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A STATE OF THE ART REVIEW
of :
DISTRIBUTED DATABASE TECHNOLOGY

1. INTRODUCTION

1.1 Evolution of Distributed Databases

During the past twenty years, the practice of organizing repositories of data under a central point of control
became comnonplace. In an effort to overcome the unmanageable situation of applications generating and
maintaining autonomous files of data, corporations organized their data into “centralized” databases, free of
duplications and inconsistencies, managed by a database management system (DBMS) under the control of a
central database administrator. Guarded by the MIS minions, this practice gave management a secure hold over
corporate data, and at the same time gave the company’s diverse internal organizations the illusion of being in
control of their own data. For the corporate decision makers, gathering data was a “simple” process of querying
the databases residing on the corporate mainframe.

In recent years the physical makeup of corporations, private entitics and government activities, has changed
from a centralized to a distributed structure. The rise of giant conglomerates is an example of this change.
Within one of these composite organizations, even the manufacturing, engineering, and business units of one
component can be geographically dispersed. The distributed physical architecture of these organizations
demands that the information architecture also be distributed, embracing the concepts of open systems,
distributed computing, and hardware and software independence. As a natural consequence of this distribution
lies the requirement to distribute and manage the corporate data. Evolving from this need, the confluence of
database technology and network technology has now produced one of the newest members of software
engineering technology called distributed database technology.

A distmibuted database is a collection of multiple, logically interrelated databases distributed over a computer
network. A distributed database management system (DDBMS) is a software system that permits the
management of distributed data making the distribution transparent to the user. A distributed database is more
reliable and more respounsive than a centrally located and controlled database; data can be entered where it is
generated, data at different sites can be shared, and data can be replicated giving users the option of accessing
copies of the data in the event of a site or network failure. Outgrowing data storage resources or computing
power doesn’t necessitate moving up to the next expensive mainframe; distributed database technology allows
affordable, incremental hardware growth.

As with all new technology, the definition of a distributed database was unclear until time and use brought
clarification. During the carly eighties, vendors selling “distributed” databases, users who felt a need to
implement such a beast, and theorists who wrote articles dealing with the topic for technical publications all had
their own ideas about what constituted a “distributed” database.

In the Sunner 1987 publication of InfoDB, C.J. Date proposed twelve rules that apply to a distributed database.
Like E.FE Codd’s famous rules for the relational model, Date’s have become a bible for distributed database
technology. Sumumarized, the rules are as follows:



o Site Autonony—Each site maintains local privacy and control ot its own data; users that conunonly share
data can have it located at the site where they work

0 No Central Site—The operation of the database does not depend on any single site; each site in the
network runs local applications independently of the other sites, or globally on data at remote sites;
no single DBMS is more necessary than any other

o Continuous Operation—The distributed database should never require downtime; planned activity
should not require a shutdown

o Transparency—The location of the data does not need to be known to applications or users

o Fragmentation Independence—The division of a table into fragments should be transparent to the
applications/users

0 Replication Independence —Replication of data should be unknown to the user and updates to replicated
data are performed transparently to the user

o Distributed Query Processing—The performance of a query should be independent of the site at which it is
submitted; interleaved transactions updating multiple sites should be capable of serialization and, in
the event of failure, should leave the database in a consistent state

o Distributed Transaction Management—The distributed system should be able to support atomic
transactions

o Hardware Independence —The database should be able to integrate data from a wide variety of systems

o Operating Systein Independence —The database should be able to run on different operating systems

o Network Independence —The database must be able to operate using any conununications protocol

0 DBMS Independence —Databases must be able to communicate with those of other vendors
More recently, in 1990, Codd specified four minimal conditions to be satisfied by a distributed database. [38]
These conditions are the tollowing:

o The database consists of data dispersed at two or more sites

o The sites are linked by a communications network

0 At any site X, the users and programms can treat the totality of the data as if it were a single global database
residing at X

o All of the data residing at any site X and participating in the global database can be treated by the users at site X
in exactly the same way as if it were a local database isolated fromn the rest of the network
Codd uses these four conditions to distinguish products that support true distributed database management
from those supporting only distributed processing.

1.2 Reasons for Distributed Databases

Correctly implemented, distributed databases are more reliable, provide faster data access, reduce
comununications load, and allow for the incremental upward scaling of hardware. Among the many motivations
for developing a distributed database, these are the most frequently encountered:



o a distributed organizational structure demands distributed data
0 a need to generate global applications based on pre—existing databases
0 a requirement to reduce communications costs

o increased performance or reliability demands

A DDBMS is homogencous if the same DBMS occurs at each site regardless of the hardware and operating
system.[6] Generally, when the motivation is to integrate pre—existing databases, the “bottom—up” design
solution involves heterogencous databases — those belonging to several vendors probably not based on the same
data model. In other situations, a “top—down” design can be used which takes best advantage of the
functionality of a distributed database. In either case, the database designer will need to know what technology
is available to implement a distributed database systein. Most DBMS vendors currently offer a “distributed”
version of their product, but because of the lack of standards, these offerings vary in the level of support given to
the various aspects of distributed database technology. Also, depending on the particular market served by a
vendor, some aspects of distributed database technology are emphasized while others are minimized or
non-—existent.

In order to select the right DDBMS or to develop an optimum distributed design, the database system designer
must understand the relative merits of cach feature and be able to make tradeoffs to effectively match
implemented features to the specific data needs to be supported.

The objective of this state of the art review is to review those unique features of distributed databases that
distinguish them from centralized databases and to examine currently available implementations of these
features.



2. THE STATE OF THE ART IN DISTRIBUTED DATABASE TECHNOLOGY

As in centralized databases, regardiess of the underlying data model, the fundamental issue of distributed
databasces is transparency. In a centralized database, transparency refers only to data independence; in a
distributed database, transparency refers to the data and to the network. According to Date’s first rule, the
distributed database should appear to the user as one, unified database. To accomplish this, not only the location
of the data, but the very existence of the network must be transparent to the user.

The flipside of the transparency issue is the issue of local autonomy. Each site participating in a distributed
databasc must be wholly independent; its operating system, administration, resident databases and associated
catalogs must be totally autonomous. i

Factors that come into play when considering transparency and local autonomy include architectural issues, such
as the underlying data model, the schema, and the site and network hardware, and the functional issues, such as
how and where data is located and how the system synchronizes updates among the participating sites.

2.1 The Architectural Issues of Distributed Databases

The architecture of a distributed database includes the physical components of hosts/servers and the network
connecting them, the data models used to implement the component databases, and the schema used to
integrate the various independent databases. The structure of a distributed database system is shown in Figure
1.

2.1.1 The Server/Host

The architecture of a distributed database permits a very large database to be supported on a collection of host
equipment of varying capacitics and performance levels. Each participating site in a network is a
general—purpose computer that executes both local application programs and distributed database
management functions. These computers range in size from personal computers to powerful workstations and
parallel computers.

One of the strong points of distributed database technology is the ability to incrementally add host power to a
database structure. However, the design of the allocation of data to the hosts must consider the performance
characteristics of cach host in order to ensure the most efficient operation of the distributed database system. A
frequently used portion of the database should not be allocated to a host with inferior performance
characteristics, to a host connected to an unreliable power supply, or to a host on a poorly performing, or
overloaded Local Areca Network (LAN). Taking advantage of the performance improvements offered by
parallel architectures, recent trends in distributed database technology are toward assigning database functions
to dedicated data servers where the servers are parallel processors. These machines are capable of hosting very
large (many gigabyte) databases, enhancing performance by concurrent execution of parallel, complex queries,
and significantly reducing the /O bottleneck via parallel disk accessing.

2.1.2 The Network

The conununication network connecting the sites cooperating in a distributed database are most frequently one
of these three basic types:
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FIGURE 1: The Structure of a Distributed Database [6]



o high bandwidth, low delay “Ethernet” —like local area networks
o lower bandwidth, higher delay, longer range packet—switch networks, like Arpanet

o lower bandwidth, lower delay point—to—point leased circuit

Radio and/or satellite broadcast networks are also being employed as distributed database technology gains
popularity.

Not part of the technology of distributed databases per se, but certainly within the purview of the database
implementor, are the compression/decompression algorithms employed throughout the configuration of the
database. This includes an analysis of any bridge, router, and gateway hardware and software that may be part of
the total system. As the number and types of hosts (and workstations) on a network, and the number of local area
networks (LANs) comprising a system increase, the ability of the bridges, routers, and gateways to handle the
traffic efficiency is seriously atfected.

