR OBJECT-ORIENTED DESIGN *** A
METHOD OF

TUTORIAL: MIL-STD-1815 ADA HIGH CRDER LANGUAGE *** PROCEEDINGS OF THE 2ND
AFSC AVIONICS STANDARDIZATION CONFERENCE. VOLUME 8.
TUTORIAL: NEW PARADIGMS FOR SOFTWARE DEVELOPMENT ***

TWIRL: TACTICAL WARFARE IN THE ROSS LANGUAGE ***
TYPE THEORIES AND OBJECT-ORIENTED PROGRAMMING ***
TYPES *** KNOWLEDGE-BASED PROGRAMMING USING ABSTRACT DATA

TYPES--THE FOUNDATION OF AN INTERACTIVE ADA COMMAND ENVIRONMENT *** ADA
ABSTRACT DATA

USED IN DECOMPOSING SYSTEMS INTO MODULES *** ON THE CRITERIA TO BE
USER INTERFACE MANAGEMENT SYSTEMS *** PROTOTYPES FROM STANDARD

USING A HYBRID Al DEVELOPMENT SYSTEM *** APPLICATIONS DEVELOPMENT
USING ABSTRACT DATA TYPES *** KNOWLEDGE-BASED PROGRAMMING
USING ACTORS: EXPLOITING LARGE-SCALE PARALLELISM *** CONCURRENT

PROGRAMMING
USING ADA *** MODULAR SOFTWARE CONSTRUCTION AND OBJECT-ORIENTED

DESIGN
USING ADA *** PROBLEMS ENCOUNTERED IN LEARNING OBJECT ORIENTED DESIGN

USING AN OBJECT-ORIENTED METHODOLOGY *** RELATIONAL DATABASE DESIGN
USING MODULA-2 *** MODULA SOFTWARE CONSTRUCTION AND OBJECT-ORIENTED

DESIGN
USING PICTOGRAPHS (SHARP) DEFINITION, APPLICATION AND AUTOMATION ***

STRUCTURED HIERARCHICAL ADA PRESENTATION

VALIDATION OF TACTICAL SYSTEMS *** FORMAL TECHNIQUES FOR SPECIFICATION
AND

VARIABLE MODEL FOR OBJECT-ORIENTED PROGRAMMING ***
ACQUAINTANCE/INSTANCE

VERSUS INHERITANCE *** GENERICITY

VIRGINIA ON MARCH 16-19, 1987 *** PROCEEDINGS OF THE 5TH ANNUAL NATIONAL
CONFERENCE ON ADA TECHNOLOGY HELD IN ARLINGTON,

VON NEUMANN STYLE? A FUNCTIONAL STYLE AND ITS ALGEBRA OF PROGRAMS ***
CAN PROGRAMMING BE LIBERATED FROM THE

VS STRUCTURED DESIGN -- A STUDENT'S PERSPECTIVE *** OBJECT ORIENTED
DESIGN

VS. THE 'TOP-DOWN' MINDSET IN AN OBJECT-ORIENTED ENVIRONMENT *** REUSE BY
DESIGN: DATA ABSTRACTION

WARFARE IN THE ROSS LANGUAGE *** TWIRL: TACTICAL
WORKSTATION *** OBJECT-ORIENTED PROGRAMMING APPLIED TO A PROTOTYPE

78

Author index

Abbott. Russell J.. 7465, 10828
Agha, Bul Abdulnabi: 7335
Agha, Gul: 7558

Agrestt, William W.: 8616
Agusa. Kiyoshi: 7251, 8515
Amir, Shawn: 8315

Atkinson, Colin: 10106
Auxiette, G.: 10110

Backus, John: 10829

Bailey, Stephen C.. 3561
Bailin, Sidney C.: 9132
Baker, Louis: 7728
Baldassari, Marco: 9392
Barlev, S.: 10042

Barry, Brian M.: 8058

Bayan, Rami: 10106

Beloff, Bruno: 7739

Blaha, Michael R.: 8233
Boehm, Barry W.: 2946, 8482
Boehm-Davis, D.A.: 6677
Booch, Grady: 8225, 10819, 10830
Borger, Mark W.: 6876

Bose, Sharada: 9467
Boudreaux, J. C.: 7864
Braaten, Alan J.. 7882
Bradshaw, Susan M.: 7720
Brooks, Frederick P., Jr: 168, 7643
Brown, Russell: 10046
Buchanan, Bruce G.: 8796
Bulman, David M.: 9566
Burno, Giorgio: 9392

Buser, Jon F.: 9267

Byrne, William E.: 7720
Cabadi, J. F.: 10110
Cardigno, Cinzia: 10106
Carey, Michael J.: 7809
Carlson, Greg: 10007

Cesar, Edison M., Jr.: 8773
Cioch, Frank A.: 9643

Cointe, Pierre: 10826
Corradi, Antonio: 8949

Cox, Brad J.: 5326, 5682, 10817

79

Cronin. Neil A 7720

O’lppotito. Richara: 8166, 8169, 8787

Danforth. Scott: 8652
Davanzo, P.: 10042
Davis, Neil W.: 10108
Oemarco., Tom: 8223
Destombes, Catherine: 10106
Dewitt, David J.: 7809