2.1.3 The Data Model

Treated as an extension of centralized database techinology, considerable discussion and disagreement has
continued concerning the appropriate data model to be used for distributed databases. A collection of
conceptual tools for describing data, data relationships, data semantics, and consistency restraints, a data model
can be one of three types: object—based logical model, record—based logical model, and physical data
model.[10]

Object—based logical models provide flexible structuring capabilitics and allow the explicit specification of data
constraints. The entity—relationship (E—R) model is an example of an object based logical model. It models the
real world as a collection of objects, called entitics, and the relations between them. Shown in Figure 2 is an E~R
model of customers, accounts, and the relationship of “customer account”.

customer CustAcct account

FIGURE 2: E—R Model of Customer Account

Record—based logical models describe data at the conceptual and view levels, specitying both the overall logical
structure and the implementation, but not the data constraints. The relational model, a record —based logical




model, represents data and the relationships between data as a collection of tables. Figure 3 shows the customer
account as a relational model.

name street city number
Lowery Maple Queens 900
Shiver North Bronx 556
Shiver North Bronx 647
Hodges Sidehill Brooklyn 801
Hodges Sidehill Brooklyn 647
T number balancc=
900 55
556 100000
647 105366
801 10533

FIGURE 3: Relational Model of Customer Account

The network model, another record—based logical model, represents data by a collection of records and
represents relationships among data by links. Figure 4 is a network model of the customer account.

Physical data models, which describe data at the lowest level, are not very popular and are not considered
appropriate in the context of distributed databases.

There has been research done into the “universal” model which takes all the relations in a regular relational
database and glues them together by means of one operator (natural join) to form a single relation of very high
degree that contains all the information in the database.[40] The universal relational model aims at achieving
complete access—path independence in relational databases by relieving the user of the need for logical
navigation among relations. Access paths are embedded in attribute naines, hiding all information about the
logical structure of the database from the user. Although relational databases removed the need for physical
navigation, access paths among relations must still be specified. The motivation behind the universal relational
model is to fully realize Codd’s goal to free users from the need to specity access paths.



Lowery Maple Queens 900 55
556 100 000
Shiver North Bronx
647 105 366
Hodges Sidehill Brooklyn 801 10533

FIGURE 4: Network Model of Customer Account

Among the current leading contenders for use with distributed databases are the record—based relational and
network models and the object—oriented model. However, as it has with centralized databases, the relational
data model has become the de facto standard for DDBMS. E.E Codd, founder of the relational model, holds
that distributed database technology is only feasible when based on a relational model. As characterized by
Codd, the relational model contains simple data structures, provides a solid foundation for data consistency,
and allows set—oriented manipulations of relations. These three powerful features have propelled the
relational model to the forefront of the technology.

The superiority of the relational model for use in distributed databases is refuted by recent work done at the
German National Research Center for Computer Science which espouses the use of an object—oriented
database approach to distributed database management.[4] A discussion of this effort is found in section 2.6.3.

It should be noted that it is possible to build a distributed database system without a single “global” data model.
Providing a high degree of site autonomy by not enforcing a global data model or schema, the Sybase DDBMS
product supports distributed operations via application programming or database —oriented remote procedure
calls (RPCs) between Structured Query Language (SQL) Servers.[23] When multiple data models exist within a
distributed database system, the system must provide for mapping from structures of one DBMS to another and
for translating the commands of one DBMS’s data manipulation language to their equivalents in the data
manipulation language of the other DBMS(s).[6] For example, Ingres’ distributed product, Ingres/STAR,
provides these functions via gateway products (restrictions apply to the location of the global data dictionary).
Also providing transparent join and view of multiple databases, the Informix—STAR product includes an
extended synonyms feature pennitting users to cmploy synonyms as pointers when tables are moved between
sites thus freeing them from the need to specity which computer to access.

2.1.4 The Schema

The schema describes a database as it is stored; it describes physical characteristics such as format, storage
location, and access paths, and defines the logical structure of the database. In a centralized database, the
schema is the global view of the database in terms of which all user views, called subschemas, are defined. In a
distributed database, schema integration refers to the way users logically view the distributed data. Whether the
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DDBMS is homogeneous or heterogencous, there are two Kinds of schemas — the global schema and the local
schema. The global schema defines all of the data in the system,; the local schema defines the data at the local

sites.

When the distributed database involves heterogeneous databases, two general approaches exist to mapping the
component distributed database schemas:

o integrate all the local schemas into one global schema and derive all user views from the global schema

o integrate various portions of the local schemas into multiple federated schemas

In the heterogeneous case, the designer may also be faced with a schema translation problem when different
data models are involved or different naming conventions are used. Data mapping may also be required if data
types or data values need to be converted for conformity (for instance, temperatures stored as Fahrenheit and
Celsius).

Whatever schema approach is chosen, users should be able to refer to and create tables by name without needing
to know where in the system the table is physically located or having to be concerned about naming conflicts. The
ability of the database to ensure unique system names is provided through a catalog called the data dictionary.
Infornmation about sites and storage structures, database sizes and other statistics, access privileges,
fragmentation and replication of tables, and system naming conventions are kept in a global data dictionary
which is itself a distributed database.

The conceptual problems associated with the schema are embodied in the data dictionary. Ifit is kept at a single
site there then exists a single point of failure. If replicated at every node, then every change in its information
requires a change at every site. Some DDBMSs employ an approach in which cach site maintains its own local
catalog which the system searches for each reference to a table. This method saves in the maintenance effort but
generates overhead network traffic.

2.2 Functional Issues of Distributed Databases

Transparency refers to the separation of the higher—level semantics of a system from its lower level
implementation issues. It is the fundamental characteristic of a distributed database, with the degree of
transparency being directly related to the degree of distribution. In order to achieve a high degree of
transparency, the system must automatically record and maintain information about the location of the data in
the database, the status of transactions, failure of any site or communication link in the network, and must
support commit and recovery protocols for ensuring transaction atomicity, isolation, and durability. These
concerns can be divided into four major issues pertaining to functionality: data location and function
distribution, transaction management, and query processing.

2.2.1 Data Location and Function Distribution

General distributed processing allocates parts of an application to different machines based on where the parts
are required. The user is very much aware of the distribution; the user must physically move between machines
to perform different application functions. Within the context of a distributed database, the functional
distribution implies that the data is distributed across database servers based on where the data is required. The
fact that the data is distributed is transparent to the user.

Location transparency, also termed distribution independence, hides the physical distribution of the data from
the user. Supporting location transparency is the single most important function of a distributed database
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system. Programs must continue to operate regardless of the distribution configuration of the data. Codd points
out that only prototypes and products based on the relational model have been able to demonstrate the
capability of supporting distribution independence.[38]

Data distribution is the single function under the control of the applications system designer or database
administrator (the remaining issues are generally an integral part of the DDBMS). The two key issues of
designing a distributed database are it’s data fragmentation and allocation. The purpose of fragmenting, or
breaking up, the tables of a database and allocating them to one or more sites in the network is to increase the
performance and/or reliability of applications using the database. The problems associated with the allocation
of the fragments are similar to those encountered in allocating files to nodes on a computer network. Although
much of the research into file allocation can been applied to fragment allocation, there currently are no
automated tools or allocation algorithms available to aid in evaluating alternative allocation designs.

2.2.1.1 Fragmentation

The ability to fragiment a relation, dividing it into subrelations and allocating the subrelations to a subset of
participating sites, is the distinguishing feature of distributed database technology. Since applications generally
view subsets of a relation, subsets are natural units of distribution. Fragmentation permits this finer granularity
in the unit of data distribution.

Fragment groups are collections that include the primary fragment and those fragments resulting from derived
fragmenting. Derived fragmentation refers to relations that become partitioned due to a primary fragmentation
performed elsewhere. For example, if a relation dealing with department numbers in an organization is
fragmented by department location, then another relation dealing with employee data may become fragmented
since the employee’s department number would most likely appear in such a relationship.

Fragmenting a relation can be performed horizontally, vertically, or in combination. Horizontal fraginentation
partitions a relation along its rows; for example, if a column in a relation contains site identification data, it
makes sense to store records associated with a site at that site, giving local users local access to the data.

Table 1 shows the giobal relationship Projects containing software project data. Within Projects are the project
number, the title of software project, its approximate dollar value, and the performing location.

Table Projects

“ Number Title $Value Location
! Maintenance 500,000 New Jersey

" 2 Database Devel 200,000 Alabama

ﬂ 3 Training 150,000 New Jersey

“ 4 Requirements 400,000 Illinois

" 5 Training 175,000 Alabama

TABLE 1: Global relationship Projects
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Two examples of possible horizontal partitionings ot the global relationship Projects are shown below. In Tables
2(a), (b), and (¢) the relationship is partitioned along the location column. The three resulting fragments would
ideally be allocated to hosts at their respective site locations. This scheme places geographically related data
closest to the location most likely to be accessing the data, and reduces the processing required when joins are
executed against the Projects data at each site. Of course, additional conununications costs would be incurred if,
tor instance, the New Jersey site required access to the Alabama data.

Table Projects (New J crsey)

Number Title $Value Location
1 Maintenance 500,000 New Jersey
3 Training 150,000 New Jersey

TABLE 2(a): Horizontal fragmenting of Projects by Location, New Jersey fragment

Table Projects (Alabama)

“ Number Title $Value Location
2 Databasc Devel 200,000 Alabama
5 Training 175,000 Alabama

TABLE 2(b): Horizontal fragmenting of Projects by Location, Alabama fragment

Table Projects (Illinois)

" Number Title $Value Location II

" 4 Requirements | 400,000 Hlinois ||

TABLE 2(c): Horizontal fragmenting of Projects by Location, Illinois fragment

13



The fragmentation by dollar value shown in Tables 2(d) and (¢) might be of value in situations where different
organizations, cach with its own computing resources, must deal with data based on a dollar threshold. For
example, it the purchasing function were divided such that one organization dealt with orders exceeding
$200,000 while another dealt with orders of lesser value, this fragmentation might be suitable. Locality of
reference is the relevant criterion for the design of fragments.[16]

Table Projects ($Value > 200,000)

Number Title $Value Location
1 Maintenance 500,000 New Jersey
4 Requirements 400,000 Hlinois “

TABLE 2(d): Horizontal fragmenting of Projects by $Value, > $200,000

Table Projects ($Value <= 200,000)

Number Title $Value Location "
2 Database Devel 200,000 Alabama II
3 Training 150,000 New Jersey
5 Training 175,000 Alabama

TABLE 2(¢): Horizontal fragmenting of Projects by $Value, <= $200,000

Using SQL, the horizontal fragmentation of Projects based on location would be defined as follows:

New_Jersey_Projects =
select * from Projects where Location = "New Jersey’

Alabama_Projects =
select * from Projects where Location = Alabama’

Illinois_Projects =
select * from Projects where Location = ‘Illinois’
The borizontal fragmentation of Projects based on dollar value would be defined as follows:

Projects_Over =
select * from Projects where $Value > 200,000

Projects_Not_Over =
select * from Projects where $Value <= 200,000

14




Vertical fragmentation partitions a relation into smaller relations with the goal of minimizing the execution time
of user applications on the fragments. Joins performed on the smaller relations will require imuch less processing
time. The concept of vertical partitioning, developed within the context of centralized databases for the same
reason, is useful in distributed databases where each fragiment may contain data with comumon geographical
properties. Table 3 shows a vertical partitioning of Projects. Note that the primary key of Projects, project_
number, appears as the primary key of cach vertical fragment.

Table Projects (Title and Location)

Number Title Location
1 Maintenance New Jersey
2 Database Devel Alabama
3 Training New Jersey
4 Requirements Ilinois
5 Training Alabama

Table Projects ($Value)

Number $Value

1 500,000

2 200,000

3 150,000

4 400,000
_5 175,000

TABLE 3: Vertical fragmentation of Projects

15



Using SQL, the definition for the vertical fragmentation of global relationship Projects as shown in Table 3 is as
follows:

Projects_Title_Location =

select Number, Title, Location from Projects
Projects_$Value =

select Number, $Value from Projects

Keeping in mind that the performance of query execution will be attected by the extent to which a database is
fragmented, the database designer must determine the correct level of fragmentation while maintaining the
following propertics:

1. Completeness — If a global relation is decomposed into fragments, cach data item that can be found in
the global relationship can also be found in one or more of the fragments. This property ensures against
loss of data.

2. Reconstruction — It must always be possible to reconstruct a global relation by joining the fragments
together. Horizontal fragments can be recombined by using the SQL UNION operator. In vertical
partitioning this is generally accomplished by including the key of the global relationship in each
fragment guarantecing the reconstruction through a join relationship. This property ensures that
constraints defined on the data in the form of dependencies are preserved.

3. Disjointedness — If a global relation is horizontally decomposed into fragments, any individual data item
can be found in only one of the fragments. Since the primary key attributes of a relation are typically
repeated in each of its vertical fragments, disjointedness is defined only on the nonprimary key attributes
of a vertical fragmentation.

In a distributed database system, a query written against a fragimented database would look exactly like a query
written against a centralized database. However, since no current DDBMS product supports fragmentation, the
user must know how the database is fragmented to be able to construct correct queries.

Table 4 shows the relationship Staff occurring in the database of software engineering projects. Staff contains
the employee identification number, name, position, and number of current project assignment.

Table Staff

Id# Name Position Number
30248 Jones, J. Programmer 2
19846 Smith, M. Manager 5
10002 Wilson, R. Analyst 4
48051 Williams, R. | Progranuner 1
34143 Larsen, T | DB Specialist 2

TABLE 4: Global relationship Statf
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To tind out where progranuners are correctly working the SQL query against either a distributed or centralized
database would be:

select Title, Location from Statf, Projects
where Projects.Number = Staff. Number
and Position = "Progranuner’

A true distributed database system would automatically expand this query to some equivalent of the following:

select Title, Location from Statf, New_Jersey_Projects
where New_Jersey_Projects.Number = Staff. Number
and Position = 'Programmer’

if not found

select Title, Location from Statf, Alabama_Projects
where Alabama_Projects.Number = Staff. Number
and Position = 'Progranuner’

it not found

select Title, Location from Staff, Illinois_Projects
where Illinois_Projects.Number = Staff. Number
and Position = 'Programmer’

clse print “No programmers assigned”

With the current state—of—the—art in distributed databases, the user must be aware of the tragmentation and
must provide for the expansion.

2.2.1.2 Replication

Once fragmentation has been completed, the individual fragments must be allocated to various sites on the
network. A big decision for the distributed database designer is whether any or all of the fragments should be
maintained at more than one site. If no data is replicated, the system is referred to as partitioned; if all the data
exists at every site, the system is termed fully replicated; if only some fragments exist at multiple sites the system is
called partially replicated.

An optimal allocation of fragments must address both the costs associated with storing multiple copies and the
performance of the resultant system. Storing costs must include the physical storage costs, the querying costs,
and the updating costs, where updating involves concurrency control mechanisms and integrity enforcements
across multiple copies of data.

Transaction oriented database applications demand a high level of reliability and availability. With multiple
copies, the probability that some copy will be available even when systein failures occur is high. For read only
queries accessing the same data, multiple copies provide an opportunity for parallel execution. While a system
with no data replication climinates the complexities related to update synchronization, reliability and
performance requirements may dictate either full replication of data at each site or varying degrees of partial
replication. Although partial replication introduces the additional cost of remote accesses, the cost is low when
compared with the costs associated with write operations in a fully replicated situation.[37] Data placement is
essentially a trade —off between update costs and the benefits of increased reliability and pertormance.

The complexity of synclironization procedures and the level of conununications required are dependent on the
number of copies of the data maintained in the system. Using their robust and adaptable distributed database
system, RAID, Purdue University is currently carrying out experiments to obtain measurements that provide
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empirical evaluation of algorithms used in distributed database systems. [37] The Raid experiments have
examined replicated copy control during site failure and recovery to determine how fast database consistency
can be restored and what are the associated costs. At system configuration time, Raid provides a threshold value
which specifies the minimum number of copies of cach database object to be maintained in the system.
Availability was measured by the number ot aborted transactions due to site failures. The experiments indicate
that thresholds up to three improve availability, while those above three yicld substantially smaller
improvements, and full replication produces the poorest performance results.

2.2.2 Distributed Query Processing

The query processor in a centralized DBMS transforms high—level queries into equivalent lower—level querics
which implement the execution strategy, focusing on optimization of performance primarily by reducing disk
accesses.