Di Maio, Andrea: 10106
Diederich, Jim: 8437
Dobbs, Veriynda: 10046
Dominick, Wayne D.: 9930, 10799
Donaldson, C. M.: 10104
Dony, Christophe: 10668
Ellis, John W., Jr.: 8773
Forestier, J. P.: 10103
Fornarino, C.; 10103

Foy, Ralph A.: 10020
Franchi-Zannettacci, P.: 10103
Frank, Daniel: 7809
Freeman, Peter: 5507
Futatsugi, Kokichi: 6362
Gardner, Michael R.: 8914
Giarla, William: 8773
Graete, Goetz: 7809
Grubbs, Jeffrey W.: 10400
Handloser lll, Fred: 9467
Harland, David M.; 7739
Hetzron, J.: 10042

Hewitt, Carl: 7558
Hoftman, Daniel: 10414
Holland, lan M.: 9726
Horowitz, Ellis: 6004
Irving, Malcolm: 10108
Iscoe, Neil: 9922
Jackson, M.A.: 5676
Jackson, Michael: 10818
Jacobs, Jeff: 8916
Jamsa, Kris A.: 6043
Johnson, Ralph E.. 10636
Kehler, Thomas P.: 6035
Klahr, Philip: 8335, 8773
Kornfeld, William A.: 6726

80

Kuhi. Frederick S.. 10317
Kunz, John C.: 5035

Lee, John E.. 10108

Lee, Kenneth: 8166, 8163, 87587
Leonardi, Letizia: 8349
Levitz, M.: 10042

Lewis, T. G.: 3467
Lieberherr, Karl J.: 39726
Liu, Chang-Shyan: 10205
Lotftus, William P.: 10020
Lorensen, William E.: 9361
Lovejoy, Alan: 7763
Maclennan, Bruce J.: 7100
McArthur, David: 8335
McDevitt, David E.:. 7720
Methtessel, Rand: 7740
Meyer, Bertrand: 7533, 7642, 8577, 10624. 10820, 10822
Milton, Jack: 8437

Minsky, Naftaly H.: 10827
Moreau, Dennis R.: 3930, 10799
Morgan, Tom: 8916

Muller, Robert J.: 8936
Muralikrishna, M.: 7809
Narain, Sanjai: 8335, 8773
Novak, Gordon S., Jr.: 6622
Qei, Charles L.: 10020
Ohno, Yutaka: 7251, 8515
Olthoff, Walter: 7136
Osterweil, Leon J.: 7631
Parnas, Cavid L.: 2305
Perez, Eduardo Perez: 10057
Pinson, Lewis J.: 10821
Pircher, Peter A.: 8936

Pitt, D. H.: 7554

Plinta, Charles: 8166

Plinta, Charles: 8169

Plinta, Charles: 8787
Porubcansky, C.A.: 6471
Premeriani, William J.: 8233
Pressman, Roger S.: 8220
Ramamoorthy, C. V.: 8662
Rehbinder, P.: 10110
Rettig, Marc: 8316

81

Reynolds, Charles W.: 10831
Richarason, Jeel E.. 7809
Rissman, Michaei: 8166, 8169, 8787
Roggio, Robert F.: 10400
Rosenthal. Don: 7138

Ross, L.S.: 6677

Rozensttein, David: 10827
Rumbaugh, James E.: 8233
Russi, Vincenzo: 9392

Schoen, Eric: 8796

Schuman, S. A.: 7554
Seidewitz, Ed: 8962, 10824
Serkin, Martin B.: 9984
Shekita, Eugene J.: 7809

Sheu, Phillip C.. 8662
Sincovec, Richard F.. 5692, 5701, 7041
Smith, Reid G.: 8796

Sodano, Nancy M.: 5665
Sodhi, Jag: 10019

Staff Author: 7625

Stark, Michael: 10824

Stein, Lynn Andrea: 10825
Stevens, Al: 10823

Stroustrup, Bjarne: 8403
Szulewski, Paul A.: 5665
Tarumi, Hiroyuki: 7251, 8515
Thalhamer, John A.: 10020
Tomlinson, Chris: 8652

Tupper, K.: 10042

Turner, Scott R.: 8773

U.S. Dept. of Detense: 2341
Van Scoy, Roger: 8166, 8167, 8169, 8787
Ward, Paul T.. 9267, 9931
Wasserman, Anthony |.; 8936
Weber, Herbert: 6393

Whiting, Mark A.: 9173

Wiener, Richard S.: 5692, 5701, 7041, 10821
Williams, Michael D.: 6035
Wimberly, Doug: 8916
Wirfs-Brock, Rebecca J.: 10636
Wolf, Wayne: 9727

Yamrom, Boris: 9361

Yang, Sherry: 9467

82

‘rau. Stephen S.: 10205
Zompi, Robeno: 9322

83

RS