Distributed query processing must deal with the analysis, optimization, and execution of queries referencing
distributed data. Query optimization and execution in a distributed database environment involves global and
local optimization plans and the selection of access paths. Choices concerning the best site to process data and
how data should be moved between sites make the task of distributed query processing significantly more
complex than the centralized version.

A distributed query optimizer decomposes a query into a sequence of serial and parallel operations, groups the
operations that can be performed at the same site, and stages the transmission of results between sites to
eventually yield the desired result. The dynamic nature of a DDBMS adds to the complexity of the optimizer,
since each site must also carry on its own local execution load, while the network is subjected to varying traffic
patterns and bottlenecks. Optimizing distributed queries involves consideration of the following:

o speed differences in communication links
o speeds and loads of local processors

o nature of operations at sites

o possible parallelisim in query execution

o replicated/fragmented data possibilitics

Significant research has occurred in the area of distributed query processing. The resuits of this research can be
obscerved in the variety of implementations currently found in commercial and research systems. The research
emplhasis has been on finding methods that minimize the costs associated with intersite conununication. In most
cascs, optimization is broken into two separate problems: selection of a global execution strategy, based on
intersite conununication, and selection of each local execution strategy, based on centralized query processing
algorithms. [31]

Just as the ordering of joins is important in centralized databases, it is more important in distributed databases
because of the existence of fragments where their joining may signiticantly increase communication costs. Some
optimizing algorithms exploit the existence of replicated fragments at run time in order to minimize
conumnunication costs by using the semijoin operation to reduce the amount of data that must be moved between
sites. However, because the semijoin also increases the overhiead associated with control messages, some recent
systems no longer rely on it except in cases where it significantly reduces the amount of data that must be
moved.[31]
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Successful distributed query processing often depends on the availability of database statistics. Where limited
bandwidth is a determining factor, the selection of the ordering of operations is a critical operation. In order to
make this selection, the optimizer must have at it’s disposal statistics on the database fragiments with which it will
dynamically estimate the cardinalitics of results of relational operations. These statistics are maintained in the
data dictionary which, depending on the particular DDBMS implementation, may be centralized or distributed.
The designer of a distributed database who anticipates heavy distributed querying activity should be especially
concerned about the distributed capabilitics of the DDBMS's data dictionary.

2.2.3 Transaction Management

Managing transactions in a distributed database environment requires dealing with concurrency control, system
reliability, and the efficiency of the system as a whole. The execution of transactions must be done in a way that
preserves the characteristics of transactions, minimizes the cost, and maximizes system availability. The
transaction manager must provide the system with resiliency. Despite component failures, the system must be
able to continue operations and ensure that database consistency is not violated.

2.2.3.1 Concurrency Control

Concurrency control is the most difficult of the problems faced by distributed databases when data redundancy
is permitted. Generally, the techniques in use today to maintain data consistency while minimizing the overhead
of propagating control information to all nodes in the network are extensions of one or both of the same
techniques used in centralized databases — locks and tinestamps. Likewise, when locking is used as the method
of synchronization, deadlock of the DDBMS can result. Well established methods of deadlock prevention,
avoidance, and detection can be applied to distributed database systems.

2.2.3.1.1 Locking

Locking, the simplest form of concurrency control to implement, is the method most used in centralized DBMS
products. Those portions of a database involved in a read or write operation are “locked”, made unavailable for
any other operations. Differences in DBMS products can be found in the granularity of the locks; products may
“lock” at the data itemn, the record, the page, the table or file, etc.

When used in a distributed database environment, the locking method results in long delays while the locking
protocol is propagated to all the affected nodes, the transaction is accomplished, and the acknowledgements are
again propagated. For an “n” node network, straightforward locking involves 5n internode messages to
accomplish one transaction as follows: n lock messages, n lock grant messages, n update messages, n update
acknowledgments, and n release lock messages. Several variations of locking, fncluding the popular “two phase
commit”, reduce the number of messages to 4n, 3n, and even 1.5n by using concepts such as majority locking,
where only a majority of the nodes are required for a conmunit rather than unanimous approval, and piggybacking
update messages on top of lock requests, but all of these techniques prove to be unsatistactory in situations
involving large numbers of sites and high transaction volumes.[40]

Another variation of locking, the primary—site concept, involves funnelling all updates for given partitions of
the database through a primary site. When requests for data conform to well—defined patterns, for instance, by
geographical location, the primary site technique is effective; however, when requests can span multiple primary
sites this technique can result in global database locking.[40]

2.2.3.1.2 Timestamping

Timestamp—based concurrency control algorithins establish a serialization ordering of transactions by
assigning to cach a unique identificr, usually a composite stamp containing a site identifier and a monotonically
increasing counter value. The transactions are executed according to the assigned order.
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To compensate for the real—life situation of operations arriving at nodes out of sequence, cach data itemn is
assigned two timestamps. The read timestamp indicates the largest timestamp of transactions to have read the
data item; the write timestamp indicates the largest timestamp to have updated the data item. The transaction
manager compares the value of a data item’s timestamps to those of the incoming transactions to determine if it
should apply the transaction.

A hybrid class of locking—based algorithms also use timestamping to improve efficiency and the level of
concurrency. These algorithms are not currently implemented in any conmunercial or research distributed
DBMS. [31]

2.2.3.1.3 Multiple Protocol Methodology

Another concurrency control method under development today cmploys several different synchronization
techniques depending on the transaction being executed. At system design time, after an analysis of the ways in
which transactions can interfere with each other, several synchronization protocols are established which vary in
cost according to the level of control provided. Transactions are identified as belonging to a class depending on
the level of concurrency control required to maintain consistency. At run—time, the system does a table
look —up to determine which protocol to employ; if the transaction belongs to several classes, the system chooses
the most efficient, if it doesn’t belong to any, the system imposes the strongest protocol defined. This teclinique,
implemented in IBM’s experimental R* distributed database system, is reported as providing the fastest, lowest
cost method of concurrency control at this time.[40]

2.2.3.1.4 Deadlock Management

When locking based algorithms are used to provide distributed concurrency control in a system containing
redundant data, system deadlock — a circular waiting situation — can occur. Most DDBMS products strive to
prevent deadlocks by using timeouts as a detection mechanism. The timeout method causes a transaction to
abort after waiting for a resource for a given time interval. Determining an appropriate value for the interval is
difficult in a distributed environment because of the unpredictable load on the network and site hosts. A longer
timeout value introduces unnecessary delay, while shorter intervals cause unnecessary aborts. A phenomena
associated with short values is the cascading effect caused when an overloaded system causes aborts which
generate more aborts, increasing the load.

2.2.3.2 Reliability

Within a distributed database environment, the database recovery manager must deal with four types of failures:
transaction failures, media failures, site failures, and communication failures.

Transaction, media, and site failures are comunon to both centralized and distributed DBMSs. Transaction
failures, usually caused by an error in the data or by the existence or potential for deadlock, are handled by
aborting the transaction and restoring the database to its state prior to the transaction. Media failures, which
result in levels of data loss ranging from complete loss of the stable database and/or the database log to loss of
recent transactions, are most often repaired by either a full restore from an archive copy or a restore
accomplished by redoing and undoing transactions stored in the database log.

Unique to distributed databases, comumunication failures generally are related to messages that either contain
crrors, are delivered out of sequence, or are lost. The lower three layers of the Intermational Standards
Organization’s Open Systems Interconnect (ISO/OSI) architecture are expected to handle the first two types of
message related errors. Lost messages, typically the result of communication line or site failures, must be
handled by the DDBMS. In the event of conununication line failures the network may become divided, known as
partitioned, and each partition may continue operation. Maintaining the consistency of a distributed database
across a partitioned network, especially if replication of data exists across the partitions, is a monumental task
for the distributed transaction manager.
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Protocols employed in reliability techniques include the conunit, terminate, and recover protocols. Commit and
recover protocols exist in centralized DBMSs, but their implementation ditfers in DDBMSs. Maintaining the
atomicity of transactions across multiple sites implies that if a transaction fails at one site, it must be aborted all
all other sites. Termination protocols, unique to distributed databases, complement recovery protocols; while
recovery deals with re—establishing a consistent database across multiple sites, termination deals with
terminating active transactions when a failure has occurred at one or more sites. The commit protocol must
ensure that the etfects of a transaction across the entire database is an all or nothing situation.

2.3 Current Technology Implementing Distributed Databases

When contemplating entry into a new technology domain, most systems designers survey the current
implemented state—of—the—art. The majority of today’s implemented distributed databases are of the
lieterogencous variety, having been developed as a response to the problem of integrating databases scattered
throughout organizations. Among the most documented cases, all having been underway for several years, are
General Motors’ DATAPLEX, Amoco's Ammoco Distributed Database Systein (ADDS), Xerox’s MULTIBASE,
and the Integrated Manufacturing Data Administration Systemm (IMDAS) developed to support the National
Bureau of Standards Automated Manufacturing Research Facility. Each of these systems is a special purpose,
one of a kind system, customized to mclude those features ot distributed database technology which meet the
needs of the organization.

By and large, “bottom—up” distributed database implementations have been accomplished through sizable
in—house projects involving years of etfort. For example, IMDAS, developed to support a prototype computer
integrated manutfacturing environment at the National Institute of Standards and Technology, represents
15—20 staff years of ctfort. In addition to the substantial problems related to handling distributed data, these
programs must deal with a multitude of heterogeneity issues in areas such as the following:

o computer hardware

0 operating systems

o cominunications protocols

o communications links

o database management systems

o data models

o data representations

o data manipulation languages

o transaction management protocols
Within these custom systems can be found sophisticated solutions to the problems of distributed databases.

However, these solutions are tailored to the needs of the particular implementation.

The major focus of research and development today is to develop general purpose distributed database
management systems that will solve a wide range of data management problems. True implementations of
general purpose distributed database technology are only now beginning to emerge in the marketplace. These
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products are generally homogenceous solutions with lmited support for the heterogencous environment via
proprictary gateway products. Their unplementations with respect to the issucs of distributed database
technology differ markedly.

2.3.1 Data Models and Schema Integration

The most desirable distributed database design would be based on a single data model, preferably one in which
cach site implemented the same database management system. In this situation, all the problems of disparate
schema integration and query language translation disappear. Because we hardly ever get to deal with the
“perfect” situation, several commercial distributed database products now support multiple data models and
network protocols via gateway products. Although all these products use the relational data model for the native
system, gateway products provide them with the ability to incorporate older hicrarchical and network databascs
as nodes. Factors to be considered when beginning the design of a distributed database include the following:

o whether or not the system enforces a global data model
o the methodology employed to generate the global schema
0 naming conventions imposed

o the location(s) of the global dictionary

2.3.2 Data Distribution

The advantages to be offered by data distribution must be fulfilled by the DDBMS. Offsetting the promises of
improved performance, reliability, and availability are the complexities related to update synchronization,
distribution of control, security and the general lack of experience dealing with distributed databases.
Theretore, when the development of or migration to distributed databases is contemplated, the degree of
distribution and level of location transparency supported by a DDBMS product are factors for serious
consideration.

2.3.2.1 Degree of Distribution

In the design of a distributed database, it may be decided that the organization’s structure, geographical
dispersion, or other data requirements may necessitate or lend itself to the use of fragmentation and/or
replication of relations. Although there are plans for it in every vendor’s future, no distributed database product
currently supports transparent horizontal and/or vertical fragmentation. If the use of fragmentation is a
requirement, custom software must be written to support the level of transparency required.

On the other hand, most distributed database products currently support replicated data for query purposes;
with the exception of two products (see section 2.3.4), however, these same products only support single site
update within a single transaction.

2.3.2.2 Location Transparency

Within the context of a DDBMS, location transparency boils down to naming transparency — providing unique
names for each object in the database. Implementations of this function range from requiring the user to provide
unique names to having the system cmbed site location names within the name of each database object.
Embedding locations in the object names can make it unwieldy when the user is required to specity the tull name,
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as in IBM’s experimental R* system. The embedding practice causes other problems when objects are moved
across machines for pertormance optimization. Some systems clect to embed the “birth” site name in an object’s
name, providing referencing tunctions within the system’s data dictionary that resolve the current location of the
object. Other systems provide an aliasing capability for long names. However implemented, the best solution is
for the system to provide unique internal names for database objects and to translate the user names to these

transparently.

2.3.3 Distributed Query Processing

Distributed query capability can be found in just about every distributed database product, with significant
differences occurring in the query manager. Some current distributed DBMS products send queries to cach
database, and then compile the results into one response rather than handoft the query to a distributed query
manager. Some products contain sophisticated cost optimizers.

The location of the data dictionary is a signiticant factor in query optimization. Some systems fully replicate the
dictionary at each site to expedite query processing; others maintain a centralized version of the dictionary with
the emphasis on expediting updates. Depending on the specific application to be implemented, the designer
must consider the dictionary’s location(s). Using a product that supports a centralized dictionary has serious
limitations for an application with hetty distributed query requirements.

Most query optimizers are tied to data transmission costs; a cost —based optimizer reviews all possible semijoins,
determines the time and communications burden for each, and chooses the least cost alternative. The query
method that minimizes network tratfic is generally considered the most cost etfective. One commercial product,
Informix—STAR, has a verbose feature that informs the user of the costs involved for ecach SQL statement;
however, it only reveals the costs for the chosen alternative, not for all the possibilitics. The Ingres/STAR
product boasts the industry’s only “intelligent” optimizer; it relics on database sampling statistics and heuristics
to arrive at an optimal query processing strategy.

Some databases take advantage of the parallelisin offered in distributed databascs by concurrently executing
sub—querices at remote sites, and then bringing the data together in some optimal manner for final processing.
Other products require that the processing be performed at the dataserver nearest the user; if the designer's
network contains dataservers with significant perforiance differences, this is a serious concern.

2.3.4 Distributed Transaction Management

Distributed transaction management deals with the problem of concurrency — synchronizing transactions that
update redundantly stored data. Transaction management protocols handle the commit/abort decision at each
site in the distributed database. Fully implemented, these protocols require transaction logging, recovery,
commit, and deadlock detection/prevention features.

The capability to read and update data located at multiple sites within a single transaction, preserving the
properties of atomicity, isolation, and durability [18], may or may not be provided by a distributed database
management system. How the database handles distributed concurrency control and conunit protocols (without
incurring excessive overhead costs while propagating control information), and the ability of the system to
continue operation despite a component tailure (ensuring that database consistency is not violated), determines
the extent to which distributed transaction management is supported.

With the exception of Sybase and Ingres/STAR, most current distributed database management systems, even
the customized implementations, restrict distributed update to a single site within a single transaction. The
Sybase and Ingres products both support distributed updates that span multiple locations with a two—phase
conunit protocol; however, only Sybase supports multisite updates within one transaction with guaranteed
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recoverability. Both the research models and the commercial products list multisite —update in their future
plans. Until then, if you require update at multiple locations you must either use the Sybase product, or develop
custom software to fill the gap.

These two options are, in reality, closer than the reader might suspect. Sybase accomplishes multisite update by
providing its users with a library of database functions to be used in developing distributed database
applications. By incorporating the update, prepare, and conunit function, the applications developer directs his
own distributed transaction management.

2.3.4.1 Concurrency Control Protocols

The majority of conunercially available gencral purpose distnbuted database management systems do not
currently implement multisite update; updates are limited to either the local host or a another single host in the
network.

The most well —known and widely used method for implementing concurrency control is two —phased locking in
which transactions wanting to recad data obtain a shared lock on the data item, and transactions wanting to write
the data item obtain an exclusive lock. The granularity of the lock has been the subject ot discussion and dispute;
generally, locking occurs at the record, or tuple, level, with a few systems locking at the tile, or “relation” level.
Database systems that handle disk accesses themselves, rather than using I/O provided by the operating system,
may lock at the “page” level.

The deadlock situation, in which two transactions each have a locked data item and are waiting for the other to
release the lock, is generally handled via deadlock detection mechanisins.

2.3.4.2 Recovery Protocols

The most well—known and widely used method for implementing recovery protocol is the two—phase commit.
During the first phase, the participating sites indicate the ability and willingness to commit; during the second
phase, it all participants have answered affirmatively, the transaction is globally committed. If even one
participant responds negatively, or fails to respond, the transaction is aborted at every site.

The successful implementation of the two—phased commit depends on a transaction logging function at each
site during which log records containing information for undoing and redoing transactions is written to
redundant, non—volatile storage. The two—phased comumit is tolerant of failurcs as long as there is no loss of log
information. Protocols exist that deal with those situations where sites fail during the ready—conunit
sequencing. One of the problems associated with the two—phased commit occurs when a communications
failure or a failure of the site initiating a transaction occurs resulting in a partitioned network (see section
2.3.4.3). Some sites may be blocked while waiting for the commit/abort conunand. During this time system
availability is affected by the held resources related to the blocked transaction. The practice of eliminating the
“ready” phase by having sites transmit a “ready” inumediately after executing the transaction exacerbates the
blocking problem when a network or initiating site failure occurs.

Variations in the two—phased commit have been designed in an attempt to solve the blocking problem. The
“presunied conunit/abort” variation assumes a transaction is committed/aborted if no information about it is
contained in the log. The “spooling” variation stores messages for a downed site at a predefined “spooling site”.
When the site recovers, it applics the spooled messages. Another variation directs recovering sites to look for
lost information at other sites in the network.

2.3.4.3 Termination Protocols

Sites participating in a distributed database must have a consistent view of the network. If, because of a
communications failure, the network becomes partitioned, sites in each partition will have a different “view”,
since all the sites in the other partition will appear to be down.
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Addressing how sites deal with this type of communication failure, termination protocols handle the abortion of
executing transactions. These protocols, which use the timeout mechanisin, vary depending on the stage of the
transaction, the kinds of communication permitted within the DDBMS, and whether it is the initiator of a
transaction or a participant that has failed.

Considering the initiator, if a failure (timeout) occurs while waiting for the participants to respond with a
commit/abort decision, then the transaction can be globally aborted. If a failure occurs while waiting for a
commit or abort acknowledgement, the initiator can only continue to wait. For a participating site, if it has
received an initial update message but never receives the prepare to commit or abort, it can abort the
transaction. However, if a participant has voted to conunit a transaction, but never receives a commit message
from the initiator, it will be blocked from any further activity unless the system allows it to communicate with

another participating site.

Blocking and non—blocking termination algorithms have been developed that deal with variations that may
arise when sites are allowed to “discuss” their transaction states.

2.3.4.4 Reliability

Two related aspects of the reliability of distributed database systems are correctness and availability. These two
factors are inversely related; imposing more of one results in less of the other. The trade—off needs to be

evaluated by the designer of the system at hand.

For non—redundant data, availability depends strictly on the occurrence of site or network failures; there is no
way to increase the reliability of the system. Increasing the availability of the system is a major goal when
introducing redundant data into a distributed database system.

2.4 Implementation Strategies and Considerations

2.4.1 Degree of Site Autonomy

Despite Date's rule concerning site autonomy, reality may dictate varying degrees of autonomy. Given that cach
site maintains control of its own data, there may be compelling reasons for the existence, at some central site, for

any of the following:

1. A global catalog responsible for maintaining information about tfragmentation and allocation of data; an
alternative where there is high probability of frequent catalog updates coupled with infrequent
distributed queries

2. A central scheduler, or coordinating process, responsible for synchronizing access to the global database

3. A central deadlock detector to which local sites periodically report information relating to transactions
waiting for resources; a simple detection mechanism, this may be a viable choice if the network has the
capacity to carry the extra communications load and if the issue of failures related to the time it takes to
transmit deadlock data to the central site has been considered

2.4.2 Lack of Standards

As in any field of engineering, a system’s architecture defines its structure. Within the tield of computer systems
we try to establish some reference architecture that we term a “standard”. Software developers may deviate
trom this reference, and in the past they have, but deviating in today’s inarket is risky business.
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Standards rely on proven and mature technology. The rapid innovation rate in this ficld makes standards
obsolete before they can be established. Since the relational data model and some variant of SQL have been
adopted by today’s commercial DBMS products, these have been “standardized”. Especially for heterogencous
distributed databases, standards for both language and remote access are essential. If the two—phase comumit
and two—phase locking protocols were standardized, implementations would be straightforward.

2.4.2.1 ANSI Standard SQL-2

All of the available distributed database products support some version of IBM’s Structured Query Language
(SQL). Although the American National Standards Institute (ANSI) established an SQL standard, SQL—-86, in
1986, cach product’s version of SQL is different.

The SQL-86 standard has been vigorously attacked by E.F. Codd in at least three publications. The first two
occurred in a two part article, “Fatal Flaws in SQL, appearing in the August and September, 1988 editions of
Datanation. Codd reiterated and elaborated his complaints in his recent publication The Relational Model for
Database Management/Version 2.[38] Three flaws, described by Codd as having “grave consequences” are
these:

0 SQL permits duplicate rows in relations
o It supports an inadequately defined kind of nesting of a query within a query

o It does not adequately support three—valued (or four—valued) logic

Since increasing numbers of businesses and government institutions are becoming dependent on relational
DBMS:s for the success of their operations, Codd believes these flaws must be repaired. He reconmnends that
database users avoid duplicate rows within relations at all times, avoid nested versions of SQL statements
whenever a non—nested version is possible, and take extra care when manipulating relations that have columns
that may contain missing values.

The ANSI X3H2 Database Standards Committee is currently battling over the newly emerging standard called
SQL-2. Embroiled in the battle, but not on the committee, are Codd and Date. Leading problems to be solved
and/or negotiated are the following:

o Should duplicate rows be supported
o Should NULLs be supported
o Should primary keys be supported

o Datetime functions complicated by institution of Universal Time Coordinate (UTC) replacing
Greenwich mean time

o Complexity added by updateable views
o Security issues associated with GRANT and REVOKE; REVOKE has been added and GRANT

now permits circular references

The latest information indicates that the committee may be close to agreement with International Standards
Organization’s (ISO) working draft.[8] There is still a long way to go before the next SQL standard is available.
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2.4.2.2 Remote Data Access

Remote access protocols support conunon conununication mechanisms between local and remote processes.
Two alternative approaches have been proposed: message passing and remote procedure calls.[31] Message
passing consists of two primitives, send and receive, which, depending on their implementation, may provide
reliable or unreliable communications. Remote procedure calls are a restricted form of message passing
equivalent to blocking send and receive.

DBMS vendors have established proprietary interprocess communications protocols, but if heterogencous
distributed databases are to flourish standards must be established and followed. In 1985 an ISO working group

was formed to work on Remote Access Standards.

2.4.2.3 I1SO/0SI

The standardization necessary to interconnect heterogeneous hardware and support the transfer of data
between them is provided by the Open Systems Interconnect (OSI) protocol family of the ISO. Can all the
system functions of a distributed database management system be performed adequately at the applications
layer? There have been suggestions in the research community that this may be the correct approach.

2.4.3 Distributed Database Tools
There is an acute need for automated tools to support distributed databases. Tools are required for each of the
following: :

o Creation and maintenance of schemata

o Design and maintenance of table & fragment locations

0 Measuring and monitoring system performance

o Administering the dictionary

o Global security administration

Other than the performance tool associated with the Ingres/STAR query optimizer (discussed earlier), no
automated tools are provided with currently available distributed DBMS products. Developers of the
onc —of—a—kind systeins also express a desire for automated design and measurement tools.

2.4.4 Planning for the Future

Implementing a homogeneous distributed database is a sizable effort; implementing a heterogencous
distributed database is a monumental task. Even with the newest commercially available database products, not
all features of distributed database teclinology are available, with most products emphasizing those features that
complement their particular market niche.

Toward building long—lasting database applications, and planning for upward migration, the database designer
is urged to consider design strategics that insulate applications from changes that would otherwise be required
by future releases of your underlying DBMS product that increase its distributed functionality. If your DDBMS
does not support multisite update within a single transaction, provide custom software that makes it appear to the
application that it is supported. If your DDBMS does not support table replication, supplement it with custom

27



software that copics a remote table to the user’s site transparently to the application. Follow Codd’s advice
regarding avoiding capabilities existing in SQL today that may not be there in the future. When the time comes
that the missing feature is provided by the DDBMS, or standardization climinates one that is there now, the
custom software i1s removed and all applications may take advantage of the increased functionality without
modification.

2.5 Summary of the State of the Art

Distributed database technology’s chiet advantage is the ability to access data faster and cheaper than the
alternative centralized database approach. In order to make full use of this advantage, data must be able to be
located transparently throughout the system, updates to the data must be synchronized, and queries of the data
must be optimized to reduce not only the local disk accesses, but also the communications costs. Where the
system involves heterogeneous databases, the system must be able to cope with various SQL dialects and remote
procedure call protocols.

2.5.1 No Full Implementation

No current, commercially available distributed database product fully implements the concepts of distributed
database techinology. None address the problem of table fragmentation. However, potential users who caretully
analyze their particular data requirements probably can find general purpose DDBMS software that will meet
those requirements, although it may need to be augmented with custom sottware or additional hardware to
compensate for deficiencies.

2.5.2 Market Pull versus Technology Push

The situation within the distributed database research and development community is currently one directed by
market pull rather than technology push. The technology is going to advance based primarily on the needs of the
users, rather than on any radical breakthroughs accomplished in the research labs.

Date’s twelve rules spell out the requirements for implementing true distributed databases, and until those rules
can be satisfied by a general purpose distributed database product, applications will not be able to take
advantage of the full functionality offered by this technology.

2.6 Related Research Issues

Rescarchers in some technology domains that have traditionally studied and developed in isolation now find
their technologies overlapping. Today, they are cither joining ranks or are being forced into cooperation in order
to produce solutions that meet the growing demand of user conununities. The following topics are all technology
arcas that are being impacted by developments being made in distributed database techinology.

2.6.1 Distributed Database Operating Systems

Distributed database systems run as user applications on top of a host operating system. Although the topic of
distributed database operating systems has not been tully researched, there has been some discussion to the
effect that the performance and functionality of DBMSs can be improved by moditying and enhancing the
operating system to satisty the additional requirements of DBMSs, particularly their transaction support, butfer
management, and concurrency control requirements.
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Enhancements and improvements have been implemented in special purpose “database operating systems”
found in database machines, but not within the context of general purpose operating systes, although some
research operating systems designs now include some of the required functionality. Areas where operating
system change is contemplated are in the provision of the following:

o Fragmentation and replication transparency

o Network transparency

o User authentication and authorization control
o Full transaction management

o Special butfer and memory management

2.6.2 Distributed Multidatabase Operating Systems

Coordinating existing autonomous heterogencous databases without attempting to integrate them with a
unitied schema is the subject of multidatabase or federated systems. These systems exhibit a Iugh degree of
autonomy and do not lend themselves to integration. The global scheina in a multidatabase represents each local
database separately. The user is presented a conunon data manipulation language with which he/she identifies
the database to be used. Queries against a multidatabase generally are directed at only one of its components.

Some examples of autonomous databases that are federated for the purpose of information retricval are
dial—up information services such as CompuServe (TM) and The Source (TM). Dial—up scrvices trequently
guide the user through a sequence of queries to arrive at the required information.

The techniques developed for distributed databases will not suffice for multidatabases. Currently, the emphasis
in this technology area is tocusing on a comnon language to be used in managing information retrieval. The
major commercial systems are involved and, through ISO and SQL Access standards, they will be able to
cooperate in processing multidatabase queries.[25]

2.6.3 Object Oriented Distributed Databases

Object—oriented (OO) database systems are fast gaining support from the design communitics. Where
relational databases meet the demands of business applications typified by very large amounts of
well—-structured information, limited types and structures, and transactions that last for short lengths of time,
the OO data model supports entities that are objects with functional characteristics and supports the
requirement for dealing with long—lived transactions. The mathematical simplicity of relational database
cannot support complex data types or programming language control structures. The OO data model provides a
natural way to map real—world objects and their relationships directly to computer representations, meeting the
data modeling requirements of applications such as computer aided design (CAD), computer aided
manufacturing (CAM), computer aided software engineering (CASE), hyperinedia and expert systems.

M.P. Papazoglou and L. Marinos[4] retute the position that the relational model is the model best suited for
supporting distributed database applications. Concentrating on distributed heterogeneous information
systems, they point out that the relational model does not adequately support the complex structures required
and has limited semantic expression capabilities. The data model must “facilitate the communication between
the users of diverse and incompatible information systems and assist ... with the uniform representation and
integration of heterogeneous data from one site to another.” [4] Detined in terms of an object —oriented data

29



model which encapsulates the behavioral properties of the database objects, a distributed object —oriented
database management system (doodms) maps the data and the processing components of the entire system into a
unique system wide object space.

The doodms, as envisaged by Papazoglou and Marinos, consists of a layered umbrella over each autonomous
DBMS. The umbrella is comprised of (1) a system language component, providing a system—wide query
language in addition to each site's own query langnage, (2) metadata data modules, mapping local conceptual
schemas into the distributed conceptual schema, and (3) the global transaction module which provides for
distributed query decomposition and execution, concurrency control, and recovery.

There are no implementations, commercial or research, of a doods, but its flexible, modular approach and its
conformance to modern software engineering principles indicate that it will be forthcoming.

2.6.4 Distributed Knowledge Bases

Knowledge bases are relational databases extended with logic — the capability of deducing new information
from existing information. Most of the technology required to implement distributed databases can be used to
implement distributed knowledge bases; the consistency of the knowledge base and its query processing
capabilities (especially recursive querying) being two of the the major issues.

Current trends toward the development of knowledge bases, removing the “intelligence” of artificial
intelligence and expert systems from applications and placing it where it can be shared by many applications, is
spurring database researchers to expand and extend their efforts in distributed database technology to meet the
growing needs of knowledge bases.
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3. SUMMARY

The data processing requirements of today’s decentralized corporations together with advances in both
database and network technologics has led to the emergence of distributed database technologies. Although no
standards yet exist within this new technology, some guidelines have been provided by C.J. Date and E.E Codd,
both developers of relational database technologies.

A distributed database is a collection of multiple, logically interrelated databases distributed over a computer
network; a distributed database management system is a software system that permits the management of
distributed data making the distribution transparent to the user. Distributed databases are more reliable and
more respounsive than centrally located and controlled databases; data can be entered where it is generated, data
at different sites can be shared, and data can be replicated giving users the option of accessing copies of the data
in the event of a site or network failure.

The fundamental issue of distributed databases is transparency, which, in a distributed database, refers to both
the data and the network. However, achieving transparency must not infringe on the autonomous nature ot each
participating site.

Although several data models have been proposed tor use with distributed databases, only the relational model
has been implemented in current commercial products. The relational model contains simple data structures,
provides a solid foundation for data consistency, and allows set—oriented manipulations of relations.

Distributed databases can be either homogeneous, where all participating local databases are based on the same
data model (and are from the same vendor), or heterogeneous, involving databases belonging to several vendors
probably not based on the same data model. Homogeneous distributed databases generally use a single, global
schema, while heterogeneous distributed databases may opt for cither a single, itegrated schema or a
federation of the local schemas.

To obtain the high degree of reliability and availability offered by distributed database technology, the relational
tables must be fragmented and/or replicated across multiple sites. Fragmentation involves partitioning a
relation either horizontally or vertically and allocating the partitioned relations to sites where the data is most
often required. This practice is most usetul in situations where fragments contain data with common
geographical properties. Replication is a trade —off exercise between update costs and the benefits of increased
reliability and pertormance. Since many factors contribute to an optimnal fragmentation/replication design, no
tools or algorithms have been developed to assist the designer in this task.

Distributed query capability can be found in just about every distributed database product, with significant
differences occurring in the the performance capabilitics of the query manager. Distributed query processing
must deal with the analysis, optimization, and execution of queries referencing distributed data. The dynaimic
nature of a DDBMS increases the complexity of optimizing, since each site must also carry on its own local
execution load, while the network is subjected to varying traftic patterns and bottlenecks. While past research
has led to the development of query optimizers for centralized databases, these optimizers are designed with the
goal of minimizing response time. Now they are being extended for distributed databases, with the objective of
optimizing both response time and conununication cost.

Managing transactions in a distributed database environment requires dealing with concurrency control, system
reliability, and the efficiency of the system as a whole. Today’s comunercial DDBMS products use extensions of
one or both of the same techniques used in centralized databases — locks and timestamps. Differences in DBMS
products can be found in the both the granularity of the locks and in the particular implementation of the
popular two—phase commit protocol. Most current implementations are unsatisfactory in situations involving
large numbers of sites and high transaction volumes, and most restrict distributed update to a single site within a
single transaction.
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Despite the requirements for transparency and site autonomy, the lack of universally accepted standards and
differences in the implementation ot the data dictionary in various versions of distributed database systems have
produced significant variations in the degree to which the requirements have been met. I order to select the
right DDBMS or to develop an optimun distributed design, the database system designer must understand the
relative merits of each feature and be able to make trade —offs to effectively match implemented features to the
specitic data needs to be supported.

The development of distributed database technology is stimulating the development of new applications that
require support for distributed data. Advanced office antomation systems, computer aided design systems, and
knowledge based systems are three that profit from the ability to share data across a network of computers.
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APPENDIX A: GLOSSARY

atomicity Either all or none of a transaction’s operations are performed.
bridge Network hardware that serves to restrict packets to a local segment of a network.

broadcast network A network in which all sites receive all the messages sent by another site; a mechanism
(typically a prefix containing an identification of the destination site) allows each site to recognize those
messages directed to it.

catalog A repository of information about a database including, in distributed databases, the description of the
fragmentation and allocation of data and the mapping to local names.

concurrency control Ensures transaction atomicity in the presence of concurrent execution of transactions.

data distribution Refers to the partitioning, fragmentation, replication, and allocation of data among the sites
participating in a distributed database.

data dictionary The major database module that contains database mmetadata; it includes, at a minimun, schema
and mapping definitions.

data manipulation language A language that enables users to access or manipulate data organized by a data
model. A procedural language requires the user to specify what data is needed and how to get it; a nonprocedural
language requires the user to specity what data is needed without specitying how to get it.

data mapping Data types or data values are converted for conformity with cach other.

data model A collection of conceptual tools for describing data, data relationships, data semantics, and
consistency restraints.

deadlock A circular waiting situation which arises when two or more transactions obtain exclusive locks on one
or more data resources and are waiting for a resource held by another waiting transaction.

deadlock avoidance Mcthods that employ cither concurrency control techniques that never result in deadlocks
or require schedulers to detect potential deadlock situations in advance and ensure that they will not occur.

deadlock detection The detection of a state of deadlock and the preemption and abortion of one (or more)
transaction(s) until processing may continue.

deadlock prevention Mcthod that guarantees deadlock cannot occur; all data itemns required for a transaction
are predeclared and must be accessibie before the transaction is initiated.

distributed database A database system that provides access to data located at multiple sites in a network.

distributed processing Based on a collection of programs that are distributed among sites in a network, permits a
program at any site to invoke a program at another site in the network as if it were a locally resident subprogram.

distributed query processor A distributed database system module that, given a query, determines an execution
strategy that minimizes a system cost function which includes I/O, CPU, and communication costs.

dump An image of a previous state of a database, usually stored on oftline storage.

durability Once a transaction is committed, the results of its operations will never be lost, independent of
subsequent failures.
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Ethernet An example of a packet—switched network in which packets may vary in size from 64 bytes to 1,518
bytes and operates at 10 megabits per second.

fragment groups Collections that include the primary fragment and those tragments resulting from derived
fragmentation.

fragmentation Dividing a global relation into subrelations and allocating the subrelations to sites participating
in the global database.

fragmentation, horizontal Data items in ditferent local databases may be identified as logically belonging to the
same table in the global database; a relation partitioned along its rows.

fragmentation, vertical Data items in ditferent local databascs may be identified as logically representing the
same row in the global database but containing different attributes for the row; a relation partitioned into
smaller relations.

gateway Network software that permits the movement of information between networks of differing
communications protocols.

homogeneous database Refers to a distributed database in which each physical component runs under either the
same database management system or, at least, the same data model.

heterogeneous database Refers to a distributed database in which not all physical components run under the
same database management system; some literature refers to a distributed database as being heterogeneous if
the local nodes have different types of computers and operating systens, even if all local databases are based on
the same data model and even the same database management system.

ISO International Standards Organization.
isolation An incomplete transaction cannot reveal its results to other transactions before its commitment.

local autonomy Refers to the amount of control exercised by local database administrators within a distributed
database environment; local administrators with total control over that part of a distributed database at their
sites are said to be autonomous.

local recovery manager Module of a distributed database management system (one exists at a local site)
responsible for inplementing local procedures by which the local database can be recovered to a consistent state
following a failure.

long—lived transaction Data that lives after the processes that created them terminate.

object—based logical model A data model used in describing data at the conceptual and view levels. The
conceptual level describes what data is stored in the database and what relationships exist among the data and
the view level restricts the conceptual level to part of the database. Object—based logical models allow the
explicit specitication of data constraints.

OSI Open Systems Interconnect.

packet—switched network A network in which messages are broken up into packets and each packet is
transmitted individually. The packets may travel independently and may take different routes.

point—to—point network A network in which sites are connected by conununications channels, typically
telephone lines. Leased circuit utilizes point —to—point technology along leased communications lines.
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record—based logical model A data model used in describing data at the conceptual and view levels where the
conceptual level describes what data is stored in the database and what relationships exist among the data and
the view fevel restricts the conceptual level to part of the database. Record—based logical models can be used to
specity the overall logical structure of the database, but do not provide for specitying data constraints.

replication Data items in different local databases may be identified as copies of e¢ach other.
router Network hardware that picks the optimal route to send traffic over a network.

scheduler Module of a distributed database management system responsible for the implementation of a
specific concurrency control algorithm for synchronizing access to the database.

schema Describes the database as it is stored; describes the physical format, storage locations, and access paths
and defines the logical structure.

schema, global Describes all the data in a distributed database
schema, local Describes the data at the local sites in a distributed databasc

serializability It several transactions are executed concurrently, the result must be the same as if they were
executed serially in some order.

timestamp Uniquely identifies a transaction; for two transactions A and B, it A occurred before B then the
timestamp of A is less than the timestamp of B.

transaction A sequence of operations which either are pertformmed in entirety or are not performed at all; an
atomic unit of execution

transaction manager Module of a distributed database management system responsible for coordinating the
execution of the database operations on behalf of an application.

transparency Also called data independence, refers to the independence of application programs from the
physical or logical organization of the data.

transparency, distribution Refers to the independence of application prograins from the physical location of the
data in a distributed database.

transparency, fragmentation Refers to the lack of awareness by application programs of the existence of
fragmented relations in a distributed database.

transparency, replication Refers to the lack of awareness by application programs of the existence of replicated
data in a distributed database.

two—phase commit A protocol that requires for cach transaction a first phase during which an abort/conmunit
decision is made by each participant and a second phase during which the decision is implemented.

two—phase locking A locking protocol that requires tor each transaction a tirst phase during which new locks are
acquired and a second phase during which locks are only released.
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APPENDIX B: VENDORS IN DISTRIBUTED DATABASE TECHNOLOGY
ASK Computer Systems Inc., Ingres Products Division, 1080 Marina Village Parkway, Alameda,

California 94501, (415) 769~ 1400

Computer Associates International Inc., 711 Stewart Avenue, Garden City, New York, 11530,
(516) 227-3300

Digital Equipment Corporation, Database Systems Group, 55 Northeastern Blvd.,, Nashua, Hew
Hampshire 03062, (603) 884 — 2423

Gupta Technologies Inc., 1040 Marsh Road, Menlo Park, California 94025, (415) 321-9500

IBM Corporation, Old Orchard Road, Armonk, New York 10504, (914) 765—1900

Informix Software Inc., 4100 Bohannon Drive, Menlo Park, California 94025, (415) 926—6300
Interbase Software Corporation, 209 Burlington Road, Bedford, Massachusetts 01730, (800) 245—7367
Microsott Corporation, 1 Microsoft Way, Redmond, Washington 98052, (206) 882 —8080

Ontologic Inc., Billerica, Massachusctts

Oracle Corporation, 500 Oracle Parkway, Redwood Shores, California 94065, (415) 506 —7000
PeerLogic Inc., 333 DeHaro Street, San Francisco, California, 94107, (415) 626—4545

Progress Software Corporation, 5 Oak Park, Bedford, Massachusetts, 01730, (617) 275-4500

Ratliff Software Production Inc., 2155 Verdugo Blvd., Suite 20, Montrose, California 91020,
(818) 5463850

Revelation Technologies, 2 Park Avenue, New York, New York, 10016, (617) 275-4500

Saros Corporation, 10900 N.E. 8th Street, Bellevue, Washington 98004, (206) 646—1066
Sybase Inc., 6475 Christic Avenue, Emeryville, California 94608, (415) 596—-3500

Tandem Computers Inc., 19333 Valico Parkway, Cupertino, California 95014, (408) 965—-7542
WordTech Systems Inc., 21 Altorinda Road, Orinda, California 94563, (415) 254—~0900

XDB Systems, 14700 Sweitzer Lane, Laurel, Maryland 20707, (301) 317—6800
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